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To gain a detailed understanding of how plant microbes evolve and adapt to hosts,
pesticides, and other factors, knowledge of the population dynamics and evolutionary
history of populations is crucial. Plant pathogen populations are often clonal or partially
clonal which requires different analytical tools. With the advent of high throughput
sequencing technologies, obtaining genome-wide population genetic data has become
easier than ever before. We previously contributed the R package poppr specifically
addressing issues with analysis of clonal populations. In this paper we provide
several significant extensions to poppr with a focus on large, genome-wide SNP
data. Specifically, we provide several new functionalities including the new function
m g. filter todefine clone boundaries allowing for inspection and definition of what is
a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis
of the index of association, modular bootstrapping of any genetic distance, and analyses
across any level of hierarchies.

Keywords: clonality, population genomics, bootstrap, index of association, hierarchical analysis, sliding window

Introduction

To paraphrase Dobzhansky, nothing in the field of plant-microbe interactions makes sense except
in the light of population genetics (Dobzhansky, 1973). Genetic forces such as selection and
drift act on alleles in a population. Thus, a true understanding of how plant pathogens emerge,
evolve and adapt to crops, fungicides, or other factors, can only be elucidated in the context of
population level phenomena given the demographic history of populations (Milgroom et al., 1989;
McDonald and Linde, 2002; Griinwald and Goss, 2011). The field of population genetics, in the era
of whole genome resequencing, provides unprecedented power to describe the evolutionary history
and population processes that drive coevolution between pathogens and hosts. This powerful
field thus critically enables effective deployment of R genes, design of pathogen informed plant
resistance breeding programs, and implementation of fungicide rotations that minimize emergence
of resistance.

Most computational tools for population genetics are based on concepts developed for sexual
model organisms. Populations that reproduce clonally or are polyploid are thus difficult to
characterize using classical population genetic tools because theoretical assumptions underlying
the theory are violated. Yet, many plant pathogen populations are at least partially clonal if not
completely clonal (Anderson and Kohn, 1995; Milgroom, 1996). Thus, development of tools for
analysis of clonal or polyploid populations is needed.
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Genotyping by sequencing and whole genome resequencing
provide the unprecedented ability to identify thousands of single
nucleotide polymorphisms (SNPs) in populations (Luikart et al.,
2003; Davey et al., 2011; Elshire et al., 2011). With traditional
marker data (e.g., SSR, AFLP) a clone was typically defined
as a unique multilocus genotype (MLG) (Falush et al., 2003;
Taylor and Fisher, 2003; Griinwald and Hoheisel, 2006; Goss
et al., 2009; Cooke et al., 2012). Availability of large SNP data
sets provides new challenges for data analysis. These data are
based on reduced representation libraries and high throughput
sequencing with moderate sequencing depth which invariably
results in substantial missing data, error in SNP calling due to
sequencing error, lack of read depth or other sources of spurious
allele calls (Mastretta-Yanes et al., 2015). It is thus not clear what
a clone is in large SNP data sets and novel tools are required for
definition of clone boundaries.

The research community using the R statistical and computing
language (R Core Team, 2015) has developed a plethora of
new resources for population genetic analysis. R is particularly
appealing because all code is open source and functions can be
evaluated and modified by any user. Recently, we introduced
the R package poppr specifically developed for analysis of
clonal populations (Kamvar et al., 2014b). Poppr previously
introduced several novel features including the ability to conduct
a hierarchical analysis across unlimited hierarchies, test for
linkage association, graph minimum spanning networks or
provide bootstrap support for Bruvo’s distance in resulting trees.
Poppr has been rapidly adopted and applied to a range of studies
including for example horizontal transmission in leukemia of
clams (Metzger et al, 2015), study of the vector-mediated
parent-to-offspring transmission in an avian malaria-like parasite
(Chakarov et al., 2015), and characterization of the emergence
of the invasive forest pathogen Hymenoscyphus pseudoalbidus
(Gross et al., 2014). It has also been used to implement real-
time, online R based tools for visualizing relationships among
unknown MLGs in reference databases (http://phytophthora-id.
org/) (Griinwald et al., 2011).

Here, we introduce poppr 2.0, which provides a major update
to poppr (Kamvar et al, 2014b) including novel tools for
analysis of clonal populations specifically addressing large SNP
data. Significant novel tools include functions for calculating
clone boundaries and collapsing individuals into clonal groups
based on a user-specified genetic distance threshold, sliding
window analyses, genotype accumulation curves, reticulations in
minimum spanning networks, and bootstrapping for any genetic
distance.

Implementations and Examples

Clonal Identification

As highlighted in previous work, clone correction is an important
component of population genetic analysis of organisms that
are known to reproduce asexually (Milgroom, 1996; Griinwald
et al., 2003; Kamvar et al., 2014b). This method is a partial
correction for bias that affects metrics that rely on allele
frequencies assuming panmixia and was initially designed for
data with only a handful of markers. With the advent of

large-scale sequencing and reduced- representation libraries, it
has become easier to sequence tens of thousands of markers
from hundreds of individuals (Davey and Blaxter, 2010; Davey
et al, 2011; Elshire et al, 2011). With this larger number
of markers, the genetic resolution is much greater, but the
chance of genotyping error is also greatly increased and missing
data is frequent (Mastretta-Yanes et al., 2015). Taking this fact
and occasional somatic mutations into account, it would be
impossible to separate true clones from independent individuals
by just comparing what MLGs are different. We introduce a new
method for collapsing unique multilocus genotypes determined
by naive string comparison into multilocus lineages utilizing
any genetic distance given three different clustering algorithms:
farthest neighbor, nearest neighbor, and Unweighted Pair Group
Method with Arithmetic Mean (UPGMA, average neighbor)
(Sokal, 1958).

These clustering algorithms act on a distance matrix that is
either provided by the user or generated via a function that will
calculate a distance from genetic data such as bruvo. di st,
which in particular applies to any level of ploidy (Bruvo et al,
2004). All algorithms have been implemented in C and utilize
the OpenMP framework for optional parallel processing (Dagum
and Menon, 1998). Default is the conservative farthest neighbor
algorithm (Figure 1A), which will only cluster samples together
if all samples in the cluster are at a distance less than the
given threshold. By contrast, the nearest neighbor algorithm
will have a chaining effect that will cluster samples akin to
adding links on a chain where a sample can be included in a
cluster if all of the samples have at least one connection below a
given threshold (Figure 1C). The UPGMA, or average neighbor
clustering algorithm is the one most familiar to biologists as
it is often used to generate ultra-metric trees based on genetic
distance (Figure 1B). This algorithm will cluster by creating a
representative sample per cluster and joining clusters if these
representative samples are closer than the given threshold.

We utilize data from the microbe Phytophthora infestans
to show how the ml g. fil ter function collapses multilocus
genotypes with Bruvo’s distance assuming a genome addition
model (Bruvo et al, 2004). P. infestans is the causal agent
of potato late blight originating from Mexico that spread to
Europe in the mid nineteenth century (Yoshida et al., 2013;
Goss et al.,, 2014). P. infestans reproduces both clonally and
sexually. The clonal lineages of P. infestans have been formally
defined into 18 separate clonal lineages using a combination of
various molecular methods including AFLP and microsatellite
markers (Lees et al., 2006; Li et al., 2013). For these data, we used
m g. filter todetectall of the distance thresholds at which 18
multilocus lineages would be resolved. We used these thresholds
to define multilocus lineages and create contingency tables and
dendrograms to determine how well the multilocus lineages were
detected.

For the P. infestans population, the three algorithms were able
to detect 18 multilocus lineages at different distance thresholds
(Figure 2). Contingency tables between the described multilocus
genotypes and the genotypes defined by distance show that most
of the 18 lineages were resolved, except for US-8, which is
polytomic (Table 1).
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FIGURE 1 | Diagrammatic representation of the three clustering
algorithms implemented in i g. fi | t er . (A-C) Represent different
clustering algorithms on the same imaginary network with a threshold of
0.451. Edge weights are represented in arbitrary units noted by the line
thickness and numerical values next to the lines. All outer angles are 90°, so
the un-labeled edge weights can be obtained with simple geometry. Colored
circles represent clusters of genotypes. (A) Farthest neighbor clustering does
not cluster nodes B and C because nodes A and C are more than a distance
of 0.451 apart. (B) UPGMA (average neighbor) clustering clusters nodes A, B,
and C together because the average distance between them and C is <0.451.
(C) Nearest neighbor clustering clusters all nodes together because the
minimum distance between them is always <0.451.

We utilized simulated data to evaluate the effect of sequencing
error and missing data on MLG calling. We constructed the data
using the gl Si mfunction in adegenet (Jombart and Ahmed,
2011) to obtain a SNP data set for demonstration. Two diploid
data sets were created, each with 10k SNPs (25% structured into
two groups) and 200 samples with 10 ancestral populations of
even sizes. Clones were created in one data set by marking each
sample with a unique identifier and then randomly sampling with
replacement. It is well documented that reduced- representation

P. infestans reference isolates (12 SSR loci)
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FIGURE 2 | Graphical representation of three different clustering
algorithms collapsing multilocus genotypes for 12 SSR loci from
Phytophthora infestans representing 18 clonal lineages. The horizontal
axis is Bruvo’s genetic distance assuming the genome addition model. The
vertical axis represents the number of multilocus lineages observed. Each
point shows the threshold at which one would observe a given number of
multilocus genotypes. The horizontal black line represents 18 multilocus
genotypes and vertical dashed lines mark the thresholds used to collapse the
multilocus genotypes into 18 multilocus lineages.

sequencing can introduce several erroneous calls and missing
data (Mastretta-Yanes et al., 2015). To reflect this, we mutated
SNPs at a rate of 10% and inserted an average of 10% missing
data for each sample after clones were created, ensuring that no
two sequences were alike. The number of mutations and missing
data per sample were determined by sampling from a Poisson
distribution with (A = 1000). After pooling, 20% of the data
set was randomly sampled for analysis. Genetic distance was
obtained with the function bi t wi se. di st, which calculates
the fraction of different sites between samples equivalent to
Provesti’s distance, counting missing data as equivalent in
comparison (Prevosti et al., 1975).

All three filtering algorithms were run with a threshold of
1, returning a numeric vector of length n - 1 where each
element represented a threshold at which two samples/clusters
would join. Since each data set would have varying distances
between samples, the clonal boundary threshold was defined as
the midpoint of the largest gap between two thresholds that
collapsed less than 50% of the data.

Out of the 100 simulations run, we found that across all
methods, detection of duplicated samples had ~98% true positive
fraction and ~0.8% false positive fraction indicating that this
method is robust to simulated populations (Supplementary
Materials!).

Supplementary data available at https://github.com/grunwaldlab/supplementary-
poppr-2.0.
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TABLE 1 | Contingency table comparing multilocus lineages (MLL) defined in Li et al. (2013) and Lees et al. (2006) (rows) to MLLs inferred from Bruvo’s
genetic distance (columns) at a threshold of 0.07 with the average neighbor algorithm (Sokal, 1958; Bruvo et al., 2004).

P. infestans

Inferred MLL

MLL 10 12 15

16

17 18 20 21 22 24 25 27 28

B

C

D1

D.2

EU-13

EU-4

EU-5 . . . . . . .

EU-8 . . . . . . 1

Us-11 .

uUs-12 . 1 . . . .

US-14 . . . . . 1

us-17 .

uUs-20 2

us-21

us-22 . . . . . . . .
Us-23 . . . . . . . 3
Us-24 . . . . 3 .

us-8 . . 1 1 . 2

Values in the table represent the number of times any given inferred MLL matches with a previously defined MLL. For example, in our original data set, there were three genotypes
previously defined as the US-24 MLL. All three genotypes were also determined to cluster into a single MLL by filtering. In contrast, US-8 was determined to cluster into three different

MLLs by filtering.

Minimum Spanning Networks with Reticulation
In its original iteration, poppr introduced minimum
spanning networks that were based on the igraph function
m ni mum spanni ng. tree (Csardi and Nepusz, 2006).
This algorithm produces a minimum spanning tree with no
reticulations where nodes represent individual MLGs. In other
minimum spanning network programs, reticulation is obtained
by calculating the minimum spanning tree several times and
returning the set of all edges included in the trees. Due to the way
igraph has implemented Prim’s algorithm, it is not possible to
utilize this strategy, thus we implemented an internal C function
to walk the space of minimum spanning trees based on genetic
distance to connect groups of nodes with edges of equal weight.

To demonstrate the utility of minimum spanning networks
with reticulation, we used two clonal data sets: the H3N2 flu virus
data from the adegenet package using years of each epidemic
as the population factor, and Phytophthora ramorum data from
Nurseries and Oregon forests (Jombart et al., 2010; Kamvar et al.,
2014a). Minimum spanning networks were created with and
without reticulation using the poppr functions di ss. di st and
bruvo. msn for the H3N2 and P. ramorum data, respectively
(Bruvo et al., 2004; Kamvar et al., 2014b). To detect mlg clusters,
the infoMAP community detection algorithm was applied with
10,000 trials as implemented in the R package igraph version 0.7.1
utilizing genetic distance as edge weights and number of samples
in each MLG as vertex weights (Csardi and Nepusz, 2006; Rosvall
and Bergstrom, 2008).

To evaluate the results, we compared the number, size,
and entropy (H) of the resulting communities as we expect a

highly clonal organism with low genetic diversity to result in
a few, large communities. We also created contingency tables
of the community assignments with the defined populations
and used those to calculate entropy using Shannon’s index
with the function di versity from the R package vegan
version 2.2-1 (Shannon, 2001; Oksanen et al, 2015). A
low entropy indicates presence of a few large communities
whereas high entropy indicates presence of many small
communities.

The infoMAP algorithm revealed 63 communities with
a maximum community size of 77 and H 3.56
for the reticulate network of the H3N2 data and 117
communities with a maximum community size of 26 and
H 4.65 for the minimum spanning tree. The entropy
across years was greatly decreased for all populations with the
reticulate network compared to the minimum spanning tree
(Figure 3). Note that the reticulated network (Figure 3B) showed
patterns corresponding with those resulting from a discriminant
analysis of principal components (Figure 3D) (Jombart et al.,
2010).

Graph walking of the reticulated minimum spanning network
of P. ramorum by the infoMAP algorithm revealed 16
communities with a maximum community size of 13 and H =
2.60. The un-reticulated minimum spanning tree revealed 20
communities with a maximum community size of 7 and H =
2.96. In the ability to predict Hunter Creek as belonging to
a single community, the reticulated network was successful
whereas the minimum spanning tree separated one genotype
from that community. The entropy for the reticulated network
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FIGURE 3 | (A,B) Minimum spanning networks of the hemagglutinin (HA)
segment of H3N2 viral DNA from the adegenet package representing flu
epidemics from 2001 to 2006 without reticulation (A) and with reticulation (B)
(Jombart, 2008; Jombart et al., 2010). Each node represents a unique
multilocus genotype, colors represent epidemic year, and edge color
represents absolute genetic distance. (C) Shannon entropy values for

® 2001 © 2004 /4
o690, ?
&
® 2002 © 2005 "
"o
@ 2003 © 2006 5"
;
'.'
i
C D
[+ No Reticutation | © |with Reticulation ° J
3 + * i *
g 4 © ©
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year

population assignments compared with communities determined by the
infoMAP algorithm on (A,B). (D) Graphic reproduced from Jombart et al.
(2010) showing that the 2006 epidemic does not cluster neatly with the other
years via Discriminant Analysis of Principal Components. Horizontal axis
represents the first discriminant component. Vertical axis represents the
second discriminant component.

was lower for all populations except for the coast population
(Supplementary Materials?).

Bootstrapping
Assessing population differentiation through methods such as
Gst, AMOVA, and Mantel tests relies on comparing samples
within and across populations (Mantel, 1967; Nei, 1973; Excoffier
et al,, 1992). Confidence in distance metrics is related to the
confidence in the markers to accurately represent the diversity
of the data. Especially true with microsatellite markers, a single
hyper-diverse locus can make a population appear to have
more diversity based on genetic distance. Using a bootstrapping
procedure of randomly sampling loci with replacement when
calculating a distance matrix provides support for clades in
hierarchical clustering.

Data in genind and genpop objects are represented as matrices
with individuals in rows and alleles in columns (Jombart,

2Supplementary data available at https://github.com/grunwaldlab/supplementary-
poppr-2.0.

2008). This gives the advantage of being able to use R’
matrix algebra capabilities to efficiently calculate genetic distance.
Unfortunately, this also means that bootstrapping is a non- trivial
task as all alleles at a single locus need to be sampled together. To
remedy this, we have created an internal $4 class called “bootgen,”
which extends the internal “gen” class from adegenet. This class
can be created from any genind, genclone, or genpop object, and
allows loci to be sampled with replacement. To further facilitate
bootstrapping, a function called aboot , which stands for “any
boot,” is introduced that will bootstrap any genclone, genind, or
genpop object with any genetic distance that can be calculated
from it.

To demonstrate calculating a dendrogram with bootstrap
support, we used the poppr function aboot on population
allelic frequencies derived from the data set m cr obov in the
adegenet package with 1000 bootstrap replicates (Laloé et al.,
2007; Jombart, 2008). The resulting dendrogram shows bootstrap
support values (>50%) (Figure4) and used the following
code:
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FIGURE 4 | UPGMA dendrogram generated from Nei’s genetic distance
on 15 breeds of Bos taurus (BT) or Bos indicus (Bl) from Africa (AF) or
France (FR). These data are from Laloé et al. (2007). Node labels represent
bootstrap support (>50%) out of 1000 bootstrap replicates.

l'ibrary("poppr")

dat a("m crobov", package = "adegenet")
strata(m crobov) <- data.frane(other(
m cr obov))

set Pop(m crobov) <-
bov_pop <-

~coun/ spe/ br eed
geni nd2genpop( m crobov)

set. seed(20150428)
pop_tree <- aboot (bov_pop, 1000,

50)

sanpl e
cut of f

Genotype Accumulation Curve

Analysis of population genetics of clonal organisms often
borrows from ecological methods such as analysis of diversity
within populations (Milgroom, 1996; Griinwald et al., 2003;
Arnaud-Hanod et al., 2007). When choosing markers for analysis,
it is important to make sure that the observed diversity in your
sample will not appreciably increase if an additional marker is
added (Arnaud-Hanod et al., 2007). This concept is analogous
to a species accumulation curve, obtained by rarefaction. The
genotype accumulation curve in poppr is implemented in the
function genotype_curve. The curve is constructed by
randomly sampling x loci and counting the number of observed
MLGs. This repeated r times for 1 locus up to n-1 loci, creating
n-1 distributions of observed MLGs.

The following code example demonstrates the genotype
accumulation curve for data from Everhart and Scherm (2015)
showing that these data reach a small plateau and have a greatly
decreased variance with 12 markers, indicating that there are

Genotype accumulation curve for monpop

262.00

237.60

197.25 -

= 132.50 5

Number of multilocus genotypes
3
o
1

3.00

T T T T T T T T T
1 2 3 4 5 6 7 8 9

Number of loci sampled

T T T
10 11 12

FIGURE 5 | Genotype accumulation curve for 694 isolates of the peach
brown rot pathogen, Monilinia fructicola genotyped over 13 loci from
Everhart and Scherm (2015). The horizontal axis represents the number of
loci randomly sampled without replacement up to n — 1 loci, the vertical axis
shows the number of multilocus genotypes observed, up to 262, the number
of unique multilocus genotypes in the data set. The red dashed line represents
90% of the total observed multilocus genotypes. A trendline (blue) has been
added using the ggplot2 function st at _snoot h.

enough markers such that adding more markers to the analysis
will not create very many new genotypes (Figure 5).

l'ibrary("poppr")
library("ggplot2")
dat a( " nonpop", package = "poppr")

set.seed(20150428)
genot ype_cur ve( nonpop,
# get the last plot

p <- last_plot() + thene_bw()
# plot with a trendline

p + geom snoot h(aes(group = 1))

sanpl e = 1000)

Index of Association

The index of association (I4) is a measure of multilocus
linkage disequilibrium that is most often used to detect clonal
reproduction within organisms that have the ability to reproduce
via sexual or asexual processes (Brown et al, 1980; Smith
et al., 1993; Milgroom, 1996). It was standardized in 2001 as
74 by Agapow and Burt (2001) to address the issue of scaling
with increasing number of loci. This metric is typically applied
to traditional dominant and co-dominant markers such as
AFLPs, SNPs, or microsatellite markers. With the advent of high
throughput sequencing, SNP data is now available in a genome-
wide context and in very large matrices including thousands
of SNPs. For this reason, we devised two approaches using the
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index of association for large numbers of markers typical for
population genomic studies. Both functions utilize adegenet’s
“genlight” object class, which efficiently stores 8 binary alleles in
a single byte (Jombart and Ahmed, 2011). As calculation of the 74
requires distance matrices of absolute number of differences, we
utilize a function that calculates these distances directly from the
compressed data called bi t wi se. di st.

The first approach is a sliding window analysis implemented
in the function Wi n. i a. It utilizes the position of markers in
the genome to calculate 7; among any number of SNPs found
within a user-specified windowed region. It is important that
this calculation utilize 7; as the number of loci will be different
within each window (Agapow and Burt, 2001). This approach
would be suited for a quick calculation of linkage disequilibrium
across the genome that can detect potential hotspots of LD
that could be investigated further with more computationally
intensive methods assuming that the number of samples << the
number of loci.

As it would necessarily focus on loci within a short section
of the genome that may or may not be recombining, a sliding
window approach would not be good for utilizing 7, as a test
for clonal reproduction. A remedy for this is implemented in the
function sanp. i a, which will randomly sample m loci, calculate
74, and repeat r times, thus creating a distribution of expected
values of 7,5.

To demonstrate the sliding window and random sampling
of 7; with respect to clonal populations, we simulated two
populations containing 1100 neutral SNPs for 100 diploid
individuals under the same initial seed. One population had
individuals randomly sampled with replacement, representing
the clonal population. After sampling, both populations had 5%
random error and 1% missing data independently propagated
across all samples. On average, we obtained a higher value of 74
for the clonal population compared to the sexual population for
both methods (Figure 6).

Data Format Updates: Population Strata and
Hierarchies
Assessments of population structure through methods such as
hierarchical Fy (Goudet, 2005) and AMOVA (Michalakis and
Excoffier, 1996) require hierarchical sampling of populations
across space or time (Linde et al., 2002; Griinwald and Hoheisel,
2006; Everhart and Scherm, 2015). With clonal organisms, basic
practice has been to clone-censor data to avoid downward bias
in diversity due to duplicated genotypes that may or may not
represent different samples (Milgroom, 1996). This correction
should be performed with respect to a population hierarchy to
accurately reflect the biology of the organism. Traditional data
structures for population genetic data in most analysis tools allow
for only one level of hierarchical definition. The investigator thus
had to provide the data set for analysis at each hierarchical level.
To facilitate handling hierarchical and mutlilocus genotypic
metadata, poppr version 1.1 introduced a new S4 data object
called “genclone,” extending adegenet’s “genind” object (Kamvar
and Griinwald, unpublished). The genclone object formalized the
definitions of multilocus genotypes and population hierarchies
by adding two slots called “mlg” and “hierarchy” that carried a

A Sliding Window B Random
500nt 50nt
o —— clonal pop.
S ST —— sexual pop. -
5 ° !
2 -
@ 8 :
M= -
9]
o) =] o
2 31 —
o !
T
®
=)
X
(0]
2]

clonal

Window

FIGURE 6 | (A) Sliding window analysis of the standardized index of
association (fy) across a simulated 1.1 x10% nt chromosome containing 1100
variants among 100 individuals. Each window analyzed variants within 500nt
chunks. The red line refers to the clonal and the blue line to the sexual
populations. (B) boxplots showing 100 random samples of 50 variants to
calculate a distribution of 4 for the clonal (red) and sexual (blue) populations.
Each box is centered around the mean, with whiskers extending out to 1.5
times the interquartile range. The median is indicated by the center line. (A,B)
are plotted on the same y-axis.

numeric vector and a data frame, respectively. These new slots
allow for increased efficiency and ease of use by allowing these
metadata to travel with the genetic data. The hierarchy slot in
particular contains a data frame where each column represents a
separate hierarchical level. This is then used to set the population
factor of the data by supplying a hierarchical formula containing
one or more column names of the data frame in the hierarchy
slot.

The functionality represented by the hierarchy slot has now
been migrated from the poppr to the adegenet package version
2.0 to allow hierarchical analysis in adegenet, poppr, and other
dependent packages. The prior poppr hi erarchy slot and
methods have now been renamed st r at a in adegenet. A short
example of the utility of these methods can be seen in the code
segment under Bootstrapping, above. This migration provides
end users with a broader ability to analyze data hierarchically in
R across packages.

Availability

As of this writing, the poppr R package version 2.0 containing
all of the features described here is located at https://github.com/
grunwaldlab/poppr/tree/2.0-rc. It is necessary to install adegenet
2.0 before installing poppr. It can be found at https://github.com/
thibautjombart/adegenet. Both of these can be installed via the R
package devtools (Wickham and Chang, 2015). More information
and example code can be found in the Supplementary Materials>.

Requirements
e Rversion 3.0 or better.

3Supplementary data available at https://github.com/grunwaldlab/supplementary-
poppr-2.0.
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e A C compiler. For windows, it can be obtained via Rtools
(http://cran.r-project.org/bin/windows/Rtools/). On OSX, it
can be obtained via Xcode. For parallel support, gcc version
4.6 or better is needed.

Installation
From within R, poppr can be installed via:

i nstal |l . packages("devtool s")

i brary("devtools")

install _github("thibautjonbart/adegenet")
install _github("grunwal dl ab/ poppr @. 0-rc")

Several population genetics packages in R are currently going
through a major upgrade following the 2015 R hackathon
on population genetics (https://github.com/NESCent/r-popgen-
hackathon) and have not yet been updated in CRAN. We will
upload poppr 2.0 to CRAN once all other reverse dependent
packages have been updated.

Discussion

Given low cost and high throughput of current sequencing
technologies we are entering a new era of population genetics
where large SNP data sets with thousands of markers are
becoming available for large populations in a genome- wide
context. This data provides new possibilities and challenges for
population genetic analyses. We provide novel tools that enable
analysis of this data in R with a particular emphasis on clonal
organisms.

Particularly useful is the implementation of 7; in a genomic
context (Agapow and Burt, 2001). Random sampling of loci
across the genome can give an expected distribution of 74, which
is expected to have a mean of zero for panmictic populations.
This metric is not affected by the number of loci sampled, is
model free, and has the ability to detect population structure. 74
is also implemented for sliding window analyses that are useful
to detect candidate regions of linkage disequilibrium for further
analysis.

Clustering multilocus genotypes into multilocus lineages
based on genetic distances is a non-trivial task given large SNP
data sets. Moreover, this has not previously been implemented
for genomic data for clonal populations. Clonal assignment
has previously been available in the programs GENCLONE
and GENODIVE for classical markers (Meirmans and Van
Tienderen, 2004; Arnaud-Hanod et al., 2007). Our method with
m g.filter builds upon this idea and allows the user to
choose between three different approaches for clustering MLGs.
The choice of clustering algorithm has an impact on the data
(Figures 1, 2), where for example a genetic distance cutoff of 0.1
would be the difference between 14 multilocus lineages (MLLs)
and 17 MLLs for nearest neighbor and UPGMA clustering,

respectively (Figure2). The option to choose the clustering
algorithm gives the user the ability to choose what is biologically
relevant to their populations. While there is not one optimal
procedure for defining boundaries in clonal lineages, our tool
provides a means of exploring the potential MLG or MLL
boundary space.

Minimum spanning networks are a useful tool to analyze
the relationships between individuals in a population, because it
reduces the complexity of a distance matrix to the connections
that are strongest. By default, these networks are drawn without
reticulations, but for clonal organisms where many of the
connections between samples are equivalent, the minimum
spanning network appears as a chain and reduces the information
that can be communicated. This is problematic because the
ability to detect population structure with one instance of a
minimum spanning network is limited. Adding reticulation into
the minimum spanning network thus presents all equivalent
connections and allows population structure to be more readily
detectable. As shown in Figure3, population structure is
apparent both visually and by graph community detection
algorithms such as the infoMAP algorithm (Rosvall and
Bergstrom, 2008). Additionally, the current implementation
in poppr has been successfully used in analyses such as
reconstruction of the P. ramorum epidemic in Oregon forests
(Kamvar et al., 2014a, 2015).

Poppr 2.0 is open source and available on GitHub. Members of
the community are invited to contribute by raising issues or pull
requests on our repository at https://github.com/grunwaldlab/
poppr/issues.
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