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The emergence of eusociality (“true sociality”) in several insect lineages represents one of
the most successful evolutionary adaptations in the animal kingdom in terms of species
richness and global biomass. In contrast to solitary insects, eusocial insects evolved a
set of unique behavioral and physiological traits such as reproductive division of labor
and cooperative brood care, which likely played a major role in their ecological success.
The molecular mechanisms that support the social regulation of behavior in eusocial
insects, and their evolution, are mostly unknown. The recent whole-genome sequencing
of several eusocial insect species set the stage for deciphering the molecular and
genetic bases of eusociality, and the possible evolutionary modifications that led to it.
Studies of MRNA expression patterns in the brains of diverse eusocial insect species
have indicated that specific social behavioral states of individual workers and queens
are often associated with particular tissue-specific transcriptional profiles. Here, we
discuss recent findings that highlight the role of non-coding microRNAs (miRNAs)
in modulating traits associated with reproductive and behavioral divisions of labor in
eusocial insects. We provide bioinformatic and phylogenetic data, which suggest that
some Hymenoptera-specific miRNA may have contributed to the evolution of traits
important for the evolution of eusociality in this group.

Keywords: miRNA, Aculeata, Hymenoptera, eusociality, non-coding RNAs

Introduction

Most insect species are solitary, and behavioral interactions with conspecifics are primarily
restricted to reproductive behaviors such as male-female courtship and male-male competition.
This is in sharp contrast to social insects, where groups of genetically related individuals often live
together in a colonial lifestyle. The size and stability of these colonies vary from a few individuals
sharing a nest for a short period of time, to large perennial colonies composed of thousands of
individuals (Holldobler and Wilson, 2009). The most advanced form of animal social organization
is termed “eusociality” (Crespi and Yanega, 1995), marked by the presence of sterile workers that
often forgo own reproduction in order to support the reproduction of other colony members.
Although eusociality is relatively rare in most taxonomic animal lineages, eusocial species have
been immensely successful. Current projections estimate eusocial insects to represent the largest
proportion of the global animal biomass (Holldobler and Wilson, 2009). Although the reasons for
this remarkable success are not well-understood, it is commonly assumed that the social lifestyle
of these animals must have played a major role in their current ecological dominance (Wilson,
1990). For example, it is thought that specialization in task performance (division of labor) amongst
eusocial workers enables colonies to maximize the exploitation of their environment. In contrast,
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solitary insects have to multitask independent activities,
including foraging and brood rearing (Wilson, 1985).

The recent sequencing of genomes from diverse social
and solitary Hymenoptera clades offers a unique opportunity
for identifying genome-level molecular events that may have
supported the emergence of specific traits associated with the
evolution of eusociality (“eusocial traits”). The ability to compare
whole-genome sequences, gene expression patterns, and other
molecular properties of species with diverse forms of social
lifestyles, has generated novel mechanistic and evolutionary
insights into these complex behaviors. This approach has been
used most successfully in studies of the division of labors in
worker tasks (Smith et al., 2008) and reproduction (Schwander
et al,, 2010), both of which are hallmarks of eusociality (Wilson,
1985). To date, the efforts to decipher the evolution of eusocial
traits, and the mechanisms that support them, have focused on
protein-coding genes (Keller and Ross, 1998; Page and Amdam,
2007; Fischman et al., 2011; Woodard et al., 2011). In contrast,
how non-coding regulatory RNAs may have played a role in the
evolution of eusociality is understudied. Here, we examine the
emerging role of an important class of small, non-coding RNAs,
which are collectively referred to as “microRNAs” (miRNAs),
in regulating social behaviors. We discuss their possible role
in regulating eusocial traits in social Hymenoptera at the
developmental, physiological, and evolutionary time scales.

miRNAs: History and Background

During the early days of the molecular biology revolution,
the majority of research on gene regulation was limited to
transcriptional mechanisms of protein coding genes as originally
defined by the “Central dogma of molecular biology” (Crick,
1970). However, the discovery of the regulatory function of
non-coding RNAs indicated that the early views on gene
regulation and their associated phenotypic outcomes, were
oversimplified and required major revisions to the dogma. We
now know that in addition to transcriptional regulation (Lee
and Young, 2000; Yan et al, 2015), gene functions are also
regulated by factors such as post-transcriptional RNA editing
(Gott and Emeson, 2000), mRNA splicing (Breitbart et al,
1987), RNA degradation (Bushati and Cohen, 2007), and diverse
post-translational protein modifications (Braakman and Bulleid,
2011). More recently, regulatory non-coding RNAs have also
emerged as important factors that regulate phenotypic variation
via diverse molecular mechanisms (Qureshi and Mehler, 2012;
Bonasio and Shiekhattar, 2014).

miRNAs are short (18-24 nucleotides) non-coding RNAs,
which in animals seem to act primarily by repressing protein
translation via interaction with the 3'UTR of mRNAs (Figure 1).
miRNAs were first discovered in the nematode Caenorhabditis
elegans, where the miRNA cel-lin-4 was shown to be necessary
for the temporal timing of key developmental events (Lee
et al., 1993). Because of their short length and the nature of
their molecular interaction with mRNA targets, it has been
hypothesized that a single miRNA can potentially regulate the
function of multiple protein-coding genes (Bartel, 2009), and
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FIGURE 1 | MicroRNA biosynthesis, processing, and function. (1)
miRNA are transcribed as 80-100 nucleotide (nt) hairpin loops. (2) The initial
transcript, referred to as the primary-miRNA (pri-miRNA), (3) is cleaved into
precursor miRNA (pre-miRNA) and exported to the cytoplasm. Subsequently,
(4) the pre-miRNA is cleaved into a single mature miRNA strand, (5) which
binds to the RNA-Induced Silencing Complex (miRISC, shown in turquoise).
(6) The miRISC binds to the 3'UTR of mMRNAs, which leads to the inhibition of
protein translation. Eventually the mature mRNA becomes (7) deadenylated
and (8) decapped, which leads to transcript degradation by RNases.

thus act as a pleiotropic genetic factor (Bartel, 2004). It is
estimated that between one and two thirds of mRNAs encoded by
animal genomes are regulated by miRNAs (Berezikov, 2011). As
a result, it is likely that miRNAs play some roles in the regulation
of most biological processes in animal cells (Bushati and Cohen,
2007).

miRNAs in Development and Function of
Nervous Systems

Various miRNAs have been implicated in neuronal development
(Alvarez-Garcia and Miska, 2005; Wienholds and Plasterk, 2005).
There is evidence that miRNAs play important roles in fine tuning
the temporal and spatial regulation of protein translation during
development (Aboobaker et al., 2005; Wienholds et al., 2005). For
example, miRNAs have been shown to affect canonical signaling
pathways that are important for nervous system development,
such as the MAPK and Notch signaling pathways (Lai et al., 2005;
Chiba, 2006; Louvi and Artavanis-Tsakonas, 2006; Paroo et al,,
2009; Zhu et al,, 2010). It has been hypothesized that in these
essential developmental pathways, miRNAs reduce the impact of
stochastic variability in mRNA transcript levels on actual protein
levels, which subsequently buffers the effects of environmental
perturbations on cellular functions (Wu et al., 2009). Thus, some
miRNAs evolved to maintain the robust association between
gene expression patterns and fixed developmental traits (Peterson
et al., 2009).

In contrast to their role on constraining plasticity during
development, miRNAs seem to play a role in enhancing plasticity
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in the context of behavior and neuronal functions. This has been
demonstrated in several recent studies, which implicated multiple
miRNA genes in the regulation of neuronal plasticity (Fiore
et al,, 2011; Siegel et al., 2011; McNeill and Van Vactor, 2012).
For example, miR-132 and miR-134 have been implicated in the
growth and pruning of mammalian dendritic spines (Schratt
et al., 2006; Impey et al., 2010), miR-133b in neurotransmitter
vesicle size (Kim et al., 2007), and others in different aspects of
neuronal plasticity (Schratt, 2009).

Given the emerging importance of miRNAs for neuronal
plasticity, it is perhaps not surprising that distinct miRNA
genes have been implicated in the regulation of behavioral
plasticity as well, including entrainment of the circadian clock
in mammals (Na et al., 2009; Bartok et al., 2013), positive
and negative responses to specific odors in Drosophila (Li
et al., 2013), and the social response to unfamiliar conspecifics
in mice (Gascon et al, 2014). Specific miRNA genes have
also been implicated in processes associated with learning and
memory, including in social insects. For example, expression
levels of several miRNAs are associated with spatial learning
(Qin et al, 2013), and long-term olfactory memory (Cristino
et al,, 2014) in the honey bee. In addition, studies in Drosophila
melanogaster showed that blocking the action of dme-miR-
276a in the mushroom bodies, a key neuroanatomical structure
necessary for many cognitive functions (Heisenberg, 2003), leads
to inhibition of long-term olfactory memory formation via
direct interaction with the dopamine receptor DopR (Li et al,
2013).

In addition to neuronal functions of miRNAs, some miRNAs
can also affect behavior via their actions in in non-neuronal
tissues. For example, manipulations of the expression of miR-
184 is implicated it in the synthesis and release of insulin
(Morita et al., 2013), a conserved and ubiquitously important
neuroendocrine factor that is secreted from non-neuronal cells
in all animal lineages (Ament et al., 2008; Wolschin et al., 2011).

The Possible Role of miRNAs in the
Regulation of Traits Associated with
Eusociality

Developmental Plasticity: Caste Differentiation

The completion of the honey bee genome revealed many
conserved candidate miRNAs (Weinstock et al., 2006). Because
of the known functions of miRNAs in the regulation of various
developmental processes, it has been suggested that miRNAs
are likely to contribute to the developmental processes of
reproductive caste (queen-worker) differentiation (Weaver et al.,
2007; Bonasio et al., 2010). In this context, it was recently
reported that the expression level of the miRNA ame-miR-71
is higher in workers relative to queens during the pupal stage
(Weaver et al., 2007). A subsequent study revealed that many
additional miRNAs are differentially expressed between larvae
that are destined to develop as either queens or workers (Shi
et al., 2014). These differences in miRNA expression levels are
consistent with the hypothesis that miRNAs are involved in the

regulation of caste determination and differentiation. However,
functional analyses of these miRNAs is needed to establish genetic
causation between changes in the expression of specific miRNAs
and the development of reproductive traits.

In contrast to species such as the honey bee, in which
caste differentiation occur early during larval development,
in some eusocial species such as the ant Harpegnathos
saltator, females retain the potential to become reproductive
individuals (gamergates) throughout life. Although gamergates
are morphologically worker-like, they reproduce and behave like
a queen following the loss of the primary queen (Peeters et al.,
2000). In this species, the transition of workers into gamergates
is associated with a significant reduction in the global expression
levels of several miRNA genes (Bonasio et al., 2010). How global
miRNA down-regulation occurs, and why it might be important
for the regulation of reproductive division of labor in this species,
are not yet known.

Surprisingly, recent reports suggest that exogenous miRNAs
can also affect reproductive caste-determination in honey bees.
Guo et al. (2013) reported that miRNAs are present in the honey
bee larval food. A comparison of short RNAs found in worker
food versus “royal jelly” (food that induces queen development)
indicated that the overall amount of miRNAs that are fed
to worker-destined larvae is significantly higher than in food
given to queen-destined larvae. Furthermore, queen-destined
larvae that were fed with royal jelly supplemented with the
worker-enriched miRNA ame-miR-184 developed some worker-
like morphologies (e.g., smaller body and shorter wings). This
remarkable finding suggests that in honey bees, the consumption
of exogenous miRNAs could play an important role in the
differentiation of totipotent larvae into either sterile workers
or reproductive queens. In this context, the conserved role of
miR-184 in the regulation of neuroendocrine functions across
different animal taxa (Morita et al., 2013) is particularly alluring.
In agreement with this hypothesis, genetic pathways that are
targeted by miR-184 in mammals are also important for queen
versus worker differentiation in bees (Wolschin et al., 2011; Foret
et al.,, 2012), suggesting that perhaps these observed effects of
miR-184 are conserved to the same pathways across mammals
and insects.

Behavioral Plasticity: Division of Labor

One of the best-studied aspects of eusociality is the division of
labor between workers. In some eusocial insects, such as the
honey bee, division of labor relates to age (Robinson, 1992;
Naug and Gadagkar, 1998; Kim et al., 2012). Young worker bees
(typically <14 days of age) typically perform in-hive tasks, such
as brood care (“nursing”) or food handling, and later in life
(typically at around 3 weeks of age) they transition to foraging
outside the hive. This well-characterized form of behavioral
development has emerged as an excellent model for the molecular
mechanisms involved in social behavioral plasticity (Robinson
et al., 1997, 2005; Denison and Raymond-Delpech, 2008; Bloch
and Grozinger, 2011). Gene expression studies, mostly using
brain tissue, have demonstrated that division of labor in honey
bees, and several other eusocial species, is associated with task-
specific mRNA transcriptional profiles (Whitfield et al., 2003;
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Adams et al., 2008; Daugherty et al., 2011; Liu et al., 2011; Oxley
etal., 2014).

Three recent studies also examined the possible association
between changes in brain miRNAs transcript levels and division
of labor in honey bees (Behura and Whitfield, 2010; Greenberg
et al.,, 2012; Liu et al,, 2012). All three studies found that the
expression levels of several miRNAs are upregulated in the
brains of foragers relative to bees that perform in-hive duties
(Table 1).

The association of miRNA transcript levels with specific
behavioral states in colonies of eusocial insects is not limited
to reproductive and worker divisions of labor. For example,
reproductive queens in diverse eusocial species mate only once
in their lifetime (Woyke, 1955). In honey bees, newly eclosed
virgin queens (gynes) leave the hive for their sole “nuptial flight”
during which they copulate with 10-20 males. After mating,
they spend the rest of their lives laying eggs inside the hive.
Thus, virgin and mated queens represent two distinct behavioral
and physiological states (Winston, 1987). A recent study of the
miRNA transcriptome in virgin and mated honey bee queens
identified two different genes (ame-miR-124 and ame-miR-275),
which are differentially expressed in virgin and mated queens
(Wu et al., 2014). While the precise function of these miRNAs

TABLE 1 | microRNAs that are differentially expressed in honey bee
foragers and nurses.

miRNAs Behura and Greenberg et al. (2012) Liu et al. (2012)

Whitfield

(2010)
ame-let-7 Nurses Nurses
ame-Bantam Foragers
ame-miR-9 Foragers
ame-miR-12 Foragers
ame-miR-13a Nurses
ame-miR-13b Nurses Foragers*
ame-miR-14 Nurses
ame-miR-31a Nurses
ame-miR-92a Foragers Foragers
ame-miR-124 Nurses
ame-miR-133 Foragers
ame-miR-184 Foragers
ame-miR-210 Foragers Foragers
ame-miR-219 Foragers
ame-miR-263 Foragers
ame-miR-275 Nurses
ame-miR-276 Nurses
ame-miR-278 Foragers
ame-miR-279 Nurses
ame-miR-283 Foragers
ame-miR-2796 Foragers

miRNAs that were differentially expressed in at least two of the studies are
highlighted in red. Denoted worker group (foragers/nurses) expressed significantly
higher levels relative to the other group. Behura and Whitfield (20710) measured
expression of pri-miRNA using gRT-PCR, Liu et al. (2012) relied on RNA sequencing
of mature miRNA, while Greenberg et al. (2012) measured mature miRNA using
northern blots. *gRT-PCR analysis showed a trend that was opposite to the
RNA-seq data.

in honey bees is not known, previous reports indicate that
miR-124 is an evolutionary conserved, brain-enriched miRNA
that plays a role in neural development and plasticity in
invertebrates, birds, and mammals (Cao et al., 2007; Makeyev
et al,, 2007; Rajasethupathy et al., 2009), and more specifically in
the development and function of the peripheral sensory system
in C. elegans (Clark et al., 2010). miR-275 is also conserved
across insects, and has been implicated in the regulation of
egg laying behavior in Aedes aegypti (Bryant et al.,, 2010). Wu
et al. (2014) speculated that the upregulation of ame-miR-124
miRNA in virgin queens might be related to the modulation of
sensory and/or other neuronal functions associated with mating
behaviors, while the increased expression of ame-miR-275 in
mated queens might be important for the newly mated queens
to initiate egg-laying behavior.

A Case for the Possible Role of miRNAs
in the Evolution of Eusociality

Why eusociality evolved multiple times within Hymenoptera
but is rare in other insect orders is still a mystery. Several
evolutionary models have attempted to explain this phenomenon
by proposing various ultimate selective forces that may have
driven the repeated rise of eusocial traits in this insect order
(Hamilton, 1964; Andersson, 1984; Nowak et al., 2010). Although
the regulation of phenotypes associated with eusociality has
been independently linked to key regulatory pathways such
as insulin and juvenile hormone signaling (Page and Amdam,

family
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Melliponini
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FIGURE 2 | Eusociality evolved multiple times in hymenoptera.
Phylogeny of the Aculeata. Clades containing eusocial species highlighted in
red. Phylogeny is based on Danforth et al. (2013) and Johnson et al. (2013).
Each branch represents the lowest taxonomic classification level that is solely
comprised of eusocial species.
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TABLE 2 | Genomes analyzed.

Order Species Common name Eusocial NCBI BioProject ID
Ixodida Ixodes scapularis Deer tick No 34667
Hemiptera Acyrthosiphon pisum Pea aphid No 29489
Coleoptera Tribolium castaneum Red flour beetle No 15718
Lepidoptera Bombyx mori Silkworm No 205630
Diptera Drosophila melanogaster* Fruit fly No 164
Diptera Aedes aegypti Mosquito No 19731
Hymenoptera Athaliae rosae Turnip sawfly No 167403
Hymenoptera Microplitis demolitor* Parasitoid wasp No 251518
Hymenoptera Nasonia vitripenis* Parasitoid wasp No 20073
Hymenoptera Nasonia longicornis Parasitoid wasp No 20225
Hymenoptera Nasonia girulta Parasitoid wasp No 20223
Hymenoptera Apis meliffera* Honey bee Yes 13343
Hymenoptera Apis dorsata Honey bee Yes 174631
Hymenoptera Apis florea Honey bee Yes 86991
Hymenoptera Bombus impatiens* Bumble bee Yes 70395
Hymenoptera Bombus terrestris Bumble bee Yes 68545
Hymenoptera Lasioglossum albipes Sweat bee Facultative 174755
Hymenoptera Megachile rotundata* Leafcutter bee No 87021
Hymenoptera Harpegnathos saltator Jumping ant Yes 50203
Hymenoptera Camponotus floridanus Carpenter ant Yes 50201
Hymenoptera Atta cephalotes* Leafcutter ant Yes 48091
Hymenoptera Solenopsis invicta Fire ant Yes 49629
Hymenoptera Pogonomyrmex barbatus Harvester ant Yes 45797
Hymenoptera Polistes dominula Paper wasp Yes Unpublished

The following genomes were analyzed for the presence or absence of miRNAs. We performed an initial BLAST search of annotated miRNAs from D. melanogaster,
A. mellifera, and N. Vitripenis in the species denoted by *. Candidate miRNAs identified as either present only in the genomes of eusocial species (red) or only in Aculeate

species (bold), were subsequently analyzed in all genomes listed.

2007; Toth and Robinson, 2007; Bloch and Grozinger, 2011),
the actual molecular events that supported traits contributing to
eusociality remain elusive. Here, we propose that the molecular
evolution of specific miRNAs could have contributed to the
phenotypic evolution of eusociality. We propose that these
miRNAs may have contributed to the emergence of eusociality by
either introducing new regulatory nodes to ancestral behavioral
genetic networks, and/or by supporting novel behavioral genetic
networks.

The primary sequence of mature miRNAs is often completely
conserved across long phylogenetic distances. Consequently,
conserved miRNAs are likely to regulate similar target protein-
coding genes in distant taxa, and thus support analogous
phenotypes across phylogeny (Lee et al., 2007). Given their
broad pleiotropic function, novel miRNAs can modify complex
developmental or physiological genetic programs. Because of
this, it has been suggested by several investigators that, similarly,
to the evolution of protein regulatory networks (e.g., evolution
of novel transcription factors), novel miRNAs could lead to
evolutionary innovations (Sempere et al, 2006; Lee et al,
2007; Niwa and Slack, 2007; Tarver et al., 2012) such as the
establishment of new body plans, or novel behavioral traits
(Peterson et al., 2009).

Consistent with this premise, the evolution of bilateral
animals from eumetazoans was associated with a great expansion
in the number of miRNA genes (Niwa and Slack, 2007).

Other examples include the many novel miRNA genes found
within placental mammals, and their clade-specific expansion
in primates (Sempere et al., 2006). Although the evolution of
eusociality is considered a major evolutionary transition event
(Maynard Smith and Szathmary, 1995), the hypothesis that
it was also associated with the evolution of novel miRNAs
has not been previously suggested. We reasoned that the
monophyletic Aculeata clade is ideal for testing this hypothesis
since, based on current phylogenetic models (Danforth et al,
2013; Johnson et al, 2013), eusociality has independently
emerged in this group multiple times (Figure 2). Below we
discuss two independent, non-mutually exclusive hypotheses
for the possible involvement of miRNAs in the evolution of
eusociality.

Hypothesis 1: Specific miRNAs have been
Repeatedly Associated with Eusocial Evolution

in Hymenoptera

Here, we hypothesize that, similarly to the evolution of novel
transcription factors, the repeated evolution of specific new
miRNAs, either de novo or via duplication events, facilitated the
evolution of some eusocial traits in multiple independent clades
that currently display eusociality. Under this hypothesis, novel
miRNAs in current eusocial species act as essential nodes in
genetic networks that support eusocial traits. If true, we expect
that specific miRNAs would be more likely to be present in the
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genomes of eusocial species in comparison to related solitary
species.

As an initial test of this hypothesis, we searched for miRNA
genes in the sequenced genomes of species in the Aculeata
clade, which includes all living eusocial species in Hymenoptera.
We first generated a list of all known annotated miRNA
genes available in miRBase for the eusocial honey bee Apis
mellifera, the solitary wasp Nasonia vitripennis, and the fruit fly
D. melanogaster (Griffiths-Jones et al., 2006). Next, we searched
for the presence or absence of each annotated miRNA in several
representative hymenopteran genomes (Table 2) using BLASTN
(Altschul et al., 1997). We only scored a miRNA as “present” if
an exact match to the mature miRNA sequence was found in
the genome (Figure 3). Consistent with data from other animal
clades (Tarver et al., 2012), we found that most annotated miRNA
genes aligned with phylogeny rather than with the presence or
absence of eusociality. Nevertheless, five miRNA genes (ame-
miR-281, ame-miR-306, ame-miR-279c, ame-miR-279d, and ame-
miR-6065) seem to be associated with the expression of eusocial
traits independent of phylogeny (Figure 3).

To further refine our results, we subsequently extended the
bioinformatic analyses to all available sequenced hymenopteran
genomes, as well as several non-hymenopteran insect species,
which served as outgroups (Figure 4A). Although the low
sequence coverage for some of the analyzed ant genomes could
lead to higher false-negative discovery rate, we reasoned that
the likelihood that certain miRNAs will be falsely missing from
all analyzed genomes is very low. Future miRNA sequencing
data from many of the species studied here should further help
reducing the possibility of false-negatives.

This analysis revealed that three out of the five putative
eusociality-associated miRNAs were unique to Hymenoptera
(ame-miR-281, ame-miR-306, and ame-miR-279c), and one
possibly unique to Aculeata (ame-miR-6065). The phylogenetic
distribution of these five miRNAs indicated that multiple
eusociality-associated miRNAs might have been gained and lost
during the Hymenoptera radiation. In addition, we found that
two eusociality-associated miRNA genes (miR-306 and miR-
6065) were lost in the eusocial wasp Polistes dominula. Markedly,
two of the eusocial-related miRNAs (miR-281 and miR-6065)
were also present in the genome of the facultative eusocial bee
Lasioglossum albipes. One possible explanation for this finding
is that these specific miRNAs are important for traits associated
with basal levels of sociality such as communal living, overlapping
generations, and reproductive division of labor (Kocher et al.,
2013).

Our analysis also revealed that two of the candidate
eusociality-related miRNAs (mir-279c and mir-279d) belong to
a single conserved miRNA-family (Cayirlioglu et al., 2008; Hartl
et al., 2011; Luo and Sehgal, 2012; Mohammed et al., 2014). The
most parsimonious interpretation of these observed phylogenetic
patterns is that miR-279d is conserved across Arthropoda, but
was lost in Diptera and Hymenoptera, and then reappeared
via duplications in eusocial Aculeates. In contrast, miR-279c
seems to have specifically evolved in Hymenoptera prior to the
divergence of Aculeata, and was subsequently lost from non-
social Aculeate species. The identification of members of the
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FIGURE 3 | Phylogenetic distributions of miRNAs in Hymenoptera
genomes. MiRNAs present in each genome are shown in yellow, while those
absent are shown in blue. miIRNAs present in all or only one species are not
shown. Data are clustered based on the phylogenetic relationships between
the species analyzed, with eusocial species shown in red. Genes framed in
black are present only in eusocial species. Genes framed in red are present
only in Aculeata. The fruit fly Drosophila melanogaster served as the outgroup.
Phylogeny based on Danforth et al. (2013) and Johnson et al. (2013).
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Aculeata-spcific candidate miRNAs. Data are clustered based on the
phylogenetic relationships between the analyzed genomes, with Aculeate
species in bold and eusocial species in red. L. albipes is facultative
eusocial. Species phylogeny as in Figure 3.

mir-279 family as possible candidate genes for the evolution of
eusociality is in agreement with findings about their differential
regulation between nurses and foragers (Table 1), and possible
functions in Drosophila. For example, members of the mir-279
family have been implicated in regulating neuronal development
(Hartl et al, 2011), olfactory receptivity (Cayirlioglu et al,
2008; Hartl et al, 2011), and circadian rhythms (Luo and
Sehgal, 2012). It is interesting to note that plasticity in both
circadian rhythms (Bloch, 2010) and olfactory neurons has
been shown to be associated with worker and reproductive
divisions of labor in eusocial Hymenoptera (Lopez-Riquelme
et al, 2006; Zube and Rossler, 2008; Mysore et al., 2009).
Although preliminary, these findings suggest that members of
the mir-279 gene family are prime candidates for studies on the
possible roles of specific miRNA in the evolution of eusociality-
related traits.

To further test this hypothesis it will be necessary to increase
the phylogenetic resolution of our analyses by studying the
miRNA repertoire encoded by the genomes of additional social
and solitary insects. It will also require the development of tools
that will allow the manipulation of focal miRNA expression to
causally determine their effect on behavioral and physiological
traits related to eusociality. The recent progress in genome-
editing techniques for honey bees and other social insects (Wang
et al., 2013; Schulte et al., 2014) suggest that this will be feasible
in the near future. Another complementary approach will be
to study the protein-coding genetic networks that eusociality-
associated miRNAs are interacting with. By identifying the genes
involved, their spatial and temporal expression patterns, and the
possible physiological and behavioral processes they modulate, a
higher resolution picture of the genetics that support eusociality
could emerge.
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Hypothesis 2: Aculeate-Specific miRNAs were
Required for Eusocial Evolution

The second hypothesis we consider is that the presence of
specific miRNAs in the pre-eusocial Aculeate genome might
have “primed” certain species to evolve eusociality. In other
words, specific miRNAs, already present in the genome of the
solitary Aculeate ancestor were required, but not sufficient,
for the emergence of eusocial traits. Under this hypothesis,
specific miRNAs already present in the ancestral solitary aculeate
increased the probability of emergence of specific behavioral and
physiological traits in response to selective pressures that favored
eusociality.

If true, we expect that specific miRNAs should be
present in all Aculeate genomes, but absent from all other
hymenopteran genomes, as eusociality has never been observed
in hymenopteran species outside of the Aculeta. Our initial
analysis revealed six Hymenoptera specific miRNA genes
(ame-miR-927b, ame-miR-980, ame-miR-2765, ame-miR-3786,
ame-miR-6001, and ame-miR-6048; Figure 3). However, two
of these genes were were also present in the sawfly Athalia
rosae (ame-miR-927b and ame-miR-3786), and therefore are
not specific to Aculeata. Three additional genes (ame-miR-980,
ame-miR-2765, and ame-miR-6048) appear to have originated
after the divergence of Vespidae and therefore did not fulfill
the above criteria (Figure 4B). Thus, our analysis revealed ame-
miR-6001 as the single Aculeate-specific miRNA candidate gene
that should be tested in the context of the above hypothesis.
Similarly to Hypothesis 1 (see Hypothesis 1: Specific miRNAs
have been Repeatedly Associated with Eusocial Evolution in
Hymenoptera), the possible role of miR-6001 in the repeated
evolution of eusocial traits in Aculeata is hypothetical. Directly
testing the hypothesis we put forward here will require extensive
molecular, biochemical, and phenotypic studies of its possible
physiological and behavioral roles in eusocial traits.
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