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Epigenetic modifications are alterations that regulate gene expression without modifying
the underlying DNA sequence. DNA methylation and histone modifications, for example,
are capable of spatial and temporal regulation of expression—with several studies
demonstrating that these epigenetic marks are heritable. Thus, like DNA sequence,
epigenetic marks are capable of storing information and passing it from one generation
to the next. Because the epigenome is dynamic and epigenetic modifications can
respond to external environmental stimuli, such changes may play an important role
in adaptive evolution. While recent studies provide strong evidence for species-specific
signatures of epigenetic marks, little is known about the mechanisms by which such
modifications evolve. In order to address this question, we analyze the genome wide
distribution of an epigenetic histone mark (H3K4me3) in prefrontal cortex neurons of
humans, chimps and rhesus macaques. We develop a novel statistical framework to
quantify within- and between-species variation in histone methylation patterns, using
an ANOVA-based method and defining an Fgr -like measure for epigenetics (termed
epi- Fgr), in order to develop a deeper understanding of the evolutionary pressures acting
on epigenetic variation. Results demonstrate that genes with high epigenetic Fg7 values
are indeed significantly overrepresented among genes that are differentially expressed
between species, and we observe only a weak correlation with SNP density.

Keywords: adaptation, epigenetics, epi-Fgt, ANEVA

Introduction

Elucidating the relationship between genotypes and phenotypes remains an important challenge.
One important question that remains in order to make further progress on this front is
the ability to quantify why cells in different tissues, despite having the same DNA sequence,
express different genes and maintain their distinct cellular identities. One of the key processes
used to explain this paradox is epigenetics. Epigenetic modifications (including covalent
modifications of the DNA and histone proteins, as well as RNA interference) regulate and
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alter the expression of genes without altering the underlying
DNA sequence (Bird, 2007; Goldberg et al., 2007). Thus, these
“epi-allele” modifications may provide an important source of
variation within a population on which selection may act upon
an environmental change.

One particularly interesting aspect of these modifications is
their ability to escape reprogramming during gametogenesis and
embryogenesis, and thus be propagated from parents to offspring
(Jablonka and Lamb, 1998; Daxinger and Whitlelaw, 2010). In
their review of transgenerational epigenetics in several taxa,
Jablonka and Raz (2009) suggested that epigenetic inheritance
may be ubiquitous. Most studies to date have focused on DNA
methylation—the mode of transmission that is perhaps best
understood. One widely studied example is the phenomenon of
genomic imprinting, where the expression of a gene depends on
the parent from which the gene was derived (Bell and Felsenfeld,
2000; Hark et al., 2000). For example, studies in mice have shown
that genetically identical parents having different methylated
states at Agouti can produce offspring with different coat colors
(Morgan et al., 1999). Another recent study demonstrated that
when mice were taught to fear an odor, this response was
transmissible for up to two generations and was linked to changes
in the DNA methylation status of a gene in the germline (Dias and
Ressler, 2014).

Thus, although there is accumulating evidence in favor
of epigenetic modifications being transmitted from parents
to offspring, little is known about their evolutionary history
or the selective forces acting upon them. Some studies have
worked to incorporate epigenetic effects into models of natural
selection and phenotypic evolution (Cowley and Atchley, 1992;
Geoghegan and Spencer, 2012; Bonduriansky and Day, 2013),
and a recent model also incorporates the effects of environmental
change (Furrow and Feldman, 2014). Models have also been
proposed to study trans-generational epigenetic inheritance and
its effects on disease risk (Slatkin, 2009). All of these studies
indicate that including epigenetic inheritance into traditional
population genetics models has important consequences for
adaptive evolution (e.g., faster rates of phenotypic evolution).

Jablonka and Raz (2009) discussed several ways in which
heritable epigenetic markers could bring about evolutionary
change, two of which are particularly interesting for the
purposes here: selection acting directly on epigenetic variation,
and epigenetic modifications guiding the selection of genetic
variants. However, little work has been done to quantify the
extent of natural variation in epigenetic markers. One recent
study involving three human populations revealed population-
specific differences in DNA methylation at certain CpG sites
which were not correlated with sequence variation (Heyn et al.,
2013). Human-specific selection signatures of H3K4me3 near the
transcription start sites (TSSs) of prefrontal cortex neurons have
also been described recently (Shulha et al., 2012).

As a necessary first step toward disentangling the effects of
selection on epigenetic states and selection on underlying DNA
variation, we present a novel statistical framework to quantify
the within- and between-species variation observed using an
ANOVA-based method analogous to the classical population
genetic Fgr statistic (Excoffier et al,, 1992). We examine the

patterns of H3K4me3 enrichment in the prefrontal cortex
neurons of humans, chimps and rhesus macaques. We identify
the most epigenetically divergent genes between humans and
chimps and study how this divergence correlates with differences
in gene expression patterns observed between these species.
This approach is akin to genome-wide scans for nucleotide and
amino acid divergence, and can enable us to address questions
including how frequently selection acts on epigenetic variation
and whether this selection is indeed independent of DNA
sequence variation. The framework presented here can easily be
extended to include other epigenetic marks, in order to broaden
our view of how the epigenetic landscape evolves, and whether
these changes are species-specific and of potential adaptive
importance.

Methods

Data

We use the ChIP-seq dataset from Shulha et al. (2012), which
identified a total of 34,683 H3K4me3 histone methylation peaks
in prefrontal cortex neurons of 11 humans (including adults
and children), 4 chimps, and 3 rhesus macaques. The peaks
were called by aligning Chip-seq reads from all three species
to the human genome (assembly version hgl9). Each peak
represents a region of the genome that is enriched for H3K4me3,
with the peak density corresponding to the strength of the
enrichment. RNA-seq data (paired end 46 and 50bp) from
white and gray brain matter for 5 and 4 human individuals,
respectively, were used from the above dataset. Single Nucleotide
Polymorphism (SNP) data for the three species were downloaded
from (http://www.ncbi.nlm.nih.gov/SNP/). TSS data for humans
(hg19) was downloaded from the Ensembl database (http://
www.ensembl.org/). Only TSSs for protein coding genes were
retained for further analysis. Liftover (http://hgdownload.cse.
ucsc.edu/admin/exe/) was used to obtain the TSS coordinates for
chimps (panTro2) and macaques (rheMac2) from the human TSS
data. Data for the gene expression differences between humans,
chimps, and macaques was taken from Cain et al. (2011).

Principal Component Analysis

Principal component analysis has been widely used in population
genetics to detect population structure and to study genetic
variation geographically, and can be useful in correcting for
stratification when performing genome-wide association studies
(Reich et al., 2008). The R package ade4 (Chessel et al., 2004)
was used to perform principal component analysis (PCA) to
identify groupings and/or clustering among the individuals of
the three species based on the normalized peak density values
of H3K4me3 density. We used an unscaled and centered PCA to
avoid masking species-specific variation; therefore, the sum of the
eigenvalues equals the total variance and the PCA corresponds
to an eigenanalysis of the covariance matrix. We first performed
a genome-wide PCA taking into account all histone peaks in
chromosomes 1-22. Second, we used a sliding window approach
with a window size of 1 Mb, sliding 100 kb. In each window, we
calculated the pairwise Euclidean distances between the centers
of the ellipses of dispersion of each species.
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ANEVA (Analysis of Epigenetic Variance)

To quantify epigenetic variation within and between species we
propose an ANOVA framework similar to AMOVA for genetic
data (Excoffier et al., 1992). AMOVA can be used for a variety of
molecular data to make inferences on population differentiation.
The model used in the current study is as follows: let the
normalized peak density Yj; be written as:

Yii=pn+oi+¢; (1)

where p is the expected mean peak density, o; is the species
effect with the corresponding variance component o2 and &ij
the individual or within-species effect with the corresponding
variance component o 2.

All effects are assumed to be random and additive and the total
sum of squares (SS) can be partitioned into the between-species

and within-species components (Table 1):

SStotal = SSetween + SSwithin (2)

We define an Fgr -like measure for epigenetics based on analogy

with AMOVA (Excoffier et al., 1992):
a‘f + 052

epi— Fy =~ (3)

From the ANOVA table (Table 1) we can calculate the natural
estimates, written as S* and S2 using:

SSwithin _ 2-i 2_j Ui — )

s? = (4)
dof \yithin Aof \ithin
—\2
SS - § (i —y)ni— 8
saz _ between _ Zl ()’z }’) 1 (5)
no no

where y;. represents the mean for the it species, n; is the number
of individuals of the i species, y represents the overall grand
mean, and n represents the effective sample size.

In this manner we can calculate an epi- Fgr statistic for each
peak. As proposed by Excoffier et al. (1992), we used 10000
random permutations of individuals between species to assess
significance of epi- Fst. Note that like in the AMOVA framework,
our epi- Fgr values can be negative in some cases. These cases
occur for very low values of SS,ini,, and in our dataset if
SSwithin = 0, we have the minimum possible epi- Fst = —0.2 as
nyg = 6 (see Table 1). As ny — 00, the minimum possible epi-
Fst — 0. We also calculated one epigenetic Fst for each gene by
averaging the epi- Fst of all H3K4me3 peaks that lie within that
gene or 50 kb upstream or downstream from the start and end of
the gene, respectively.

Identifying Genes in Regions That Are Variable
within a Species
The SSithin calculated above can be further decomposed as:

SSwithin = SSwithin_humans + stithin_chimps (6)

and for each peak we calculated the variance within humans and
within chimps using:

stithin humans
Varwithin_humans = ni_l (7)
n—

SSuwithi n_chimps

®)

Var ithin chi
within_chimps e — 1

where nj, and n, are the number of human and chimp individuals,
respectively.

Similar to the calculation method for the epi- Fsr for each
gene, we calculated the variance in H3K4me3 enrichment for
each gene by averaging the variance for all peaks lying within a
gene or 50kb upstream and downstream from its start and end,
respectively.

Expression Analysis

Quality control of the paired-end illumina RNA-seq reads was
performed using FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Trimmed illumina paired-end RNA-
seq reads were mapped to the human genome hgl9 using
tophat2 (Kim et al., 2013). Then, differential expression analysis
was done using cuffdiff (Trapnell et al, 2010). For both
mapping and differential expression analysis, the reference
annotation was downloaded from (https://ccb.jhu.edu/software/
tophat/index.shtml).

Results and Discussion

Enrichment of H3K4me3 Peaks near
Transcription Start Sites

To characterize the conservation of peaks near TSSs, we
downloaded data for human (hg19) TSSs from Ensembl biomart,
and limited our analysis to protein-coding genes only. Liftover
was used to obtain the coordinates of the TSSs in chimps
and macaques. As the peaks were obtained by mapping the
ChIP seq reads to the human genome, we used Liftover
to obtain the peak coordinates in the chimp and macaque
genomes. Previous studies have shown that there is a strong
overlap in H3K4me3 associated regions between these species (as

TABLE 1 | Application of the ANOVA method for H3K4me3 peaks in humans and chimps.

Source of variation D.F. Sum of squares (SS) Mean square (MS) Expected MS
Between species 1 i — v)Pn; SS(between)/1 02 + ngol
Within species 13 5 % - v SS(within)/13 o2

Total 14 SS(between) + SS(within)

Where ng = [T — ():fn,?/D]/(N — 1), with T = 15 (the total number of human and chimp individuals) and N = 2 (the number of species). Since we have an unbalanced ANOVA, with each
species group having a different number of individuals, we calculate the effective sample size ng. Here np = 6.
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much as ~70% between humans and chimpanzees and ~64%
between humans and macaques; Cain et al., 2011). We found
that ~46, ~37, and ~21% of the peaks were located within
2Kb upstream or downstream of TSSs in humans, chimps,
and macaques, respectively, when considering only unique
TSSs (a single TSS per gene that corresponds to the longest
transcript for that gene). When all known TSSs for a gene were
considered, ~54, ~43, and ~22% of peaks in humans, chimps,
and macaques, respectively, were found to be conserved near
TSSs (2 kb upstream or downstream). Similarly, Cain et al. (2011)
reported that 61.2 £+ 1.5% were conserved near the TSSs in
these three species. This difference could be due to the fact that
we used only protein coding genes in our analysis, or owing
to differences in H3K4me3 patterns between lymphoblastoid
cell lines (LCL) used in their analysis and PFC neurons used
here.

Quantifying Variation

PCA

Performing a PCA on the whole genome H3K4me3 peak data
revealed that individuals of each species cluster together and
that different species have distinct, non-overlapping clusters
(Figure 1). In the three-species comparison, the first three
principal axes describe >60% of the total inertia or total variance
of the dataset (34.5, 16.3, 13.9%, respectively). In the two-
species comparison (between humans and chimps), the first three
principal axes also describe >60% of the total inertia (31.2, 20.5,
and 10.5%, respectively). We note that the pair-wise distance
based on ellipses of dispersion between humans and chimps is
smaller than the distances between humans and macaques or
chimps and macaques (Figure 1, Figure S1, and Table S1). Thus,
epigenetic marks appear to accumulate differences in a “clock-
like” fashion similar to genetic changes, potentially consistent

A
L) ]
s =
-
o —‘Hﬂﬂﬂ[—ll—lﬂﬁﬁmr—u—\m,—‘
B
d=05
s J _DDDDDDDDDEEDD
FIGURE 1 | Whole Genome Principal Component Analysis of peak implying that this histone mark has a species-specific signature. In the
density values for (A) humans (in green), chimpanzees (in red) and histograms, y-axes represent the variance (absolute value) and x-axes show
rhesus macaques (in blue), (B) humans (green) and chimpanzees the principal components. The first three principal axes represent (A) 34.5,
(red). The individuals of each species group into well separated clusters, 16.3, 13.9 and (B) 31.2, 20.5, and 10.5% of the variance, respectively.
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with an important role for genetic drift. However, it is important
to note that this observation is based on only a handful of species,
and it would be necessary to test across a wider phylogenetic
sampling before the assertion could be made strongly.

ANEVA

Over the whole-genome H3K4me3 peak data, epi- Fst was
significantly different from zero (p < 0.0001, see Figures S2,
$4-56). We plotted the within-SS vs. the between-SS and the epi-
Fsr values for all peaks for the human and chimp comparison in
log scale (Figure 2). We found a weak but significant correlation
between SS,imin and SSpepeen (P < 2.2e-16 and Spearman’s
coefficient of correlation of 0.35).

To further investigate the relationship between sequence
variation and epigenetic variation, we performed a sliding
window analysis (using a window size of 1Mb and sliding
100kb at a time) for each chromosome and compared the SNP
densities in each window with the average peak density and
number of histone peaks per window. We observed weak but
significant correlations between the number of SNPs with (1) the
number of histone peaks and (2) the average peak density (0.26
and —0.05, respectively; p < 2.2e-16). This correlation suggests
that the presence of SNPs may indeed have an impact on the
enrichment/binding of the histone mark—though it cannot be
ruled out that both are being impacted by a third biological
correlate.

Expression Analysis

Correlating Genic Variance in H3K4me3 Peak
Densities with Differences in Gene Expression in
Humans

We identified 404 genes as being differentially expressed in gray
matter and 526 genes as being differentially expressed in white
matter within humans. Significance of differential expression

Sum of squares (Within)
-3
1

-4
|

-12 -10 -8 -6 -4 -2 0
Sum of squares (Between)

FIGURE 2 | The between-variation (human-chimp) plotted against the
within-variation (human) obtained for the ANEVA. The highest Fg7 values
are indicated in yellow, corresponding to the most divergent peaks between
the species, with low Fgt values indicated in red. The dotted line indicates the
1:1 correspondence between the axes.

between any pair of individuals was determined based on
p-values generated in cuftdiff, specifically when p < 0.05. In
gray matter, the top 500 genes with the highest variance in
H3K4me3 enrichment had a significant overrepresentation of
differentially expressed genes (p = 0.04). In white matter, no
significant overrepresentation was found when considering the
top 500 genes with the highest variance (p = 0.42). However, the
peaks were called from PFC neurons (i.e., gray matter), which
may explain the absence of significant results from white matter.

Correlating Epigenetic Fst with Differences in Gene
Expression between Humans and Chimps

We next evaluated whether our H3K4me3 epigenetic Fsr
values for genes correlate with differences in gene expression
between humans and chimps, using the data for differential
gene expression between human and chimps published in Cain
et al. (2011). A total of 11,184 genes in this dataset overlapped
with the genes for which we calculated epi- Fgr. In total, 515
are significantly differentially expressed between humans and
chimps at the 1% significance level. In addition, 534 of the top
1000 genes identified as having the highest epi- Fgr overlapped
with this dataset for differential gene expression. Of these, 34
were significantly differentially expressed at the p = 0.01
level (FDR corrected p-values for differential expression from
Cain et al, 2011). We thus find that there is a significant
enrichment (p = 0.0284) of differentially expressed genes
among those with the highest epi- Fst. Therefore, epigenetic
divergence in H3K4me3 enrichment may explain a fraction of
gene expression differences that we observe between species.
It is important to note that we review only one histone mark
in this study (H3K4me3); in order to capture the full extent
of how epigenetic divergence correlates to differences in gene
expression between species, it would be helpful to consider
several different epigenetic marks. For example, H3K4me3 is
the methylation state associated with transcriptional start sites
of actively transcribed genes—and further epi- Fst comparisons
between transcriptional activation and transcriptional repression
marks would be of interest in beginning to quantify differences
in pressures. Additionally, it would be of great value in future
studies to have paired methylation marks and expression data
from identical individuals.

Conclusions

We developed here a simple model to quantify epigenetic
variation—studying the variation in H3K4me3 enrichment using
PCA and a newly developed ANOVA-based framework to
quantify within- and between-species variation. Differences in
H3K4me3 are shown to be correlated with differences in gene
expression both within humans and between humans and
chimps. Moreover, we observe only a weak correlation between
peak density and SNP density. These two results, combined with
the increasing evidence for the heritability of epigenetic marks,
suggests the potentially important role of epigenetic variation
in adaptive evolution. Interestingly, we also found evidence that
these marks evolve in a clock-like fashion based on pair-wise
distances between species generated from a PCA—though wider
species comparisons will be necessary to further evaluate this
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hypothesis. Thus, these results present an important first step
toward quantifying within and between epigenetic variation in
the context of a standard population genetic framework, enabling
for standardized genomic scan and comparative evaluations of
the relative contributions of genetic and epigenetic variation in
the adaptive process.
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