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FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source

command-line tools to filter, transform, annotate and analyze biological sequence data.

Modeled after the GNU (GNU’s Not Unix) Textutils such as grep, cut, and tr, FAST

tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype

expressive bioinformatic workflows in a compact and generic command vocabulary.

Compact combinatorial encoding of data workflows with FAST commands can simplify

the documentation and reproducibility of bioinformatic protocols, supporting better

transparency in biological data science. Interface self-consistency and conformity with

conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy

and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting,

selection and transformation of sequence records and alignment sites based on content,

index ranges, descriptive tags, annotated features, and in-line calculated analytics,

including composition and codon usage. Automated content- and feature-based

extraction of sites and support for molecular population genetic statistics make FAST

useful for molecular evolutionary analysis. FAST is portable, easy to install and secure

thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases

posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki

are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The

default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl

FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST

makes it easier for non-programmer biologists to interactively investigate and control

biological data at the speed of thought.

Keywords: Unix philosophy, MultiFASTA, pipeline, bioinformatic workflow, open source, BioPerl, regular

expression, NCBI taxonomy

1. Introduction

Bioinformatic software for non-programmers is traditionally implemented for user convenience
in monolithic applications with Graphical User Interfaces (GUIs) (Smith et al., 1994; Stothard,
2000; Rampp et al., 2006; Librado and Rozas, 2009; Waterhouse et al., 2009; Gouy et al., 2010).
However, the monolithic application paradigm is easily outscaled by today’s big biological data,
particularly Next Generation Sequencing (NGS) data at gigabyte- and terabyte-scales. Better
empowerment of non-programmers for genome-scale analytics of big biological data has been
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achieved through web-based genome browser interfaces
(Markowitz et al., 2014; Cunningham et al., 2015; Rosenbloom
et al., 2015). On the other hand, for smaller datasets,
sequence and alignment editor applications encourage manual
manipulation of data, which is error-prone and essentially
irreproducible. To reduce error and increase reproducibility in
the publishing of bioinformatic and biostatistical protocols it is
important to facilitate the documentation and automation of
data science workflows through scripts and literate programming
facilities (Knuth, 1984) such as emacs org-mode (http://orgmode.
org, as demonstrated in, for example Delescluse et al., 2012) that
both completely document and encode scientific workflows for
machine processing of biological data.

Reproducibility in bioinformatics and biostatistics protocols
is crucial to maintaining public trust in the value of its
investments in high-throughput and high-dimensional
measurements of complex biological systems (Baggerly and
Coombes, 2009; Hutson, 2010; Baggerly and Coombes, 2011;
Huang and Gottardo, 2013). In one analysis, only two of 18
published microarray gene-expression analyses were completely
reproducible, in part because key analysis steps were made
with proprietary closed-source software (Ioannidis et al.,
2008). Furthermore, even though analytical errors are a major
source of retractions in the scientific literature (Casadevall
et al., 2014), peer-review and publication of scientific data
processing protocols is generally not yet required to publish
scientific studies. Adequate documentation of bioinformatic and
biostatistical workflows and open source sharing of code upon
publication (Peng, 2009) facilitates crowd-sourced verification,
correction and extension of code-based analyses (Barnes, 2010;
Morin et al., 2012), and reuse of software and data to enable more
scientific discovery returns from public data (Peng, 2011). Peer
review and publication of the data science protocols associated
to scientific studies stems temptation to overinterpret results and
encourages more objectivity in data science (Boulesteix, 2010).
The ultimate remedy for these problems is to expand literacy in
modern computational and statistical data science for science
students in general (Morin et al., 2012; Joppa et al., 2013).

Web-based open-source workflow suites such as
Galaxy (Blankenberg andHillman-Jackson, 2014), Taverna (Oinn
et al., 2006) and BioExtract (Lushbough et al., 2011) are a
recent innovation in the direction of greater reproducibility
in bioinformatics protocols for genome-scale analytics.
However, the most powerful, transparent and customizable
medium for reproducible bioinformatics work is only available
to bioinformatics specialists and programmers through
Application Programming Interfaces (APIs) such as BioPerl and
Ensembl (Yates et al., 2015).

Yet workflow design suites and programming APIs require
dedication and time to learn. There is a need for more
bioinformatics software in between GUIs and APIs, that
empowers non-programmer scientists and researchers to
interactively and reproducibly control, process and analyze their
data without manual interventions. Closer inspection of data and
interactive construction and control of data workflows makes
it so much easier to rapidly prototype error-free workflows,
nipping errors in the bud that can completely confound

downstream analyses. In scientific computing, the time-tested
paradigm for rapid prototyping of reproducible data workflows
is the Unix command-line.

In this tradition we here present FAST: FAST Analysis
Sequences Toolbox, modeled after the standard Unix
toolkit (Peek, 2001), now called Coreutils. The FAST tools
follow the Unix philosophy to “do one thing and do it well”
and “write programs to work together.” (Stutz, 2000). FAST
workflows are completely automated; no manual interventions
to data are required. FAST falls between a GUI and an API,
because it is used through a Command-Line Interface (CLI).
Although the FAST tools are written in Perl using BioPerl
packages (Stajich et al., 2002), FAST users do not need to be
able to program Perl or know BioPerl. FAST users only need
basic competence in Unix and the modest skill to compose
command pipelines in the Unix shell. FAST therefore supports
an emerging movement to empower non-programmer biologists
to learn Unix for scientific computing. Books and courses in
this emerging market include the recent “UNIX and Perl to the
Rescue!” (Bradnam and Korf, 2012) and the Software Carpentry
and Data Carpentry Foundations workshops (Wilson, 2014).

Unix command pipe-lines are the paradigmatic example
of the “pipes and filters” design pattern that embodies serial
processing of data through sequences of modular and reuseable
computations. The “pipes and filters” design pattern is a special
case of component-based software engineering (McIlroy,
1969) and a core paradigm in software architecture (Garlan
and Shaw, 1994). The component-wise organization of FAST
affords access to an infinite variety of customizable queries
and workflows on biological sequence data using a small
command vocabulary and combinatorial logic. Component-
based software is easier to learn, maintain and extend. It also
makes it easy for users to interactively develop new protocols
through the modular extension and recombination of existing
protocols. As shown from the examples below, non-trivial
computations may be expressed on a single line of the printed
page. Thus, FAST can help empower non-biologist programmers
to develop and communicate powerful and reproducible
bioinformatic workflows for scientific investigations and
publishing.

Open-source command-line utilities for bioinformatics
such as the EMBOSS package (Rice et al., 2000), the
FASTX tools (Gordon, 2009) or the scripts that come with
BioPerl (Stajich et al., 2002) typically offer suites of tools
with simple, well-defined functions that lend themselves to
scripting, but are not necessarily designed according to the Unix
toolbox philosophy specifically to interoperate through serial
composition over pipes. Similarly, FaBox (Villesen, 2007) is a free
and open online server with functions that overlap with FAST
tools, but is not designed for serial composition. On the other
hand, the Unix toolbox model has been used before in more
or less more specialized bioinformatics applications such as the
popular SAMTools suite (Li et al., 2009) and in the processing of
NMR data (Delaglio et al., 1995). A toolsuite called bp-utils, with
a similar design philosophy and some overlapping functionality
with FAST, has recently been released at http://diverge.hunter.
cuny.edu/labwiki/Bioutils.
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We have written extensive documentation for each FAST
utility along with useful error messages following recommended
practice (Seemann, 2013). FAST is free and open source; its code
is freely available to anyone to re-use, verify and extend through
its GitHub repository.

2. Design and Implementation of FAST
Tools

2.1. The FAST Data Model
The Unix Coreutils paradigm allows users to treat plain-text
files and data streams as databases in which records correspond
to single lines containing fields separated by delimiters such as
commas, tabs, or strings of white-space characters. FAST extends
this paradigm to biological sequence data, allowing users to treat
collections of files and streams of multi-line sequence records
as databases for complex queries, transformations and analytics.
FAST generalizes the GNU Coreutils model exactly because it
models sequence record descriptions as an ordered collection of
description fields (see below).

Another design feature of Unix tools that also characterizes
the FAST tools is their ability to accept input not only from one
or more files but also from what is called standard input, a data-
stream supported by the Unix shell, and to output analogously
to standard output. It is this facility that allows FAST tools to be
serially composed in Unix pipelines that compactly represent an
infinite variety of expressive bioinformatic workflows.

The default data exchange format for FAST tools is the
universally recognized FastA format (Lipman and Pearson,
1985). While no universal standard exists for this format,
for FAST, “FastA format” means what is conventionally
called “multi-fasta” format of sequence or alignment
data, largely as implementated in BioPerl in the module
Bio::SeqIO::fasta (Stajich et al., 2002).

In the FAST implementation of FastA format, multiple
sequence records may appear in a single file or input stream.
Sequence data may contain gap characters. The logical elements
(or fields) of a sequence record are its identifier, its description and
its sequence. The identifier (indicated with id in the illustration
below) and description (desc) together make the identifier line
of a sequence record, which must begin with the sequence record
start symbol > on a single line. The description begins after the
first block of white-space on this line (indicated with <space>).
The sequence of a record appears immediately after its identifier
line and may continue over multiple lines until the next record
starts.

In FAST, users may alter how description fields are defined
in sequence records by using Perl-style regular expressions to
define delimiters (indicated by <delim>). FAST uses one-based
indexing of description fields.

The FAST data model is illustrated as follows:

>seq1-id<space>seq1-desc-field1
<delim>seq1-desc-field2<delim>...

seq1-sequence
seq1-sequence
...

seq1-sequence
>seq2-id<space>seq2-desc-field1
<delim>seq2-desc-field2<delim>...

seq2-sequence
seq2-sequence
...
seq2-sequence

In FAST, the sequence identifier is thought of as the 0th field of
the identifier line. One-based indexing of description fields in
FAST is therefore consistent with zero-based indexing in Perl and
one-based indexing of sequence coordinates, making all indexing
consistent and uniform in FAST.

Most FAST tools extend the field-based paradigm further
by supporting tagged values in sequence record descriptions.
Tagged values are name-value pairs with a format “name=value"
as common in General Feature Format (GFF) used in sequence
annotation (see e.g., https://www.sanger.ac.uk/resources/
software/gff/) or an alternative “name:value” format that
certain FAST tools themselves can annotate in-line into sequence
records by appending a new field to sequence record descriptions.
Support for tagged values in FASTmakes it possible to operate on
sequence records with unordered or heterogeneous description
fields.

2.2. Overview of the FAST Tools
FAST utilities may be assigned to categories according to their
default behavior and intended use. There are FAST tools for
selection of data from sequence records, transformation of
data, annotation of sequence record descriptions with computed
characteristics of the data, and analysis. A complete description
of all utilities included in the first major release of FAST is shown
in Table 1.

The analysis class is distinguished from the other classes
because by default, these utilities output tables of plain-text
data rather than sequence record data in FastA format. Two
other tools, fasconvert and gbfcut, are designed to either
input or output FastA format sequence records by default.
Standardization of the FAST data model allows users to serially
compose FAST tools into pipelines at the Unix command-line,
which is indicated as the “main workflow” in the overview of the
project shown in Figure 1.

2.3. General Implementation and Benchmarking
The BioPerl backend of FAST 1.x is version 1.6.901 downloaded
in January, 2012. Bio::SeqIO components were updated to
version 1.6.923 on June 4, 2014 and some Bio::Root components
were updated on July 10, 2014 (github commit 50f87e9a4d).
We introduced a small number of customizations to the BioPerl
code-base, primarily to enable the translation of sequences
containing gaps. All of the BioPerl dependencies of FAST are
isolated under its own FAST name-space.

To help reduce the overall installation footprint of FAST,
BioPerl dependencies of FAST scripts were analyzed with the
Cava packager (http://www.cavapackager.com).

Nearly all FAST utilities process sequence records inline
and therefore have linear runtime complexity in the number
of sequences. Exceptions are fassort and fastail which
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TABLE 1 | Utilities in first major release of FAST.

Tool/Category Function Coreutil analog Operates by default upon

SELECTION

fasgrep Regex selection of records grep Identifiers

fasfilter Numerical selection of records Identifiers

fastax Taxonomic selection of records Descriptions

fashead Order-based selection of records head Records

fastail Order-based selection of records tail Records

fascut Index-based selection and reordering of data cut Sequences

gbfcut Extract sequences by regex matching on features Features

alncut Selection of sites by content Sites

gbfalncut Selection of sites by features Sites

TRANSFORMATION

fassort Numerical or text sorting of records sort Identifiers

fastaxsort Taxonomic sorting of records Identifiers

fasuniq Remove or count redundant records uniq Records

faspaste Merging of records paste Sequences

fastr Character transformations on records tr Identifiers

fassub Regex substitutions on records Identifiers

fasconvert Convert sequence formats Records

ANNOTATION

faslen Annotate sequence lengths Descriptions

fascomp Annotate monomeric compositions Descriptions

fascodon Annotate codon usage Descriptions

fasxl Annotate biological translations Descriptions

fasrc Annotate reverse complements Descriptions

ANALYSIS

alnpi Molecular population genetic statistics Sites

faswc Tally sequences and characters wc Sequences

both require some paging of data into temporary files.
We performed benchmarking of FAST tools using randomly
generated sequences of even composition sourced generated in
Python and the Benchmark v1.15 Perl module on a MacBook
Pro 2.5Ghz Intel i7, with 8Gb of RAM. We examined average
CPU runtime over 100 replicates, comparing input sizes of 25K,
250K, or 1M sequence records of length 100, 10K, 100K, or 1M
bp. Our benchmarking results show that despite data paging,
fassort runtimes scale linearly with input size (Figure 2).

FAST is not designed to be fastest at computing its solutions.
Rather the fastness of FAST lies in how quickly an adept user
can interactively prototype, develop, and express bioinformatic
workflows with it.

2.4. Installation and Dependencies
FAST requires a working Perl installation, with official releases
distributed through the Comprehensive Perl Archive Network
(CPAN). A small footprint of BioPerl dependencies has
been packaged together in the FAST namespace. Other
CPAN dependencies may be detected and installed by the
cpan package manager. A fully automated install from
CPAN may on many systems be initiated by executing
perl -MCPAN -e ’install FAST’. A manual install
follows standard Perl install procedure. After downloading and
unpacking the source directory, change into that directory

and execute: perl Makefile.PL; make; make test;
(sudo) make install.

We recommend that first-time users first complete the
automated install from CPAN which will handle prerequisites,
and then download and open the source code directory in order
to practice the example usage commands (such as those in the
sequel) on sample data provided within.

2.5. Implementation and Usage of Individual Tools
Further implementation and usage details of individual
FAST tools follows. Usage examples for individual tools
refer to example data that ships with the FAST source-
code installer, available from CPAN. The most recent
version at the time of publication is 1.06, available
from http://search.cpan.org/∼dhard/FAST-1.06/ and as
Supplementary Material. However we recommend to use
the most recent version of FAST. For maximum reproducibility,
always cite the version number when publishing results with
FAST. These usage examples should be able to run from within
the installation directory after installation has completed.

fasgrep supports regular expression-based selection of
sequence records. FAST uses Perl-style regular expressions,
which are documented freely online and within Perl, and
are closely related to Unix extended regular expressions.
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FIGURE 1 | Overview of the first major release of FAST with data and

workflow dependencies indicated. Inputs to FAST tools are shown at the

top of the figure with outputs at the bottom. Outlined in blue is the primary

working model, in which Multi-fastA sequence or alignment data is

successively annotated, selected upon and transformed into new Multi-fastA

data, or fed into a utility in the analysis category for tabular output of data

summaries. Many of the utilities in the annotation category are also optionally

capable of tabular output.

For reference on Perl regular expressions, try executing
man perlre or perldoc perlre. For example, to
print only protein sequences that do not start with M for
methionine, execute:

fasgrep -s -v "^M" t/data/P450.fas

In the above command the -s option directs fasgrep
to search the sequence data of each record. The -v
option directs fasgrep to print records that do not
match the pattern given by its argument, which is the
regular expression ^M, in which the anchor ^ specifies
the beginning of the sequence data. fasgrep uses the

BioPerl Bio::Tools::SeqPattern library to support
ambiguity expansion of IUPAC codes in its regular
expression arguments. Thus, to show that a segment of
Saccharomyces cerevisiae chromosome 1 contains at least
one instance of an “Autonomous Consensus Sequence”
characteristic of yeast origins of replication (Leonard and
McHali, 2013), look whether the following command
outputs a sequence or not (note that all commands
reproduced here should be entered on a single line at the
Unix shell prompt):

fasgrep -se ’WTTTAYRTTTW’
t/data/chr01.fas
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FIGURE 2 | Average processor time of 100 repetitions required to complete analysis using indicated utility. Utilities were run on six datasets consisting of

(A) 25,000, 2,50,000, and 10,00,000 100bp sequences and (B) 10,000, 1,00,000, and 10,00,000 1000bp sequences.

which is equivalent to:

fasgrep -se ’[AT]TTTA[CT][AG]TTT[AT]’
t/data/chr01.fas

These examples demonstrate queries on sequence data, but
fasgrep may be directed to search against other parts of
sequence records including identifiers, descriptions, fields
and more.

fasfilter supports precise numerical-based selections
of sequence records from numerical data in identifiers,
descriptions, fields or tagged-values in descriptions.

fasfilter supports open ranges such as 100-,
meaning “greater than or equal to 100,” closed ranges
like 1e6-5e8 (meaning 1 × 106 to 5 × 108) and
compound ranges such as 200–400,500-. Ranges may
be specified in Perl-style (or GenBank coordinate style)
like from..to, in R/Octave-style like from:to or
UNIX cut-style as in from-to. For example, to print
records with gi numbers between 200 and 500 million, try
executing:

fasfilter -x "gi\|(\d+)" 2e8..5e8
t/data/P450.fas
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This example uses the -x option which directs
fasfilter to filter on the value within the capture
buffer which occurs within the left-most pair of parentheses
of the argument, here (\d+), and \d+ is a regular
expression matching a string of one or more digits from 0
to 9. The backslash after gi in the first argument quotes the
vertical bar character to make it literal, since the vertical bar
character is a special character in regular expressions.

fascut supports index-based selections of characters
and fields in sequence records allowing repetition,
reordering, variable steps, and reversals. Ranges are
specified otherwise similarly to fasfilter. Negative
indices count backwards from last characters and fields.
fascut outputs the concatenation of data selections for
each sequence record. Variable step-sizes in index ranges
conveniently specify first, second or third codon positions
in codon sequence records, for example. Examples using
this syntax appear in the sequel. To print the last ten
residues of each sequence, execute:

fascut -10..-1 t/data/P450.fas

alncut implements content-based selection of sites
in alignments including gap-free sites, non-allgap sites,
variable or invariant sites and parsimoniously informative
sites, or their set-complements, all with the option of state-
frequency-thresholds applied per site. By default, alncut
prints only invariant sites. To print the set-complement, or
only variable sites, use the -v option:

alncut -v t/data/popset_32329588.fas

To print sites in which no more than two sequences contain
gaps, execute:

alncut -gf 2 t/data/popset_32329588.fas

gbfcut allows annotation-based sequence-extraction
from GenBank format sequence files, useful for extracting
all sequences that correspond to sets of the same type of
annotated features in genome data. For example, to output
5′ and 3′ Untranslated Region (UTR) sequences from a
GenBank formatted sequence of a gene, we use the -k
option to restrict matching to features whose “keys” match
the regular expression “UTR”:

gbfcut -k UTR t/data/AF194338.1.gb

gbfcut can handle split features such as a coding region
(CDS) that is split over several exons:

gbfcut -k CDS t/data/AF194338.1.gb

More fine-grained queries of features are possible using
qualifiers defined with the -q option. Multiple qualifiers
may be provided at once, specifying the selection of records
for which all qualifiers apply (conjunction). For example,
compare the output of the following two commands:

gbfcut -k tRNA t/data/mito-ascaris.gb
gbfcut -k tRNA -q product=Ser
-q note^AGN t/data/mito-ascaris.gb

The second command queries for features with key “tRNA”
containing at least one qualifier “/product” whose value
matches the string literal “Ser” and no qualifiers of type
“/note” whose values match the string literal “AGN.”

gbfalncut automates the selection of sites from
alignments that correspond to one or more features
annotated on one of the sequences in a separate GenBank
record. This workflow eliminates the need for manual
entry of coordinates and implements a useful bioinformatic
query in terms of known and reproducible quantities from
public data and sequence records, allowing users to query
sites based on biological vocabularies of sequence features.
For an example of its use see the section “Composing
Workflows in FAST” in the sequel.

faspaste concatenates data from records input in
parallel from multiple data-streams or files, record-by-
record. The user may paste data from the standard input
stream and from multiple input files, in an order defined
by the arguments. Records from standard input may
be used multiple times in concatenating data. Like in
some implementions of the Unix tool paste, a hyphen
input argument - to faspaste refers to the standard
input stream and may be used more than once as an
input argument. For maximum configurability, faspaste
concatenates only one data field type (i.e., sequences or
descriptions) at a time. Users may select which data
stream will provide templates to receive concatenated data
in output records. For example, to paste sequences of
corresponding records from two data-files together and
output themwith the identifiers and descriptions of the data
in the first file, execute:

faspaste data1.fas data2.fas

See the sequel for more advanced usage examples with
faspaste.

fassort and fasuniq are designed to be often
used together in Unix pipelines. The fassort utility
implements numerical and textual sorting of sequence
records by specific fields. The fasuniq utility removes
(and optionally counts) records that are redundant with
respect to a specific field, such as sequences or identifiers.
In the implementation of fassort, pages of data are
sorted with optimized routines in Perl Sort::Key that,
if necessary, are written to temporary files and merged
with Sort::MergeSort. Like its Unix Coreutil analog
uniq, fasuniq compares only immediately successive
input records. Therefore, users will usually want to first
sort data with fassort before passing it to fasuniq. To
illustrate, the following example combines and sorts input
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records from two instances of the same file, and then counts
and removes each redundant record:

fassort -s t/data/P450.fas
t/data/P450.fas | fasuniq -c

This example illustrates that the same file may be specified
as an input stream more than once to any FAST command.

fastax and fastaxsort implement taxonomic
searching and sorting of sequence records, whose records
are already annotated with NCBI taxonomic identifiers
using taxonomic data from NCBI taxonomy (Benson
et al., 2009; Sayers et al., 2009). For example, a query of
“Metazoa” would match records labeled “Homo sapiens,”
“Drosophila melanogaster,” and “Lepidoptera” but not
“Candida albicans” or “Alphaproteobacteria.” Taxonomic
selections may be logically negated and/or restricted to only
those records containing valid NCBI taxonomic identifiers.
Purely for historical reasons, the internal implementation
of NCBI taxonomic data is custom to FAST rather than
the Bio::Taxonomy libraries in BioPerl. A sample
of data from tRNAdb-CE (Abe et al., 2014), in which
data records are annotated with valid NCBI taxonomic
identifiers in specific description fields, is included with
the FAST installation package. After downloading datafiles
“nodes.dmp” and “names.dmp” from NCBI Taxonomy,
the following command filters sequences from Rhizobiales,
assuming that records are labeled with their species (and
strain) of origin in the third field of the description of the
sample data file:

fastax -f 3 -S " \| "
nodes.dmp names.dmp Rhizobiales
t/data/tRNAdb-CE.sample2000.fas

fastr and fassub handle, respectively, character- and
string-based transformations of sequence records. The
utility fastr handles character-based transliterations,
deletions and “squashing” (deletion of consecutive repeats),
sequence degapping, and restriction or remapping of
sequence data to strict or IUPAC ambiguity alphabets. For
example, to lower-case all sequence characters, execute:

fastr -s ’A-Z’ ’a-z’ t/data/P450.fas

Degapping requires only the simple command:

fastr --degap t/data/P450.clustalw2.fas

The utility fassub allows more arbitrary substitutions
on sets of strings matched to Perl regexes, implemented
through direction of the Perl s/// substitution operator
on specific fields. Capture buffers may be used to refer to
matched data in substitutions, for example, to reverse the
order of genus and species in a file in which scientific names
occur in descriptions enclosed with square brackets:

fassub -d ’\[(\w+) (\w+)\]’ ’[$2 $1]’
t/data/P450.fas

fascomp, fasxl and fascodon provide for
annotation and analytics of compositions, translations, and
codon usage frequencies of sequence records (with start
and stop codons counted distinctly, in the last case). All
genetic codes included in BioPerl, ultimately from NCBI
Entrez, are supported.

alnpi outputs molecular population genetic statistics
cited in Table 2 for each alignment on input. It can
output a set of statistics for each alignment on input
in plain text or LATEX format. alnpi also supports
sliding window and pairwise analysis of input data. Data
and command examples are provided to reproduce the
tables and sliding window analyses of statistics published
in Ardell et al. (2003). Purely for historical reasons,
alnpi does not use the perlymorphism routines in the
BioPerl library Bio::PopGen (Stajich and Hahn, 2005).
However, all of the code for these calculations has been
reviewed and compared against calculations produced
from DNASP (Librado and Rozas, 2009) as described
previously (Ardell, 2004).

3. Composing Workflows in FAST

Here we show how to interactively prototype a pipeline that
computes the sliding window profile of Tajima’s D of Figure 4A
in Ardell et al. (2003) from a publicly available datafile. The
datafile associated to this figure is an NCBI PopSet with accession
ID 32329588 containing an alignment of a fully annotated ciliate
gene (accession AF194338.1) against several partially sequenced
allelic variants. One of the variants with accession ID AY243496.1
appears to be partly non-functionalized.

First to see this data, we view it in the pager less (press “q”
to quit and “space” to page):

TABLE 2 | Molecular population genetic statistics in FAST.

Statistic Symbol Citation

Number of sequences n

Number of alleles/distinct sequences k

Number of segregating sites S

Fraction of segregating sites s

Average number of pairwise differences Nei and Li, 1979

Nucleotide diversity π Nei and Li, 1979

Watterson estimator θW Watterson, 1975

Expected number of alleles E(K) Ewens, 1972

Tajima’s D D Tajima, 1989

Fu and Li’s D* D* Fu and Li, 1993

Fu and Li’s F* F* Fu and Li, 1993;

Simonsen et al., 1995

Fu and Li’s Eta S ηS Fu and Li, 1993

Fu and Li’s Eta η Fu and Li, 1993
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less t/data/popset_32329588.fas

A key feature of the Unix shell allows users to recall previous
commands in their so-called history, usually by typing the “up-
arrow,” for possble re-use and editing. To check the number of
sequences and characters in the alignment, execute:

faswc t/data/popset_32329588.fas

To compute our population genetic statistics we wish to remove
the annotated reference sequence, the deactivated allele, and
one additional sequence from analysis, which we can do using
fasgrep, and verify that it reduced data by the correct number
of records (six) by piping to faswc (the command is broken
over two lines here but may be entered as one line on the Unix
prompt):

fasgrep -v "(AF194|349[06])"
t/data/popset_32329588.fas | faswc

We can check the identifier lines by modifying the end of this
pipeline:

fasgrep -v "(AF194|349[06])"
t/data/popset_32329588.fas | grep \>

Sequencing ambiguities and gap-characters can introduce
noise and uncertainty in the execution and documention of
bioinformatic workflows. For some computations, for example in
molecular population genetics, one may want to be conservative
and remove ambiguity- and gap-containing sites from an
alignment.We can check for ambiguities in our data by outputing
a composition table:

fasgrep -v "(AF194|349[06])"
t/data/popset_32329588.fas | fascomp

--table

To remap ambiguities to gap characters, with the intent of
removing all sites containing either ambiguities or gaps, we may
use fastr to remap all non-strict DNA characters to gap (–) and
verify the result using fascomp again:

fasgrep -v "(AF194|349[06])"
t/data/popset_32329588.fas |

fastr --strict -N - | fascomp --table

Now, with confidence in our remapping, we extract exclusively
gap-free sites from the alignment using alncut, and verify that
we reduced alignment size with faswc:

fasgrep -v "(AF194|349[06])"
t/data/popset_32329588.fas |
fastr --strict -N - | alncut -g | faswc

Finally, we pass the verified pipeline output to alnpi for sliding-
window analysis of Tajima’s D in overlapping windows of width
100 and step size 25:

fasgrep -v "(AF194|349[06])"
t/data/popset_32329588.fas |
fastr --strict -N - | alncut -g | alnpi
--window 100:25:d

4. Further FAST Workflow Examples

4.1. Selecting Sites from Alignments by
Annotated Features
Another example, that reproduces a published result from (Ardell
et al., 2003), demonstrates the utility of combining gbfalncut
with alnpi, allowing users to select sites from alignments
corresponding to features annotated on one of the sequences in
a separate GenBank file. For example, to calculate a Tajima’s D
statistic for 5′ UTRs, corresponding to the the last line in Table 1

of that work, execute:

gbfalncut -k t/data/AF194338.1.gb 5.UTR
t/data/popset_32329588.fas | fasgrep -v
"(AF194|349[06])" | fastr --strict -N
- | alncut -g | alnpi

4.2. Selecting Sequences by Encoded Motifs
An advantage of the annotation approach in FAST is the
ability to select and sort sequences by attributes computed and
annotated into data by utilities upstream in the pipeline. For
example, to select protein-coding genes from a file cds.fas
whose translations contain the N-glycosylation amino acid motif
(Kornfeld and Kornfeld, 1985), one could execute:

fasxl -a cds.fas | fasgrep -t xl0
"N[^P][ST][^P]" | fascut -f 1..-2

The first command in the pipeline translates each sequence
and appends the translation to the description with the tag
“xl0” (indicating translation in the zeroth reading frame). The
second command in the pipeline uses a regular expression to
represent the N-glycosylation amino acid motif pattern as the
value of a “name:value” pair in the description with tag “xl0,”
hence processing the annotations produced by fasxl. The regex
argument to fasgrep is quoted to protect the argument from
interpretation by the shell. The last command in the pipeline
removes the last field in the description, restoring records as they
were before they were annotated by fasxl.

4.3. Sorting Records by Third Codon Position
Composition
Another example illustrates the powerful expression of ranges
in fascut. An optional “by” parameter in ranges allows
increments or decrements in steps larger than one. To extract
third-position bases from codon sequence records, compute and
annotate their compositions into record descriptions, ultimately
sorting records by their third-position adenosine contents, do:

fascut 3:-1:3 cds.fas | fascomp | fassort
-nt comp_A

4.4. More Advanced Merging of Data Records
More advanced usage of faspaste requires Unix pipelines.
For example to join both descriptions and sequences from two
data-files, execute:

faspaste data1.fas data2.fas | faspaste
-d - data2.fas
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The hyphen second argument (-) to the second instance of
faspaste refers to the input received from standard input
through the pipe. This example works because by default,
faspaste uses (“mutates”) records from the data stream
named in its first argument to receive the data concatenated from
all records.

To prepend the first sequence of one file repeatedly to every
sequence in another file, execute:

fashead -n 1 t/data/fasxl_test4.fas |
faspaste -r - t/data/fasxl_test4.fas

To prepend the first sequence of one file repeatedly to every other
sequence in another file, using identifiers and descriptions from
the second file in the output, execute:

fashead -n 1 t/data/fasxl_test3.fas |
faspaste -r -R 2 - t/data/fasxl_test4.fas

5. Further Documentation and Usage
Examples

Upon installation, FAST generates and installs a complete man
page for each FAST utility, which should be accessible by one or
both of the following commands:

man fasgrep
perldoc fasgrep

In addition, a FAST Cookbook has been contributed by the
authors and is available with the source code distribution or from
the project GitHub repository at https://github.com/tlawrence3/
FAST.

6. Concluding Remarks and Future
Directions

Planned additions in future versions of FAST include fasrand
and alnrand for automated sampling, permutations and
bootstrapping of sequences and sites, respectively, and fasgo
and fasgosort for selection and sorting of records by Gene
Ontology categories (The Gene Ontology Consortium, 2015).

Availability

Stable versions of FAST are released through the
Comprehensive Perl Archive Network (CPAN) at http://
search.cpan.org/∼dhard/. Development of FAST is through

its GitHub repository at https://github.com/tlawrence3/FAST.
For latest news on the FAST project please check the Ardell
Lab homepage at http://compbio.ucmerced.edu/ardell/software/
FAST/.
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