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Interactomes are genome-wide roadmaps of protein-protein interactions. They have

been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have

become invaluable tools for generating and testing hypotheses. A predicted interactome

for Zea mays (PiZeaM) is presented here as an aid to the research community for

this valuable crop species. PiZeaM was built using a proven method of interologs

(interacting orthologs) that were identified using both one-to-one and many-to-many

orthology between genomes of maize and reference species. Where both maize

orthologs occurred for an experimentally determined interaction in the reference species,

we predicted a likely interaction in maize. A total of 49,026 unique interactions for

6004 maize proteins were predicted. These interactions are enriched for processes that

are evolutionarily conserved, but include many otherwise poorly annotated proteins in

maize. The predicted maize interactions were further analyzed by comparing annotation

of interacting proteins, including different layers of ontology. A map of pairwise gene

co-expression was also generated and compared to predicted interactions. Two global

subnetworks were constructed for highly conserved interactions. These subnetworks

showed clear clustering of proteins by function. Another subnetwork was created for

disease response using a bait and prey strategy to capture interacting partners for

proteins that respond to other organisms. Closer examination of this subnetwork revealed

the connectivity between biotic and abiotic hormone stress pathways.We believe PiZeaM

will provide a useful tool for the prediction of protein function and analysis of pathways for

Z. mays researchers and is presented in this paper as a reference tool for the exploration

of protein interactions in maize.
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Introduction

Understanding the biological interactions within an organism is
vital for the comprehension of its functions. The interactome
provides a large scale mapping of protein-protein interactions
(PPIs). Interactomes of model organisms such as Arabidopsis
thaliana and Saccharomyces cerevisiae were built using high
throughput experimental methodologies (Consortium, 2011).
However, predicted interactomes in species of agronomic
importance, like Citrus sinensis, Oryza sativa, and Glycine max,
have provided insight into disease resistance. There was no
plant interactome until the Arabidopsis predicted interactome
was released in 2007 (Geisler-Lee et al., 2007). It was based
on orthologs (genes separated by speciation) of S. cerevisiae
(Yu et al., 2008), Drosophila melanogaster (Giot et al., 2003),
Caenorhabditis elegans (Li et al., 2004), and Homo sapiens
(Rual et al., 2005). This predicted plant interactome successfully
provided hypotheses for testing interactions, including those
involving membrane proteins, which are otherwise difficult to
elucidate using forward and reverse genetic approaches (Lalonde
et al., 2010; Nejad et al., 2012). Although experiment-based
interactomes for A. thaliana are now being made (Consortium,
2011; Chen et al., 2012), the predicted interactome still makes
many useful predictions for interactions not yet found in the
growing experimental dataset. For instance, studies by Guo
et al. (2009) which tackled the complexity of germination and
the involvement of plant hormone pathways, found interacting
partners of Rack1 (receptor for activated kinases1) from a
candidate list of 88 partners using a predicted interactome. Plant
predicted interactomes have also aided in determining proteins
involved in resistance to the destructive bacterial pathogen
Huanglongbing in citrus (Martinelli et al., 2012, 2013), as well

as to the soybean cyst nematode (SCN) in soybean (Lightfoot,
2014). Moreover, the human interactome was used to link the
differential expression of genes with protein interactions in
the analysis of cancer tissues, allowing researchers to analyze

the connectivity between known and novel targets (Wachi
et al., 2005). Thus, interactomes allow for hypotheses to be

generated with a posteriori and a priori knowledge of a biological
system.

The underlying principle for a predicted interactome is
that evolutionarily conserved proteins tend to have conserved
interactions when the proteins retain orthologous functions.
Software programs such as Inparanoid (Ostlund et al., 2010),
OrthoMCL (Li et al., 2003), and MSOAR (Geer et al., 2010),
along withmany others, have been developed in order to discover
all orthologs and outparalogs (duplications prior to divergence
of species) between two or more genomes, and to separate
these from inparalogs (duplication within a lineage). PPIs can
thus be predicted across an entire genome by high throughput
computational methods using whole genome ortholog prediction
(Geisler-Lee et al., 2007; Schuette et al., 2015). These methods
have been successfully used to predict interactomes for A.
thaliana, G. max, Coffea robusta, H. sapiens, C. sinensis, D.
melanogaster, O. sativa (rice), and P. patens (a moss) (Giot et al.,
2003; Li et al., 2004; Brown and Jurisica, 2005; Rual et al., 2005;
Guan et al., 2008; Consortium, 2011; Geisler and Fitzek, 2011; Gu

et al., 2011; Ho et al., 2012; Ding et al., 2014; Lightfoot, 2014).
Moreover, physically interacting proteins tend to be encoded
by genes co-expressed in response to different stimuli in many
species (Giot et al., 2003; Bhardwaj and Lu, 2005; Rual et al.,
2005). Expression data, such as microarray and RNA-Seq, can
thus be used as an additional layer of support for PPIs predicted
through orthology.

An interactome can be visualized as a field of circles (nodes)
that represent proteins and connections (edges) between nodes
representing PPIs. Each node can be rated based on the number
of connections, referred to as the connectivity or degree of
that node. Protein interactomes typically contain a few highly
connected hubs (proteins with >10 partners) and numerous
smaller hubs (proteins with 3–10 partners), pipes (2 partners) and
free ends (1 partner only). This distribution is an inverse power
relationship between node frequency and connectivity, and is
similar to that of other small-world network structures such as
social networks and electrical power grids (Watts and Strogatz,
1998; De Silva et al., 2006; Gu et al., 2011). The small-world
topology is a compromise between efficiency and robustness.
Having fewer interacting partners involved in a pathway results
in increased efficiency in terms of how fast a product or outcome
can be processed. The highly connected hubs represent proteins
that are conserved through different organisms and are under
less selection pressure for mutations (Batada et al., 2006; Zotenko
et al., 2008; Ning et al., 2010). For example, heat shock proteins
(i.e. Hsp70) are some of the highly connected hubs in most
interactome networks (Gopinath et al., 2014). These proteins are
vital for helping other proteins to fold properly, assemble, and
translocate. They have also been implicated in reactions to abiotic
and biotic stress (Wang et al., 2004). A robust Hsp70 system
includes redundant pathways, auto-regulation, and feedback for
increased stability.

Zea mays (maize) is one of the three major global crops
(FAOstat, 2009; Ranum et al., 2014). Although its genome
was sequenced (Schnable et al., 2009) a few years ago, it
still contains many poorly annotated genes with provisional
functional annotation based on sequence or domain homology.
In addition, proteins with a known biological role in a species
are often found to have, in another species, even more biological
roles that were previously unknown or overlooked. A systematic
approach to the analysis of the connectivity between known and
novel proteins will help identify these respective biological roles,
and will add to existing Z. mays gene annotation. PiZeaM is
thus a useful tool to identify networks of connections among
proteins in many key Z. mays processes. The recent increase in
the amount of genome and interactome data formodel organisms
has made it possible to systematically predict PPIs in Z. mays
from experimentally determined reference PPIs maps.

In addition to gene discovery and functional annotation, the
ultimate goal in systems biology is to gain an understanding
of the networks of molecular processes in an organism. These
systems biology efforts at network analysis have begun in
model organisms such as A. thaliana (Consortium, 2011), and
Synechocystis sp. PCC6803 (Kim et al., 2008). However, where
these efforts are urgently needed is in the major cereal crops. Z.
mays is one of the three major food crops. Moreover, over the
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last decade, there has been an increase in the use of Z. mays to
produce the biofuel ethanol as a substitute to gasoline. In fact,
it has been estimated by the Renewable Fuels Association that
26% of the Z. mays grown in the US in 2012 was used for the
production of ethanol (RFA, 2012). Increasing the yield in Z.
mays through better management practices and improved hybrid
genetics is a goal actively sought by the researchers around the
world.

In this work we present PiZeaM—a predicted Z. mays
interactome—to help functional annotation of gene encoding
proteins, to understand their connectivity and to aid systems
biology approaches. This interactome can expand knowledge of
protein functions by analysis of interacting proteins’ connectivity
and by providing maps of interconnected pathways. We
demonstrated the accuracy of the published prediction method
by comparing the predicted A. thaliana interactome in 2007
with the experimentally determined interactomes published in
2008–2014. We believe PiZeaM will provide a useful tool for the
prediction of protein function and analysis of pathways for Z.
mays researchers.

Materials and Methods

Choice of Prediction Method
The interolog method was chosen to predict protein interactions
in Z. mays due to its success in other plant species (Gu et al.,
2011; Ho et al., 2012), including O. sativa, another member of
the grass family. Bioinformatic algorithms and programs, and
corresponding parameters and weights used to produce this
interactome were the same as those used in O. sativa (Ho et al.,
2012).

Sources of Protein Sequences
Amino acid sequences from Z. mays (ZmB73 4a.53 sequence)
were retrieved from the GRAMENE database (http://www.
gramene.org; Chandler and Brendel, 2002; Youens-Clark et al.,
2011). The accession numbers were later mapped onto a
more recent version ZmB73 5a to gain access to updated
annotation tools in Phytozome (phytozome.jgi.doe.gov). Those
of the 13 reference species—nine eukaryotes Oryza sativa,
Arabidopsis thaliana, Homo sapiens, Mus musculus, Rattus
norvegicus, Drosophila melanogaster, Caenorhabditis elegans,
Saccharomyces cerevisiae, Schizosaccharomyces pombe, and four
prokaryotes Escherichia coli, Bacillus subtilis, Helicobacter pylori,
Campylobacter jejuni, and Synechococcus—were retrieved from
ENSEMBL www.ensembl.org/index.html (access date November
2011), (Flicek et al., 2012) and NCBI http://www.ncbi.nlm.nih.
gov, (Geer et al., 2010).

Prediction of Orthologs
The amino acid sequences were then processed with the Linux
based program Inparanoid 3.0 (Ostlund et al., 2010). BLOSUM
(BLOcks SUbstitutionMatrix) 80 was used for three plant species,
A. thaliana, O. sativa, and Z. mays; BLOSUM 62 for five animal
species C. elegans, D. melanogaster, H. sapiens, M. musculus, R.
norvegicus, and two fungal species S. pombe, and S. cerevisiae; and
BLOSUM 45 for the four prokaryotes B. subtilis, C. jejuni, E. coli,

and Synechococcus. One ortholog pair with a bootstrap score of
100% was chosen from each ortholog cluster for the one-to-one
interactome. A second interactome was built with all pairwise
combination of proteins in each ortholog cluster referred to as
the many-to-many interactome. The latter allowed all potential
inparalogs in both Z. mays and reference species to substitute
for one another, while outparalogs are in separate gene clusters.
Outparalogs will retain interactions within their cluster but not
to other outparalogs. Gene orthology, unlike homology by blast
score or “% similarity,” is considered to be a better predictor of
the conservation of function, and thus conservation of protein
interactions (Koonin, 2005; Ostlund et al., 2010). The number of
orthologs found between Z. mays and the reference organisms
was dependent on the evolutionary distance, and often more
distantly related organisms (like bacteria and animals) had fewer
orthologs with Z. mays.

Predicting Maize Interactions from Conserved
Orthologs
PiZeaM was built from a comprehensive analysis of physical
interactions between proteins of Z. mays that were predicted
based on experimentally determined interactions from five
major interactome databases [BioGRID (verision 3.1.84;
www.thebiogrid.org) (Stark et al., 2006); DIP (November
2011 release) (Salwinski et al., 2004); IntAct (downloaded
November 5, 2011; http://www.ebi.ac.uk/intact) (Aranda et al.,
2010); and MINT (downloaded November 5, 2011; http://mint.
bio.uniroma2.it/mint) (Chatr-Aryamontri et al., 2007)]. The
interactome thus consisted of a large set of data, listing pairs
of interacting proteins (see Supplemental Table 1). The entire
interactome can be visualized graphically using the Cytoscape
software packages (Shannon et al., 2003; Cline et al., 2007) in
which proteins are indicated by 2 dimensional shapes (circles)
and interactions are indicated by connecting lines. Heterologous
interactions were ordered (larger ID as protein A: smaller ID
as protein B) as all interactions were considered bidirectional.
Duplicates were then removed from the master database to
produce a unique interaction table where each interaction is
represented once.

Calculation of the Confidence Value (CV) of
Experimental Support
To determine the confidence value (CV), the following formula
was used (Geisler-Lee et al., 2007):

CV = N × S× E

N: the number of times that an interaction appeared in PiZeaM.
E: the number of times an experiment appeared with an

interaction in the mined interactomes.
S: the number of times an interaction appeared in the reference

species.

A scale was then used to rank the CV of the interactions
that comprise the interactome. This last factor (E) was an
important consideration as different methods for determining
protein interactions will not always give converging results rates
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(for example yeast-2-hybrid false positives are not likely to be
the same as those that occur using in vitro co-precipitation or
peptide arrays)(Yu et al., 2008). Protein pairs that had a CV = 1
were considered to have low confidence interactions, a CV = 2–
10 was considered to indicate a medium confidence interaction,
and a CV > 10 was considered to represent a high confidence
interaction. Interactions with the highest CVs were more likely
to be conserved across species.

Mapping of Maize Orthologs to Gene Ontology
Gene ontology (GO) information from Z. mays was downloaded
from ENSEMBL (www.ensembl.org/index.html) (Flicek et al.,
2012), Phytozome Version 10.1 (http://phytozome.jgi.doe.
gov/pz/portal.html), and GRAMENE Release 45 (http://www.
gramene.org). These GO terms described the biological function
(process), subcellular localization (compartment) and molecular
function of each Z. mays protein, based on experimental
evidence or on prediction based on protein domain composition,
signal sequences and global homology (Carbon et al., 2009).
Then, a custom ontology file and a reference annotation
were developed for updated annotation. GO-term enrichment
analysis of the interactions within PiZeaM was conducted by
comparing proteins within the interactome (6004 proteins)
with the whole genome of Z. mays. This comparison established
which biological functions were captured by the aforementioned
interolog method and determined which types of proteins
were conserved as interacting ortholog pairs. A second GO
comparison was made of 1st neighbors (prey) of proteins with
the GO term “response to other organism” (GO: 0051707)
(bait). The Cytoscape Bingo plugin was then used to look at
enrichment in the predicted interactome contrasted with the
whole annotation (Maere et al., 2005). The GO terms were then
sorted by their enrichment or depletion P-value, and for terms
reflecting molecular function, biological process, and cellular
component (Supplemental Table 3).

Co-Expression Analysis
For expression data analysis and determination of co-expression
between various genes, microarray data was downloaded from
the Gene Expression Omnibus (Edgar et al., 2002) from 68 biotic
and abiotic stress data sets generated using the same Affymetrix
Z. maysGene chip (see Supplemental Table 2). To generate a co-
expression matrix, the change in levels of mRNA was normalized
using global intensity normalization and computed as anM-value
(Log base 2 of the ratio of stimulus over control).

[

M − value = log2

(

treatment

control

)]

Pearson correlation was calculated for each of the data sets using
the R statistical language (Edgar et al., 2002; Stuart et al., 2003;
Bhardwaj and Lu, 2005). The correlation function was used to
determine the Pearson correlation between random proteins and
true interologs. Pearson correlation coefficient (r):

r =
n(

∑

xy)− (
∑

x)(
∑

y)
√

[n
∑

x2 − (
∑

x2)][n
∑

y2 − (
∑

y)2]

N: the number of expression samples.
X: the expression level of gene X in ith sample.
Y: the expression level of gene Y in the ith sample.

The value of r is between −1 and 1 (i.e. −1 < r < 1). A
Pearson correlation coefficient (r) was generated for each pair
of interacting proteins in the interactome. Interacting proteins
that had a high r-value were considered to be more likely to be
coordinately co-expressed (Narayanan et al., 2010).

Visualization of PiZeaM
One objective of this study was to make PiZeaM readily available
for other researchers to use. To visualize PiZeaM, Cytoscape
3 (Cline et al., 2007) can be used by importing the provided
Excel files (Supplemental Table 1), or by opening the compiled
Cytoscape file (Supplemental File 1). The information can be
easily stored and manipulated in MySQL (a database language)
and Microsoft Excel to address different research needs. To
visualize a protein of choice from a pathway, only requires
retrieving protein IDs for the Z. mays proteins of choice from
Ensemble. One limitation of the interactome is a possible under-
representation of interactions exclusive to Z. mays, since a
substantial amount of the data used in this study to build the
interactome was derived from interactions reported in non-
grasses. This limitation can be alleviated in the future by
incorporating more data from future research involving grasses
and cereals, once these experimental datasets are built and shared
with the public.

Results

Overview of PiZeaM
Using one-to-one interolog as a method of predicting
interactions, a total of 34,107 unique interactions were
found for 4843 Z. mays proteins from the 110,185 Z. mays
proteins tested (Supplemental Table 1). A summary of the
relative contribution of each reference species to the predicted
interactions is shown in (Table 1). PiZeaM represented less
than 5% of the Z. mays proteome due to the exclusion of
paralogous and duplicated genes, which constitute a relatively
large proportion of the Z. mays genome. When duplicated
genes are included in the prediction of the interactome, using
a many-to-many ortholog matching method that allows the
inclusion of paralogs, 1161 Z. mays proteins that were only
in the many-to-many set, as well as 14,919 unique interologs
were added to the unique interactome. This resulted in a
combined 49,026 unique interactions comprising 6004 Z. mays
proteins (Table 2). A premade cytoscape formatted graphical
visualization of PiZeaM for this combined set of proteins is
included in Supplemental File 1).

Confidence Value, Conservation and
Connectivity in Predicted Z. mays Interactions
The initial analysis of PiZeaM was performed to determine
accuracy and to determine if the network of predicted protein
interactions in a major plant crop species such as Z. mays had the
same structure as those described for model organisms such as A.
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TABLE 1 | Reference organism data used for maize interolog prediction.

Organism Total Proteins 1 to 1 interologs* M to M interologs* M to M fold change Total interactions

Arabidopsis thaliana 33602 4289 7331 1.709256237 11620

Saccharomyces cerevisiae 7126 42250 51873 1.227763314 94123

Drosophila melanogaster 15246 1508 2232 1.480106101 3740

Rattus norvegicus 29516 22 78 3.545454545 100

Mus musculus 37991 105 269 2.561904762 374

Schizosaccharomyces pombe 7031 2766 3121 1.128344179 5887

Homo sapiens 57945 2735 5005 1.829981718 7740

Bacillus subtilis 4371 32 32 1 64

Caenorhabditis elegans 20447 1 1 1 2

Campylobacter jejuni 3673 60 923 15.38333333 983

Synechococystis 3264 161 501 3.111801242 662

Oryza Sativa 58058 220 248 1.127272727 468

Escherichia coli K12 4618 2496 2444 0.979166667 4940

Total 130703

*Only orthologs used for interologs are listed.

TABLE 2 | Predicted maize interactions.

Orthology Proteins Interactions

Combined Total (One to One/Many to Many) 6004 130703

One to One Total 4843 56645

Many to Many Total 5673 74058

Combined Unique (One to One/Many to Many) 6004 49026

One to One Unique 331 4737

Many to Many Unique 1161 14919

Overlap between Unique (One to One/Many to Many) 4512 29370

thaliana and S. cerevisiae. This analysis helped in establishing and
differentiating the value of each predicted interaction and protein
in the network, and allowed for determining the weights within
the sub-networks.

Confidence values (CVs) for each interaction in PiZeaM
are listed in Supplemental Table 1 and added to the network
visualization in Supplemental File 1 as an edge feature. PiZeaM
had 1079, 38,851, and 9096 low, medium and high confidence
interactions, respectively. Thus most interactions were at least
medium confidence with more than one supporting line of
evidence.

These levels of confidence allow users to select specific levels
of false discovery when the data is used to build networks or
to develop hypotheses. The most confident interactions were
self-interactions for AAA ATPases, Topoisomerases and DNA-
Repair (Supplemental Table 1). On the other hand, the most
confident hetero-interactions were with proteins involved in
core molecular processes, such as elements of the DNA repair
machinery, the basal promoter complex, the proteosome, and
proteins associated with the regulation of the cell cycle (Table 3).
DNA repair machinery is conserved throughout eukaryotes
(Liu et al., 1999; Ohbayashi et al., 1999) and was recovered
in PiZeaM (Supplemental File 1). High CV correlates with
conserved strong interactions that are detected by multiple
methodologies in different species.

“Connectivity” of PPIs determines the number of interacting
partners for a given protein. Proteins with many interacting
partners, referred to as having “high connectivity,” are of
biological interest as theymay represent the “circuit hubs” central
to signaling and information processing in the organism. The
distribution of the connectivity of elements in most information
systems has implications on features such as robustness and
efficiency of the system (Alon, 2007). In the PiZeaM, the highly
connected proteins were ubiquitous partners and co-factors such
as chaperones, scaffolding proteins, and protein involved in
degradation pathways (see Table 4).

Highly connected hubs are reported to represent the most
evolutionarily conserved proteins and to form the backbone
of core processes (Evlampiev and Isambert, 2008). Proteins in
Z. mays with a large number of interacting partners were also
found to be highly conserved (Table 4). The protein with the
highest connectivity was Ubiquitin 2 (GRMZM2G118637_P01),
with 797 different predicted protein partners. This protein is
orthologous to ubiquitin in S. cerevisiae, involved in targeted
protein degradation. In A. thaliana, ubiquitination has been
shown to play a role in abiotic stresses, biotic stresses, and in other
cellular processes, including auxin based growth stimulation
(Dong et al., 2006). Some of the other highly interconnected
conserved proteins are chaperonins, heat shock proteins, and
members of large protein complexes such as the ribosome and the
proteosome. Specific conserved interactions were similar to those
found in A. thaliana, including interactions between histones,
proteosome components, MutS type DNA repair proteins, and
tubulin binding to the spindle pole body Spc97/Spc98. Thus,
in Z. mays, despite the large changes in genome structure
and increased number of genes compared to the reference
species used, the conserved interactions remain intact, and the
hypothesis that highly connected hubs have deeply conserved
interactions across species, genera and even kingdoms (Bork
et al., 2004; Consortium, 2011) is also evident in domesticated
crop species like Z. mays.

Phosphorylations of Serine-threonine/tyrosine-protein
kinases and their connected transcription factors are
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TABLE 3 | The most confident hetero-interactions in the predicted maize interactome*.

Protein A** Protein B** Protein A description Protein B description CV

008327_P01 061287_P01 Cell division control protein 2 homolog Cyclin superfamily protein, putative 12960

056075_P01 110212_P01 DNA mismatch repair protein MSH2 MUS2 protein 10752

AC149818.2_FGP004 008327_P01 Cyclin-dependent kinases regulatory subunit Cell division control protein 2 homolog 9450

045314_P01 064732_P01 Guanine nucleotide-binding protein subunit beta G protein alpha subunit 1 6720

008327_P01 017081_P01 Cell division control protein 2 homolog Uncharacterized protein 6120

033626_P02 061745_P01 26S proteasome non-ATPase regulatory subunit 14 Uncharacterized protein 5880

093050_P01 174757_P01 Eukaryotic translation initiation factor 3 subunit A Uncharacterized protein 5772

040152_P02 088162_P01 Unknown Putative uncharacterized protein 5760

047774_P01 105409_P02 Uncharacterized protein Unknown 5616

028313_P03 452026_P01 Putative translation elongation/initiation factor Eukaryotic peptide chain release factor subunit 1-1 5124

071518_P01 085970_P01 Spc97/Spc98 family of spindle pole body (SBP) component Tubulin gamma-2 chain 5040

046021_P01 177974_P02 Histone acetyltransferase of the GNAT family 1 Uncharacterized protein 4320

043484_P01 148924_P02 Histone-lysine N-methyltransferase EZ3 Polycomb group protein FIE2 3696

161418_P02 168096_P01 TATA-box-binding protein 2 DNA binding 3640

021069_P01 066101_P02 Minichromosome maintenance protein Unknown 3584

133952_P01 356935_P01 MUTL-homolog 1 Uncharacterized protein 3432

AC234199.1_FGP003 048067_P01 Unknown Uncharacterized protein 3360

152328_P01 556845_P01 Actin-1 Unknown 3315

054225_P01 402295_P01 DNA-directed RNA polymerase Unknown 3312

042371_P01 100872_P01 Elongator protein 2 Uncharacterized protein 3024

*Unique one-to-one interactome interactions with the highest confidence values. **GRMZM2G prefix for identifiers removed for space.

instrumental in signaling pathways involved in modulating
responses to abiotic and biotic stresses, cell growth, and
development (Rudrabhatla et al., 2006). These transcription
factors and signaling proteins are underrepresented in the Z.
mays interactome, although family members are found in all used
reference organisms. For example the protein serine/threonine
kinase activity (GO:0004674) is found 1135 times in the whole
maize genome while only 181 times in the interactome (it was
expected 299.3 times based on size of population sample), thus is
1.65-fold depleted. This indicates a lack of conservation of their
interactions despite their key importance, and likely represents
lineage specific rewiring of regulatory networks. Changes in
differential gene regulation are thought to be the earliest step
in evolutionary divergence, followed only later by changes in
gene function (Evlampiev and Isambert, 2008). Some regulatory
processes (ubiquitination, methylation, chromatin remodeling)
are highly conserved, and more importantly, maintain their
conserved interacting partners and complexes throughout
eukaryotic evolution (Hershko and Ciechanover, 1998; Kaiser
and Huang, 2005; Soltes et al., 2011). These may represent only
the core mechanisms for regulation, while the specificity of gene
and protein targets in other pathways such as map kinases may
diverge or rewire over the course of evolution (Mosca et al., 2012).

Topology of PiZeaM
Topology looks at patterns in networks and compares network
properties. The frequency distribution for node connectivity was
calculated for PiZeaM (Figure 1B). The majority of proteins
were intermediate sized hubs with 10–100 interacting protein
partners. The unique interactome had an average connectivity
of 15.86 neighbors per node, similar to D. melanogaster and O.
sativa (Giot et al., 2003; Stark et al., 2006; Gu et al., 2011). The
distribution of nodes by connectivity (Supplemental Table 1)

follows an inverse power relationship between node frequency
and connectivity, which is typical of “small world” topology
networks, and is frequently seen in biological and social
networks, and in transportation hubs (Watts and Strogatz, 1998;
Alon, 2007).

The shortest path length within a network is the path with the
fewest number of intervening nodes between two given nodes.
When all protein pairs in PiZeaM were evaluated there was
an enriched frequency of path lengths between 2 and 4 with a
characteristic path length of 3.942 intervening nodes (Net.Stat
in Supplemental File 1). Only a small number of protein pairs
had a path length greater than 6. These pathways suggest that
a majority of interactions can be characterized as short path
interactions (shown in Supplemental Figure 1). This is similar
to the 2.6 node characteristic path length of S. cerevisiae (Gursoy
et al., 2008). TheA. thaliana interactome has a characteristic path
length of 3.4 (Chen et al., 2012) and the human interactome
has a characteristic path length that varies among databases
between 1 and 3 (Taylor et al., 2009). The overall topology of the
PiZeaM resembles that of experimentally determined networks.
Although the resemblance is not surprising (as it was built
from experimentally determined reference interactomes), this
confirms that Z. mays has the protein orthologs to generate a
predicted interactome of normal topology. This lends confidence
that the prediction process has not introduced systematic errors
that altered the overall structure of the interactome.

Co-Expression of Interacting Proteins
The distribution of gene co-expression for interacting proteins
in PiZeaM was different from what was reported in other
predicted interactomes, including those of A. thaliana and O.
sativa. When the entire distribution of correlation coefficients for
every interacting protein pair was analyzed, it was found to be
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TABLE 4 | The most connected maize proteins.

Protein ID Annotation Connectivity*

GRMZM2G118637_P01 Putative ubiquitin family protein 797

GRMZM2G012280_P01 Uncharacterized protein 523

GRMZM2G033626_P02 26S proteasome non-ATPase

regulatory subunit 14

496

GRMZM2G012631_P01 HSP protein 432

GRMZM2G327635_P01 Ubiquitin carboxyl-terminal

hydrolase

399

GRMZM2G147671_P01 26S proteasome non-ATPase

regulatory subunit 4

348

GRMZM2G416120_P01 Chaperonin CPN60-2l 334

GRMZM2G155384_P02 Uncharacterized protein 324

GRMZM2G075719_P02 Uncharacterized protein 308

GRMZM2G046021_P01 histone acetyltransferase of the

GNAT family 1

281

GRMZM2G152328_P01 Actin-1 274

GRMZM2G008410_P01 Transcribed sequence 1087

protein

250

GRMZM2G038964_P02 Uncharacterized protein 248

GRMZM2G153815_P01 Heat shock 70 kDa protein 248

GRMZM2G171080_P01 Uncharacterized protein 232

GRMZM2G008327_P01 Cell division control protein 2

homolog

230

GRMZM2G027282_P01 Uncharacterized protein 230

GRMZM2G303752_P01 ATP-dependent rRNA helicase

spb4

215

GRMZM2G014676_P01 Prefoldin 5 199

GRMZM2G107540_P01 Core histone H2A/H2B/H3/H4

domain

195

*Number of predicted interacting protein partners for the unique interactome.

uniform and only slightly skewed to the right with the predicted
Z. mays interologs, indicating a slightly higher likelihood of co-
expression for interacting proteins (Figure 1C). This was not
like the tight correlation shown in other plant interactomes
(Geisler-Lee et al., 2007; Ho et al., 2012). Randomized interologs
(random pairs of proteins from the interactome) displayed a
left shifted higher peak in protein interactions distribution than
the predicted interologs. A paired T-test was performed to
compare correlations and a significant difference (P-value of
9.5×10−39) was found between random and predicted interologs.
This showed that, though the difference was slight, there was
a significant difference between the randomized network and
PiZeaM.

Go-Enrichment for PiZeaM
When PiZeam was evaluated for enriched and depleted GO
terms there was an overall enrichment of interactions of
proteins localized to the chloroplast, mitochondrion, plasma
membrane, nucleolus, and cytoplasm (Supplemental Table 3).
Proteins localized to the chloroplast (GO: 9507), for example,
occurred in 538 interactions in the network (p-value of 1.0 ×

10−128 vs. occurrence by chance). Several biological processes
were enriched in the entire interactome, including cell division
and vitamin biosynthetic pathways (GO: 9110). There was also
enrichment of processes thought to be plant specific, such

FIGURE 1 | PiZeaM toplogy and co-expression. All unique interactions in

PiZeaM (merged one-to-one and many-to-many orthology) were analyzed. (A)

Highly conserved interactions with interologs from four or more different

reference species interactomes were compared to interactions with greater than

or equal to a confidence value (CV) 100. The minimum CV of an interaction with

4 reference species is 16. Larger CVs indicate additional support from different

experimental methodologies or replication. (B) Frequency distribution of

proteins with increasing numbers of unique interacting partners (including

self-interaction) is plotted on a log-linear graph. (C) Frequency distribution of

gene transcript expression (Pearson correlation of M-values from 68

microarrays) for interacting protein pairs (red) and random pairs of proteins from

those found in the interactome (blue). Random interactions are statistically

significantly different from nonrandom interactions (P-value of 9.53644× 10−39

in a student t-test), although the average correlation coefficient of both

distributions is similar, observed correlations were more widely spread at both

high positive and negative ends.
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as 14 proteins that have been predicted to be involved in
defense against fungal pathogens (GO: 50382). PiZeaM is thus
biased (enriched or depleted) for specific cellular and biological
processes.

Conserved Subnetworks
The most conserved interactions were identified in an initial
analysis of the predicted interactome and its underlying biology.
Highly conserved interactions represent ancient pathways that
formed in early common ancestors and have remained intact
as eukaryotes diverged into their extant forms. There was a
large number of unique interactions (6650) with orthologs in
more than 4 reference species (Figure 1A). These conserved
interactions also had high confidence values in PiZeaM (1644
had CV greater than or equal to 100). This was not surprising
as one of the factors used to determine the confidence level of a
predicted interaction was the number of species (S) where such
an interaction has been previously reported. Subnetworks were
created for interactions with interologs in greater than 4 and
greater than 5 species (Figures 2A,B). Overall, these included
fewer proteins and a significantly smaller ratio of interactions per
protein (3.0, 1.2, respectively, in Figures 2A,B) in comparison

with the complete interactome (8.2). In the most stringently
conserved subnet (5 species, Figure 2B), many well-known
complexes such as the COP9 signalosome, the U2 splicosome,
the mitotic spindle, histone interactions, and 26S proteosome
are represented as interaction clusters (example in Figure 2C).
The conserved subnetworks also showed connectivity between
some clusters; i.e., the connections between the 26S proteosome
and the translation initiation complex (Figure 2B upper
left).

Hypothesis Generation and Data Mining in a
Disease Resistance Subnetwork
PiZeaM is like a detailed road and town map of an entire
continent when visualized graphically. It is visually cluttered due
to the number of nodes and edges (for example Figure 2A).
However, it is useful when a small portion of interest is focused
on (i.e., Figure 2C) for hypothesis generation and data mining.
Identification of protein-protein interacting subnetworks in a
given biological process in Z. mays is vital to achieve a better
understanding of that process and how it connects to other
processes.

FIGURE 2 | Conserved subnetworks. (A) A sub-network consisting of

interactions identified by matching interologs in at least 4 (out of 13)

reference species. The majority of proteins were found in a single connected

network, with several smaller unconnected subnetworks. (B) A more

stringent subnetwork of interactions with at least 5 interolog reference

species. Clear clusters were concentrated in an organic layout by having

more inter-group connections than between-group connections. These

clusters consisted primarily of proteins with the same biological role,

indicated by dotted circles. One such cluster (C) was an unconnected

subnetwork consisting entirely of members of the COP9 signalosome. EIF3,

elongation initation factor complex 3; U2, U2 splicosome; MCM,

mini-chromosome maintenance proteins complex.
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Data Mining in Biotic Stress Signaling
A map of the interconnections within the biotic stress signaling
and response pathways was developed using a bait-and-prey
approach. This approach was taken specifically to examine
defense pathways against plant pathogens. All 154 proteins with
the GO annotation “Response to other organism” were used
as “bait” (see Disease subnet 1 in Supplemental File 1). These
proteins include many known pathogen response proteins, such
as NON-EXPRESSION OF PATHOGEN RESISTANCE GENE 1
(NPR1), GRMZM2G076450 in Z. mays (Chern et al., 2001; Mou
et al., 2003; Spoel et al., 2003), which is the key signaling protein
for plant systemic acquired resistance (SAR) (Chern et al., 2001;
Ferrari et al., 2003;Mou et al., 2003; Dong et al., 2006; Griebel and
Zeier, 2008). The entire interactome was searched for proteins
directly interacting (i.e., first neighbors) with the bait. This
recovered 1424 “prey” proteins. Subsequent GO term enrichment
analysis of the prey indicated enrichment for cytoplasm localized
proteins, pyrophosphatases and acid anhydride hydrolases and
proteins involved in ketone, small molecule, and primary
metabolism (full list in Supplemental Table 4).

The prey dataset was then limited to key regulators and
metabolic proteins for reactive oxygen species (ROS), and the
hormones jasmonic acid (JA), salicylic acid (SA), ethylene (ET),
and abscisic acid (ABA) pathways (Ferrari et al., 2003; Baxter

et al., 2014). This list of 81 proteins included 163 interactions,
and formed a large connected subnetwork (Figure 3A). There
were, however, no clear clusters of specific roles, unlike the
highly conserved subnetworks in Figure 2B. The degree of
cross connection is somewhat expected given that proteins
such as enhanced disease susceptibility 1 protein (EDS1) have
been shown to be involved in multiple signaling pathways,
including the salicylic acid pathway and the regulation of the
jasmonate pathway, to allow specific responses to pathogens
(Heidrich et al., 2011). Regulators such as the EDS1-PAD4
protein (phytoalexin deficient 4) are involved in the response
to the hemibiotrophic pathogen Blumeria graminis, the causal
agent of powdery mildew on grasses (Parker et al., 1996; Yun
et al., 2003; Wiermer et al., 2005). The subnetwork demonstrates
that the three hormone pathways implicated in interactions with
necrotrophic plant pathogens (Jasmonic acid, Abscisic acid, and
Salicylic acid) (El-Zahaby et al., 1995; De Gara et al., 2003; Baxter
et al., 2014) are physically interacting with proteins involved
in ROS signaling. Interestingly, the influence of light flux rate
and red/far-red shifts is connected to the network through
GRMZM2G013478_P01, a predicted ROS response protein
interacting with GRMZM2G092174_P01, a phytochrome protein
(Griebel and Zeier, 2008; Moreno et al., 2009). Interactions
such as these are presumed to be key to plant-microbe defense

FIGURE 3 | Disease response and hormone subnetworks. (A)

Interaction between all proteins in PiZeaM with the gene ontology annotation

“response to other organism,” which includes many disease response

proteins, and their first neighbors from ROS and stress hormone signaling

and metabolic pathways. (B) A nested subnetwork taken from (A) of MAPK

signaling proteins and first neighbors. (C) A nested subnetwork taken from

(A) of S-adenosyl methionine synthase (ethylene biosynthesis) and first

neighbors.
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responses due to the interplay between light and susceptibility to
pathogens (Mühlenbock et al., 2008; Roden and Ingle, 2009).

A nested subnetwork was also built using S-adenosyl
methionine synthase (SAM) and its first neighbors (Figure 3B).
SAM is a key step in the biosynthesis of the hormone ethylene,
involved in responses to both biotic and abiotic stresses (Yang
and Hoffman, 1984). This subnetwork included connections to a
superoxide dismutase (which breaks down the ROS superoxide
into another ROS hydrogen peroxide), and a ROS responsive
GDP mannose pyrophosphorylase, an enzyme that generates an
activated mannose important in n-linked glycosylation. SAM
synthase is also predicted to interact with an ABC transporter
and an RNA polymerase linked to biotic responses, and a MAPK
signaling protein. Several additional mitogen activated protein
kinases (MAPKs) were also included in the “response to other
organism subnetwork” (Figure 3A), when these were isolated
along with their interacting partners (Figure 3C). This illustrates
connections between different layers of the signaling cascade.
A number of other proteins were connected to this cascade,
including a protein kinase involved in cell division, a WRKY
transcription factor, an S-adenosyl methionine (SAM) synthase,
and an uncharacterized protein with a domain of unknown
function (DUF26).

Discussion

How Accurate are Interolog Predictions in Plant
Species?
The interolog method is useful in identifying interactions that
are conserved between different organisms. This has been
demonstrated in A. thaliana and other key organisms. It allows
for a cost effective high-throughput analysis of potential protein-
protein interactions, building on previous experimental evidence
acquired from other species (De Bodt et al., 2009). It makes
use of the Inparanoid method which has been shown to be
able to compete with tree based methods for detection of
orthology (Altenhoff and Dessimoz, 2009). Moreover, relying
solely on experimental approaches to identify PPIs is technically
challenging, resource intensive and time consuming, especially
since relying on just one experimental method to identify PPIs
can lead to false positives. Due to these limitations, the interolog
method allows for novel hypotheses to be developed, using
existing hard to obtain experimental data, including PPIs data
gathered in other organisms (De Bodt et al., 2009).

After the predicted interactome forA. thalianawas released in
2007, a high throughput experimental interactome was created,
making the comparison between the predicted interactome and
the experimental intearctome possible. The two interactomes
were compared to confirm that plant protein interactions can
indeed be predicted using non-plant reference species. We
compared the 72,266 interolog interactions in A. thaliana
predicted by Geisler-Lee to the dataset of 37,645 experimentally
determined PPIs collected at the BioArrayResource (http://
bar.utoronto.ca/welcome.htm) (Toufighi et al., 2005). The
observed overlap between the predicted and experimental
datasets was 1450 interactions, compared to an expected overlap
by chance of about 91 interactions (as two random subsets of

(V2
+ V)/2, where V is the number of proteins common to

both sets). The observed overlap was calculated to be enriched
15-fold over chance, with a p-value of less than 10−100 in a
simple 1◦ of freedom chi-square test. There is also considerable
bias in experimentally determined interactions toward plant
specific interactions, while the A. thaliana interolog predictions
are focused on evolutionarily conserved interactions among
eukaryotes identified by the ortholog methodology. Neither
dataset is likely to be a complete map of all protein interactions
in A. thaliana. The interactome of S. cerevisiae has over 230,000
known unique interactions for a very small genome (6600 genes).
The number of interactions in a multicellular organism with
over 30,000 proteins can be expected to be much higher with well
over one million interactions, by simple extrapolation of genome
size. Finding 1450 PPIs in the A. thaliana predicted interactome
that were also experimentally validated is an indicator that
the interolog method is reliable for the discovery of protein
interactions in plants, even when using non-plant organisms as
reference. All confidence levels of interactions performed much
better than chance, with high confidence interactions (CV >

10) performing slightly better than low and medium confidence
interactions. There was, however, no significant improvement
in overlap with experimentally validated interactions (data not
shown).

An important feature of PiZeaM is the inclusion of other
“green” species such as A. thaliana, Synechocystis, and O.
sativa as experimentally determined reference interactomes. This
helps capture the unique aspects of plant pathways such as
photosynthesis, cell wall formation, plant development, and
disease resistance pathways. Earlier predicted interactomes, such
as those of A. thaliana and O. sativa (Gu et al., 2011; Ho et al.,
2012), had a significant number of interactions, but no plant
references. The GO-term enrichment analysis in PiZeaM shows
significant enrichment of chloroplast localized proteins and plant
specific pathways, such as phytochrome light sensing, among
the interactors. The successful execution of the methodology
was in part measured by the examination of recaptured known
conserved networks, including the 26s proteosome, ribosome
subunits, DNA repair, splicosome, and COP9 signalosome
interactions. The major differences in applying this method
to Z. mays were the much larger genome and proteome
of this species, which had undergone more extensive gene
duplication than A. thaliana or O. sativa. Unlike model
organisms, a high number of recent paralogs (inparalogs) in
Z. mays are due to its polyploid genome, thus making most
of these homeologs, or genes duplicated due to polyploidy
(Adams and Wendel, 2005).

Although co-expression of gene transcripts is not necessarily
required for a physical interaction between proteins, it is an
observed trend reported in experimental interactomes that
proteins that interact tend to be co-expressed. This is likely
the effect of natural selection pressure on improving biological
efficiency, i.e., not making proteins without all their necessary
interacting partners present (Bhardwaj and Lu, 2005). The low
correlation of interaction to co-expression in Z. mays seems to
depart from these general observations and could possibly be
due to the large number of recent paralogs that Z. mays has
in its genome. Duplicated genes may have a faster divergence
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of RNA expression due to the relaxation of selection pressure,
allowing mutation of promoter elements as well as coding
sequences. Further analysis of other species with a similar
genetic structure, such as wheat, might confirm or refute this
hypothesis.

Usefulness and Novelty of PiZeaM
The interactome can be visualized as a field of circles (nodes) that
represent proteins and connections (edges) between nodes that
represent protein-protein interactions. Each node can be rated
based on the number of connections, or the connectivity of that
node. As stated previously, protein interactomes typically contain
a few highly connected hubs, numerous smaller hubs, pipes, and
free ends. This distribution is similar to that of other small-world
network structures (Watts and Strogatz, 1998; De Silva et al.,
2006; Gu et al., 2011). The small-world topology is a compromise
between efficiency and robustness. Having fewer interacting
partners involved in a pathway results in increased efficiency
in terms of how fast a product or outcome can be processed.
The highly connected hubs represent proteins that are conserved
through different organisms and are under less selection pressure
for mutations (Batada et al., 2006; Zotenko et al., 2008; Ning et al.,
2010). For example, heat shock proteins (i.e., Hsp70, Hsp90)
are vital for proper folding, assembly, and translocation and
have been implicated in abiotic and biotic stress studies (Wang
et al., 2004). As previously stated, these proteins are some of the
highly connected hubs in the PiZeaM. A robust system includes
redundant pathways, autoregulation, and feedback for increased
stability. Understanding the interplay between efficiency and
robustness is an emerging topic of interactomics that sheds light
on the organization of various interactions that take place in
organisms. This has led to recent advances in the mathematical
field of graph theory to analyze and solve these real world
problems. Moreover, there has been an increase in studies to
determine the relationship between simple sub-networks and
complete publicly available networks (Barabasi and Oltvai, 2004).
An example would be studies aimed at comparing networks
in maps and Internet social sites and drawing parallels from
those studies to analyze biological networks. Another feature
of small-world graphs is the enrichment of short path lengths
reflecting the number of steps in a path between any two nodes
(Supplemental Figure 1). This too was noted in predicted and
experimentally determined interactomes such as the PRIN O.
sativa interactome (Gu et al., 2011).

By mapping Z. mays proteins to orthologs in other species,
prediction of function is also improved, which allowed superior
annotation for Z. mays proteins in comparison to previously
used methods (Geisler-Lee et al., 2007). Not just relying on
orthology, the Geisler-Lee method used to build PiZeaM also
utilizes interologs (interacting orthologs), co-expression, graph
theory and gene ontology as additional layers of annotation
of the network (Bhardwaj and Lu, 2005; Brown and Jurisica,
2005; Peterson et al., 2009). This is vital because orthologs across
species are not always phylogenetically closer than paralogs
(Koski and Golding, 2001). However, the interolog method
makes the assumption that if an interaction occurs in the
last common ancestor, and both proteins are retained after

divergence, the interaction of the proteins is also retained after
divergence.

In conclusion, PiZeaM represents a step forward in
developing tools to utilize and integrate publically available
genomic and proteomic data to improve our understanding of
networks underlying plant-microbe interactions, breeding and
development in Z. mays. Future work will analyze dynamic
relationships in networks to determine causal relationships
underlying Z. mays protein interactions.
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Supplemental File 1 | Cytoscape visualized interactome. This file contains

the maize predicted interactome as a Cytoscape ver 3.11 format file. Interactions

shown are indicated and filterable by orthology (many-to-many and one-to-one),

confidence value (numerical), and connectivity. The bait proteins used in the

construction of subnetworks are indicated by pathway and gene name columns.

Subnetworks shown in Figures 2, 3 are included, and colors of bait proteins

correspond to that portrayed in the figures.

Supplemental Figure1 | Shortest path length distribution. This shows the

frequency distribution shortest path length between every pairwise combination of

proteins of the maize interactome using the NetworkAnalyzer tool provided by

Cytoscape (ver. 3.11) plugins. A majority of the interactions in the maize

interactome have a shortest path length between two and six.

Supplemental Table S1 | The predicted maize interactome. The Master

Interactome sheet contains all interolog predictions for the maize interactome

using either many to many or one to one orthology. This table also lists the

reference interactome including organism, orthologous proteins, type of

experiment, publication identifier, and type of orthology used. Sheets containing

excel versions of tables included in the manuscript are also provided for easy use

in calculations. Other sheets contain unique interacting pairs for either one-to-one

orthology or all unique interaction datasets. Analyses include a calculated

confidence value (CV sheet) for each unique interaction, the number of times each

interaction occurred in the reference data, and whether the interaction was a

self-interaction or heterologous. A Node Property sheet provides annotation and

shows the number of interactions each proteins has in either the unique or

combined datasets. The Unique Edges sheet is a unique (each interaction

represented once) combination of one to one and many to many interactions used

in preparing the cytoscape visualization in Supplemental File 1.

Supplemental Table S2 | Microarray Accessions. A listing of GEO accession

numbers for all the Affymetrix microarrays downloaded to construct the

co-expression matrix used in Figure 1C.

Supplemental Table S3 | GO enrichment analysis for PiZeaM. The gene

ontology terms associated with all 6004 proteins of PiZeaM were compared to the

whole maize genome and ranked by multiple-hypothesis adjusted P-value (FDR).

The analysis was done using the agriGO tool (http://bioinfo.cau.edu.cn/agriGO/)

and Bingo Cytoscape Plugin.

Supplemental Table S4 | GO enrichment analysis for first neighbors of

disease subnet 1. PiZeaM had 1424 predicted interacting proteins for the 154

proteins with the gene ontology annotation “responds to other organism”

(GO:0051707). These were compared to all maize proteins using the agriGO tool

(http://bioinfo.cau.edu.cn/agriGO/).
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