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Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in the

Western world and accounts for approximately 30% of adult leukemias and 25% of

non-Hodgkin lymphomas. The median age at diagnosis is 72 years. During recent

years numerous genetic aberrations have been identified that are associated with an

aggressive course of the disease and resistance against genotoxic chemotherapies. The

DNA damage-responsive proapoptotic ATM-CHK2-p53 signaling pathway is frequently

mutationally inactivated in CLL either through large deletions on chromosome 11q (ATM)

or 17p (TP53), or through protein-damagingmutations. Here, we focus on the role of ATM

signaling for the immediate DNA damage response, DNA repair and leukemogenesis. We

further discuss novel therapeutic concepts for the targeted treatment of ATM-defective

CLLs. We specifically highlight the potential use of PARP1 and DNA-PKcs inhibitors for

the treatment of ATM-mutant CLL clones. Lastly, we briefly discuss the current state of

genetically engineered mouse models of the disease and emphasize the use of these

preclinical tools as a common platform for the development and validation of novel

therapeutic agents.

Keywords: chronic lymphocytic leukemia, DNA damage response, PARP inhibitor, DNA-PKcs inhibitor, precision

medicine

Background

Genome maintenance is a major challenge for all life on earth. In mammals, genomic integrity
is preserved through mechanisms that ensure the faithful transmission of fully replicated and
undamaged DNA during each cell division (Hoeijmakers, 2001, 2009). For this purpose, eukaryotic
organisms evolved a complex DNA surveillance program: Prior to mitosis, cells progress through
G1/S-, intra-S and G2/M cell cycle checkpoints (Bartek and Lukas, 2007; Reinhardt and Yaffe, 2013).
These checkpoints are activated in response to incomplete DNA replication (e.g., due to stalled
replication forks), as well as genotoxic damage induced by internal and external sources, such as
UV radiation, reactive oxygen species, ionizing radiation (IR) or DNA-damaging chemotherapeutic
agents (Weinert, 1998; Zhou and Elledge, 2000; Abraham, 2001; Kastan and Bartek, 2004; Lukas
et al., 2004; Bartek and Lukas, 2007). Active checkpoints halt cell cycle progression and thus
provide the time necessary to resolve genomic damage (Reinhardt and Yaffe, 2013). If the genotoxic
insult exceeds repair capacity, additional signaling cascades, leading to programmed cell death,
are activated (Reinhardt and Yaffe, 2013). Thus, DNA damage checkpoints serve as an effective
mechanism to provide andmaintain genomic stability (Zhou and Elledge, 2000; Kastan and Bartek,
2004; Reinhardt and Yaffe, 2013).
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Coherent with a prominent role of the DNA damage response
(DDR) in genome maintenance, many DDR-associated genes
have been found to be altered in the germline of patients suffering
from cancer-prone inherited syndromes, such as Li-Fraumeni
(TP53), Ataxia telangiectasia (ATM), Seckel syndrome (ATR),
Nijmegen breakage syndrome (NBS1), A-T-like disease (MRE11),
Xeroderma pigmentosum (XP complementation groups) or
familial breast and ovarian cancer (BRCA1, BRCA2, RAD51C)
(Frebourg and Friend, 1992; Lavin and Shiloh, 1997; Lehmann,
2003; O’Driscoll et al., 2003; Shiloh, 2003; Taylor et al., 2004;
Nevanlinna and Bartek, 2006; Fackenthal and Olopade, 2007;
Meindl et al., 2010). Disabling mutations within DDR genes
have been proposed to result in a so-called “mutator phenotype,”
which is thought to drive the runaway proliferation of incipient
cancer cells through the accumulation of additional cancer-
driving or resistance-causing genomic aberrations (Loeb et al.,
2003, 2008; Jiricny, 2006; Jackson and Bartek, 2009; Lord and
Ashworth, 2012). While defects in DDR genes appear to facilitate
malignant transformation, exploiting these genome-destabilizing
alterations for targeted anti-cancer therapy offers a promising
therapeutic avenue. In this review, we will focus on cancer-
associated defects in ATM-mediated DNA double-strand (DSB)
repair and their potential targeting. We will further pinpoint the
lack of suitable genetically engineered mouse models of CLL as
a critical bottleneck for the rapid preclinical evaluation of novel
targeted therapies.

DNA Double Strand Break Repair

DSBs can be inflicted by different agents, such as IR and
topoisomerase II inhibitors (e.g., etoposide) (Reinhardt and Yaffe,
2009). Mammalian cells use two major DSB repair mechanisms
(Figures 1A,B). The error-prone non-homologous end joining
(NHEJ) pathway, which does not depend on an intact DNA
replication product as a template for repair, can be employed
throughout all cell cycle phases (Figure 1B) (Dietlein and
Reinhardt, 2014; Dietlein et al., 2014a). NHEJ is primarily
used throughout G1-phase, when no intact sister chromatid is
available as a template for repair. NHEJ-mediated DSB repair
relies on the catalytic activity of the protein kinase DNA-
PKcs, which is recruited to the break site through physical
interactions with the non-catalytic subunits Ku70 and Ku80
(Lees-Miller and Meek, 2003). DNA-PKcs activity mediates the
assembly of additional NHEJ factors, such as XRCC4- and Lig4,
which facilitate re-ligation of the DSB ends during NHEJ (Lees-
Miller and Meek, 2003). Homologous recombination (HR)-
mediated DSB repair is the second DSB repair pathway employed
by mammalian cells (Figure 1A). HR is an error-free DSB
repair mechanism that requires the presence of an intact DNA
replication product, which is used as a template. This template
dependence leads to a restriction of HR use to late S- and
G2-phase (Chapman et al., 2012; Dietlein and Reinhardt, 2014;
Dietlein et al., 2014a). One of the earliest steps of the HR
process is resection of the DSB to create a single-stranded 3′-
DNA overhang, which is engaged and coated by the single-
stranded DNA (ssDNA)-binding protein RPA (Cimprich and
Cortez, 2008; Lyndaker and Alani, 2009). RPA is subsequently

replaced by RAD51 in an ATM/CHK2/BRCA1/BRCA2/PALB2-
dependent process (Sung and Klein, 2006; San Filippo et al.,
2008; Heyer et al., 2010; Krejci et al., 2012). This ssDNA
overhang then serves to invade the intact sister chromatid as
an intact copy for DNA repair (Sung and Klein, 2006; San
Filippo et al., 2008; Krejci et al., 2012). During the HR process,
RAD51 fulfills a key role by mediating homology search, strand
exchange, and Holliday junction formation (Chapman et al.,
2012).

ATM Signaling and the DNA Damage
Response

The proximal DDR kinase ATM, which is mutated in the
human cancer-prone disorder Ataxia telangiectasia (A-T), is
a key regulator of the cellular DDR and essentially controls
three different functional outcomes of DDR signaling: cell
cycle checkpoints, DNA repair and apoptosis (Reinhardt and
Yaffe, 2009; Shiloh and Ziv, 2013). Immediately following the
occurrence of a DSB, the trimeric MRN complex, consisting
of MRE11, RAD50 and NBS1, is recruited to the site of the
lesion (Chapman and Jackson, 2008; Reinhardt and Yaffe, 2013).
In parallel, ATM is activated and tethered to the site of the
DSB via a physical interaction with the C-terminus of NBS1
(Falck et al., 2005). ATM subsequently phosphorylates histone
H2AX on Ser-139. The resulting phospho-H2AX is commonly
referred to as γ-H2AX (Rogakou et al., 1998, 1999; Bartek and
Lukas, 2007; Reinhardt and Yaffe, 2009). The phosphorylated Ser-
139 residue in the C-terminal region of γ-H2AX subsequently
binds with high affinity to the phosphopeptide-recognizing
BRCT domains of the mediator protein MDC1 (Lee et al.,
2005; Stucki et al., 2005; Lou et al., 2006), which in turn is
phosphorylated by ATM at multiple residues (Matsuoka et al.,
2007). In addition, MDC1 is phosphorylated by the constitutively
active Ser/Thr kinase CK2 (Spycher et al., 2008). The resulting
phospho-motif is recognized through the phosphopeptide-
binding FHA and/or BRCT domains of NBS1 (Chapman and
Jackson, 2008; Spycher et al., 2008; Lloyd et al., 2009). This
CK2-dependent NBS1 recruitment retains theMRN complex and
NBS1-bound ATM at the DSB site (Melander et al., 2008; Spycher
et al., 2008). Thus, MDC1, through ATM- and CK2-directed
phosphorylation, tethers both theMRN complex and active ATM
at the break site, essentially forming an ATM auto-amplification
loop.

Coherent with its role in checkpoint signaling and genome
maintenance, ATM is frequently mutated in various human
cancer entities, ranging from solid tumors to lymphomas
and leukemias (Haidar et al., 2000; Ripolles et al., 2006;
Ding et al., 2008; Waddell et al., 2015). Moreover, bi-allelic
loss of ATM was shown to be associated with resistance
against genotoxic chemotherapy and reduced patient survival
(Ripolles et al., 2006; Austen et al., 2007; Skowronska et al.,
2012). Recent in vitro experiments suggest that ATM is
required for the execution of chemotherapy-induced p53-
mediated apoptosis (Jiang et al., 2009). Together these
data might rationalize why disabling ATM alterations
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FIGURE 1 | Mammalian cells employ two principal DNA

double-strand break (DSB) repair pathways. (A) Schematic

representation of the error-free homologous recombination (HR) pathway.

DSB resection (1), RPA coating (2), RAD51 coating (3), strand invasion (4),

and DSB repair are illustrated (5). (B) Schematic representation of

non-homologous end joining (NHEJ). Ku70/Ku80 binding (1), DNA-PK

holo-enzyme assembly and recruitment of additional NHEJ factors, such as

LIG4 and XRCC4 (2), as well as DSB religation (3) are illustrated. (C)

Proposed targeting of HR-defective human cancer through DNA-PKcs

inhibition is outlined (for details please refer to the main text).

are a selected genomic aberration in human neoplastic
disease.

Intriguingly, ATM is not only a critical mediator of DNA
damage-induced apoptosis, but has also been shown to play a

major role in DNA repair, specifically HR-mediated DSB repair,
with a less well-characterized role in NHEJ (Luo et al., 1996; Dar
et al., 1997; Chen et al., 1999; Morrison et al., 2000; Yuan et al.,
2003; Kuhne et al., 2004; Riballo et al., 2004; Xie et al., 2004;
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Bredemeyer et al., 2006; Shrivastav et al., 2009). Experiments
performed with ATM-deficient DT40 cells, as well as A-T cells
derived from patients have shown that these cells display a mild,
but distinct HR defect as the result of impaired assembly and
functioning of RAD51-associated protein complexes (Morrison
et al., 2000; Shiloh, 2003; Yuan et al., 2003). Specifically, a
decreased and delayed formation of RAD51 foci was observed in
A-T cells following IR (Shiloh, 2003; Morrison et al., 2000; Yuan
et al., 2003). As detailed above, RAD51 recruitment requires
an RPA-coated 3′-single-stranded overhang and thus prior DSB
resection. This DSB resection process was shown to be ATM-
dependent (Adams et al., 2006; Jazayeri et al., 2006; Myers
and Cortez, 2006). Further investigation revealed that ATM is
specifically involved in HR-mediated DSB repair during the G2-
phase of the cell cycle. For instance, it was recently shown that IR-
induced sister chromatid exchanges in G2 are ATM-dependent
(Beucher et al., 2009; Conrad et al., 2011; Jeggo et al., 2011).
Furthermore, CtBP-interacting protein (CtIP), which promotes
efficient DSB resection during the HR process, recently emerged
as an ATM substrate (Shibata et al., 2011). The rather mild DNA
repair defect that is observed in ATM-deficient cells might be
explained by the recent observation that ATM appears to control
HR-mediated DSB repair specifically in heterochromatin (HC)
regions of the genome (Goodarzi et al., 2008, 2010; Jeggo et al.,
2011). These experiments revealed that approximately 85% of
IR-induced DSBs are rapidly repaired through a largely ATM-
independent process. Approximately 15% of IR-induced DSBs
are repaired via a slow-acting repair process that depends on
ATM (Goodarzi et al., 2010). Intriguingly, DSBs that undergo
delayed repair are mainly restricted to areas of the genome
that consist of HC (Goodarzi et al., 2010). It was further
shown that ATM directly phosphorylates the HC-building factor
KAP-1. This KAP-1 phosphorylation allows HR-mediated DSB
repair within HC regions. Furthermore, KAP-1-depletion was
demonstrated to rescue the DSB repair defect induced by ATM
deficiency (Goodarzi et al., 2008, 2010; Jeggo et al., 2011).
Altogether these data strongly suggest that the apoptosis-evading
effect ofATM-deficiency, which likely stems from insufficient p53
activation, is associated with a potentially druggable HR defect.

Defective ATM-dependent DSB Repair as a
Potential Therapeutic Target in CLL

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative
disorder that accounts for approximately 30% of adult leukemias
and 25% of non-Hodgkin lymphomas (NHL) (Hallek and Pflug,
2010). It is the most common form of leukemia in the western
world with an incidence rate of 4-5/100.000 (Hallek and Pflug,
2010). CLL is a disease of the elderly with <10% of the
patients being <40 years of age and a median age at diagnosis
of 72 years (Hallek and Pflug, 2010). CLL is extraordinarily
heterogeneous in its clinical manifestation, treatment response
and course. Some patients live for decades and do not require
any therapeutic intervention, while others suffer from rapidly
progressive and refractory disease (Cramer and Hallek, 2011).
It is this extraordinary heterogeneity, which makes treatment

of CLL especially challenging. To date, no curative therapy
exists besides allogeneic stem cell transplantation, for which
most patients do not qualify due to age or reduced performance
status. However, it is important to note that we are witnessing a
paradigm shift in the treatment of CLL with new, targeted agents
recently approved (e.g., ibrutinib, idelalisib), or being evaluated
in advanced approval trials (ABT-199). These novel agents
interfere directly with B cell receptor signaling (ibrutinib—
BTK Inhibitor, idelalisib—PI3Kδ Inhibitor), or relieve repression
of the pro-apoptotic proteins BAX and BAK through BCL2
blockade (ABT-199) (for an excellent review, please refer to
Thompson et al., 2015).

A hallmark feature of CLL cells is an extraordinarily high
frequency of genomic aberrations, which can be documented in
more than 80% of CLL patients (Dohner et al., 2000; Di Bernardo
et al., 2008; Crowther-Swanepoel et al., 2010; Ouillette et al.,
2010). Moreover, the failure of all conventional chemotherapies
to induce long-lasting remissions strongly suggests that the
apoptosis-mediating DDR is crippled in CLL. The genomic
instability of CLL cells is reflected by a number of cytogenetic
abnormalities that occur recurrently in CLL. For instance,
deletions of the short arm of chromosome 17 (del(17p)) are
found in 5–8% of chemotherapy-naïve patients. These deletions
almost always include band 17p13, where the prominent tumor
suppressor gene TP53 is located. CLL patients carrying a del(17p)
clone show marked resistance against genotoxic chemotherapies
that cannot be overcome by the addition of anti-CD20 antibodies
in the context of state of the art chemo-immunotherapy
(Hallek et al., 2010). Among cases with confirmed del(17p), the
majority show mutations in the remaining TP53 allele (>80%)
(Seiffert et al., 2012). Disabling TP53 mutations are enriched in
chemotherapy-treated patients, suggesting that an inactivation of
the pro-apoptotic ATM-CHK2-p53 signaling cascade is selected
for in CLL (Puente et al., 2011; Quesada et al., 2011).

Deletions of the long arm of chromosome 11 (del(11q))
can be found in approximately 25% of chemotherapy-naïve
patients with advanced disease stages and 10% of patients
with early stage disease (Zenz et al., 2010; Puente et al., 2011;
Quesada et al., 2011). These deletions frequently encompass
band 11q23 harboring the ATM gene. A subset of approximately
40% of patients carrying a del(11q) clone display inactivating
mutations of the second ATM allele and these cases show a
poor chemotherapy response, reminiscent of what has been
described for TP53-defective CLLs (Austen et al., 2007). In
addition, patients carrying a del(11q) clone typically show
rapid progression, and reduced overall survival (Seiffert et al.,
2012). As for TP53, disabling ATM mutations are enriched
in chemotherapy-treated patients, again suggesting that an
inactivation of the pro-apoptotic DDR is selected for in CLL
(Puente et al., 2011; Quesada et al., 2011). It remains to be seen
whether the novel agents, including ibrutinib, idelalisib, ABT-
199, obinotuzumab or lenalidomide might overcome the reduced
prognosis of del(17p)/TP53 and del(11q)/ATM altered cases.

Recently, two novel potential therapeutic approaches to
specifically treat ATM-deficient neoplastic disease have emerged
from in vitro and in vivo experiments performed in different
laboratories.
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As ATM is involved in HR-mediated DSB repair (Figure 1A),
it was proposed that repression of NHEJ, the second prominent
DSB repair pathway employed bymammalian cells, might display
selective toxicity against ATM-defective cells while sparing
healthy cells (Figure 1C) (Gurley and Kemp, 2001; Jiang et al.,
2009; Reinhardt et al., 2009; Riabinska et al., 2013; Dietlein
and Reinhardt, 2014; Dietlein et al., 2014a,b). Early experiments
performed with ATM−/− and PRKDC−/− (encoding DNA-
PKcs) mice revealed that double knockout animals undergo
early embryonic lethality (E7.5), while single knockout animals
were born alive (Xu et al., 1996; Gao et al., 1998; Gurley
and Kemp, 2001). These data revealed a robust synthetic
lethal interaction between ATM and PRKDC and suggest that
pharmacological interception of DNA-PKcs signaling might be
detrimental to ATM-defective del(11q) CLLs. Consistent with
this hypothesis, combined depletion of Atm and Prkdc in
Myc-driven transplanted murine lymphomas led to a massive
sensitization of these lymphomas against the anthracycline
doxorubicine (Figure 1C) (Jiang et al., 2009; Reinhardt et al.,
2009). Pharmacological DNA-PKcs inhibition has recently
been evaluated in preclinical systems (Figure 1C). DNA-PKcs
repression with the ATP-competitive small molecule inhibitor
KU-0060648 resulted in robust induction of apoptosis of ATM-
defective cells in vitro (Riabinska et al., 2013). Furthermore,
KU-0060648 displayed substantial cytotoxicity against Atm-
depleted Myc-driven murine lymphomas, while Atm-proficient
lymphomas were entirely resistant (Riabinska et al., 2013). The
authors next extended their observations to freshly isolated CLL
cells. While KU-0060648 displayed marked single agent activity
against del(11q) CLL cells, cytogenetically normal cells did not
show any apoptosis following drug exposure (Riabinska et al.,
2013). Further analyses revealed that DNA-PKcs inhibition in
ATM-defective cells prevents effective DSB repair (Riabinska
et al., 2013). On a molecular level, the authors showed that KU-
0060648-exposed ATM-defective cells initiate DSB resection and
accumulate RPA-coated ssDNA intermediates. These structures
ultimately trigger apoptotic cell death through activation of the
RPA/ATRIP/ATR/CHK1/p53/Puma apoptotic signaling cascade
(Riabinska et al., 2013). Further experiments showed that not
only ATM-deficiency, but also other HR-impairing genetic
aberrations, such as BRCA1-, BRCA2-, FANCD2- or RAD50
mutations were associated with DNA-PKcs dependence (Dietlein
et al., 2014b). Together these data suggest that DNA-PKcs
inhibitors either as single agents or in combination with
DSB-inducing chemotherapeutics might be a viable treatment
option for del(11q) CLLs. Intriguingly, Celgene has developed
CC-115, a small molecule compound that is currently being
evaluated in phase I/II clinical trials as a combined DNA-
PKcs/mTOR inhibitor for the treatment of both solid tumors and
hematological malignancies, including CLL (ClinicalTrials.gov
identifier: NCT01353625).

A second potential therapeutic approach for ATM-defective
human neoplastic disease has recently emerged from preclinical
model systems. Different groups have shown that PARP1
inhibitors display selective toxicity against ATM-defective cells
(Williamson et al., 2012; Gilardini Montani et al., 2013; Kubota
et al., 2014) (Figures 2A–C). PARP1 inhibitors have recently

gained the attention of the biomedical community, as they
have been demonstrated to selectively eradicate BRCA1- or
BRCA2-deficient cells and tumors (Figure 2C) (Bryant et al.,
2005; Farmer et al., 2005). PARP1 inhibitor treatment was shown
to induce DNA damage in BRCA1 or BRCA2-proficient and
-deficient cells (Farmer et al., 2005). However, only BRCA1
or BRCA2-defective cells were sensitive to PARP1 inhibition,
while BRCA1/2 wildtype cells were PARP1 inhibitor-resistant
(Farmer et al., 2005). Subsequent experiments revealed that
additional DNA repair-disabling cancer-associated mutations
in genes such as RAD51, RAD54, DSS1, RPA1, NBS1, ATR,
ATM, CHK1, CHK2, FANCD2, FANCA, or FANCC were
also associated with PARP1 inhibitor sensitivity (McCabe
et al., 2006). These results motivated additional experiments
that tested the hypothesis that ATM deficiency could be
an actionable genetic alteration that might be susceptible to
PARP1 inhibition. In this regard, four pieces of data have
recently been published. First, RNA interference-mediated ATM
repression was shown to sensitize MCF-7 and ZR-75-1 breast
cancer cells (ER-positive, HER2-negative, BRCA1/2 wildtype,
TP53 wildtype) to the PARP1 inhibitor olaparib (Gilardini
Montani et al., 2013). Second, a focused gastric cancer cell line
screen revealed that low ATM protein expression significantly
correlated with olaparib sensitivity (Kubota et al., 2014).
A further characterization revealed that pharmacological- or
RNA-interference-mediated repression of ATM kinase activity
enhanced olaparib sensitivity in gastric cancer cell lines with
parallel depletion or inactivation of p53 (Kubota et al., 2014).
In addition to these solid tumor entities, PARP inhibitors
have also been evaluated in hematological malignancies. In
mantle cell lymphoma xenograft transplants it was recently
shown that animals carrying lymphomas lacking both ATM
and TP53 (UPN2) displayed significant olaparib sensitivity.
Similarly, in mice transplanted with lymphomas lacking
ATM and one copy of TP53, olaparib induced a significant
survival gain. In contrast, mice transplanted with ATM-
and p53-proficient lymphomas (JVM-2), or lymphomas with
isolated p53 inactivation (HBL-2), did not derive a survival
benefit from olaparib (Williamson et al., 2010, 2012). Lastly,
proliferating primary ATM-deficient CLL cells were shown
to display increased olaparib sensitivity, compared to ATM-
proficient counterparts (Weston et al., 2010). Both genetic and
pharmacological experiments validated that this effect was ATM-
dependent (Weston et al., 2010). Furthermore, the authors
employed a murine xenograft model of an ATM-mutant mantle
cell lymphoma cell line to demonstrate a significantly reduced
lymphoma burden and an increased survival of animals following
olaparib treatment in vivo (Weston et al., 2010). Altogether,
these data suggest that PARP1 inhibition might be a useful
strategy for the treatment of refractory ATM-defective CLLs
(Figure 2C).

Perspectives

One of the biggest hurdles in preclinical CLL research and
preclinical development of targeted CLL therapeutics is the lack
of mouse models that faithfully mimic the genetic events leading
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FIGURE 2 | Mammalian cells employ base excision repair to resolve

single-strand breaks (SSBs) and non-helix-distorting base

modifications. (A) Unperturbed base excision repair (BER) requires PARP1

and LIG3 and XRCC1. (B) PARP1 inhibition leads to the accumulation of

genotoxic lesions that are subsequently repaired through homologous

recombination (HR)-mediated DNA repair (left panel). If HR-mediated DNA

repair is unavailable, PARP1 inhibitor-induced genotoxic damage

accumulates and ultimately results in apoptotic cells death (right panel). (C)

Proposed targeting of HR-defective human cancer through PARP1 inhibition

is outlined (for details please refer to the main text).

to human CLL development. Although several models exist (for
an excellent review, please refer to Simonetti et al., 2014), none
of these models truly recapitulates the multistep leukemogenesis
typically observed in CLL patients. Specifically the high-
risk aberrations, such as Tp53- or Atm deletion/mutation
are thus far not sufficiently recapitulated. Although Tp53−/−

mice have been crossed with Eµ-Tcl1 transgenic animals, the
resulting compound-mutant Eµ-Tcl1;Tp53−/− mice carried a
homozygous germline deletion of Tp53, which limits their use
as a preclinical model to mirror somatic del(17p) or TP53-
mutation in CLL (Liu et al., 2014). Of note, Eµ-Tcl1;Tp53−/−

mice develop B-CLL substantially earlier than Eµ-Tcl1mice with
an early appearance of CD5+/IgM+ B cells in the spleen (Liu
et al., 2014). These animals display an aggressive course of disease

development, as well as a drug resistance phenotype reminiscent
of human del(17p) CLL (Liu et al., 2014). These data suggest that
a B cell-specific conditional Tp53 deletion, for instance through
the use ofCd19-CreERT2 deletermice on the Eµ-Tcl1 background,
might be a useful experimental strategy to faithfully mimic
clonal evolution of p53-defective CLL. In addition, B cell-specific
conditionalAtm deletion using the recently publishedAtmfl allele
(Zha et al., 2008) should be performed with Cd19-CreERT2 deleter
mice in the Eµ-Tcl1 background. Furthermore, it is desirable to
translate recent large scale CLL genome sequencing data into
preclinical platforms. For instance, generation of mice carrying
a B cell-specific Myd88L265P mutation, which has recently been
described as a potential early driver lesion in CLL (Landau et al.,
2013), should be pursued (Figure S1).
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Figure S1 | Schematic proposal of the use and early integration of

genetically engineered mouse models for the development of novel CLL

therapeutics. Recent large-scale chronic lymphocytic leukemia (CLL) genome

sequencing efforts have unraveled the identity of numerous potential driver

mutations in CLL. With this genomic information in hand, we propose the

generation of novel genetically-engineered mouse models of CLL to serve as a

preclinical platform for the identification and validation of novel CLL therapeutics.
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