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Changes in the human gut microbiome are associated with altered human metabolism
and health, yet the mechanisms of interactions between microbial species and
human metabolism have not been clearly elucidated. Next-generation sequencing has
revolutionized the human gut microbiome research, but most current applications
concentrate on studying the microbial diversity of communities and have at best provided
associations between specific gut bacteria and human health. However, little is known
about the inner metabolic mechanisms in the gut ecosystem. Here we review recent
progress in modeling the metabolic interactions of gut microbiome, with special focus
on the utilization of metabolic modeling to infer host–microbe interactions and microbial
species interactions. The systematic modeling of metabolic interactions could provide a
predictive understanding of gut microbiome, and pave the way to synthetic microbiota
design and personalized-microbiome medicine and healthcare. Finally, we discuss the
integration of metabolic modeling and gut microbiome engineering, which offer a new
way to explore metabolic interactions across members of the gut microbiota.

Keywords: next-generation sequencing, gut microbiome, metabolic modeling, species interactome, systematic
modeling, personalized medicine

Introduction

The human gut microbiome, represented by trillions of microorganisms colonized in the human
gut, is a major contributor to human metabolism and health (Backhed et al., 2005; Turnbaugh and
Gordon, 2009). The microbiota locating in the gastrointestinal tract is able to perform multiple roles
for the human host, including nutritional, physiological and immunological functions, which are
distinct from the host’s own constitutive resources (Guarner and Malagelada, 2003; Kovatcheva-
Datchary et al., 2013). Therefore, the gut microbiome is considered as a human organ with its
own specific functions and complexity (O’Hara and Shanahan, 2006; Baquero and Nombela, 2012).
Historically, gut microbiome studies have been restricted due to the difficulties in culturing many
of these gut microbial species in laboratory conditions (Lagier et al., 2012a). Development of next-
generation sequencing (NGS) based metagenomics has enabled bypassing of the traditional culture-
dependent bias and has significantly expanded our understanding of the composition, diversity and
roles of the gut microbiome in human health and diseases. However, such gene/genome-centric
high-throughput approaches provide little mechanistic insights into how gut microbiota interact
with each other and with the host, and how these interactions contribute to the host metabolic
machinery. Therefore, the shift from gene/genome-centric analysis to mechanism-centric methods
by integrating omics and experimental data with existing knowledge at the system-level will be a
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FIGURE 1 | The gene/genome-centric approach for the gut
microbiome. Generally, 16S-rRNA based amplicon sequencing and whole
shotgun sequencing are the two main metagenomic approaches for gut
microbiome studies. From metagenome data, the taxonomic compositions
and functional categories of the gut microbial communities, which may be
associated with the health or disease state, can be inferred. Moreover, the
combination of culturomics and NGS methods provides deeper information

about the functional roles of specific gut microbial species. Other available
“omics” data (transcriptomics, proteomics, metabolomics, and phenomics)
provides much deeper insight into the functional role of gut microbes in
human health and disease. Integrating these data with metagenomics data,
especially metabolic models reconstructed from metagenomic studies, will
provide a comprehensive view of metabolic interactions between microbes
and host.

critical next step for gut microbiome studies. Here we will
review and discuss recent progresses in systematic modeling
of the gut microbiome, with special focus on the application
of metabolic modeling to infer host–microbe interactions and
microbial species interactions.

Next-Generation Sequencing in Gut
Microbiome Research

DNA sequencing technology was first developed in 1975 (Sanger
and Coulson, 1975), and is based on the selective incorporation of
labeling chain-terminating ddNTPs by DNA polymerase during
in vitro DNA replication. However, it was historically expensive,
time-consuming and laborious for high-throughput studies. NGS
technologies are based on the principle of massively parallel

sequencing, which has been extensively reviewed elsewhere
(Ronaghi, 2001; Mardis, 2008). The advances of NGS technology
have facilitated gut microbiome research, and enabled the
exploration of genetic and functional diversity of uncultured
gut microbial communities with affordable costs and sufficient
throughput. Amplicon-based profiling is one of the most widely
used methods for characterizing gut microbiome diversity. Here,
a taxonomically informative gene marker (usually 16S rRNA
for bacteria and archaea), which is common for organisms to
be studied, is targeted and amplified from the total DNA by
PCR. The resulting amplicons are sequenced, and downstream
bioinformatics analyses are performed to determine the relative
taxonomical abundances in the sample (Figure 1). Comparison
of Gene marker profiles across samples clarifies how microbial
diversity is associated with host–microbe interactions (Qin et al.,
2012), or different environmental factors, such as diet (Carmody
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et al., 2014; Xu and Knight, 2015), drugs (Dethlefsen et al.,
2008; Dethlefsen and Relman, 2011), or probiotics (Wang et al.,
2015). However, amplicon sequencing typically only resolves the
taxonomic composition of the gut microbiome. It is impossible
to provide direct evidence of the biological functions associated
with the gut microbial community. Thus, recently developed
computational approaches, such as implemented in PICRUSt
(Langille et al., 2013) and Genome traits (Keller et al., 2014),
were successfully employed to infer the community’s functional
potential by bridging 16S rRNA gene information with reference
genomes (Figure 1).

Shotgun genomic sequencing is an alternative metagenomic
approach for characterizing the gut microbiome. Instead
of amplification against a specific gene marker, total DNA
is subsequently sequenced and analyzed. The following
bioinformatics analysis usually involves gene predictions
and functional annotation besides taxonomic binning (Figure 1),
which provides a more global way to simultaneously explore
taxonomic composition and functional capacity of the gut
microbiome. Such taxonomic and functional profiles can be
used to investigate the interactions between the gut microbiome
and disease state or life styles. Recently, the metagenomic-wide
association study of 145 European woman who had type-2
diabetes (T2D), impaired glucose tolerance, or healthy controls,
also showed significant correlations of specific gut microbes
(e.g., Roseburia species and Faecalibacterium prausnitzii) and
their genes with T2D (Karlsson et al., 2013b). An empirical
model based on the metagenomic profiles from this cohort
enabled identification of women in the pre-T2D cohort who also
have high levels of blood plasma markers associated with T2D.
Moreover, the taxonomic markers of the gut microbiota had been
identified to distinguish the colorectal carcinoma patients from
tumor-free controls, which provide a non-invasive fecal readout
for accurate detection of colorectal cancer (Zeller et al., 2014). In
the context of individualized medicine, it will be desirable to use
these biomarkers in a diagnostic or therapeutic setting.

Although NGS-based sequencing has dramatically expanded
our knowledge of the gut microbiome, current culture-
independent metagenomics generate mixed data to reflect
community-level characteristics rather than species-specific
features. Consequently, there is a renewed interest in high-
throughput culture methods—culturomics (Figure 1; Greub,
2012). A recent anaerobic culturing study on a rich medium
showed that ∼50% species can be identified from the cultured
samples (Goodman et al., 2011). Utilizing 212 different culture
conditions with mass spectrometry (MS) techniques and NGS
approach, asmany as 32,500 different colonies had been recovered
from three stool samples (Lagier et al., 2012b). The identified
gut microbiota included 174 species never described before in
the human gut, and 31 new species and genera were sequenced,
generating ∼10,000 previously unknown genes (Lagier et al.,
2012b). Moreover, the representative gut microbiota species
with antibiotic resistance had been successfully cultivated from
fecal samples by combining novel culture conditions and rapid
phenotypic profiling (Rettedal et al., 2014). For unculturable
microorganisms, single cell genomics have been introduced to
investigate uncultivated species from a broad range of ecosystems

(Figure 1; Lasken, 2012; Blainey and Quake, 2014). As single-
cell genomics need a step for amplifying the genome from a
single cell, such an approach has the potential to speed up the
discovery of new species without prior cultivation. Application
of single-cell sequencing to two species of the bee gut microbiota:
Gilliamella apicola and Snodgrassella alvi, revealed extensive
variations in intraspecific divergence of protein-encoding genes
(Engel et al., 2014). Beyond the metagenome and single-cell
genome, numerous transcriptomics, proteomics, metabolomics,
and phenomics data are becoming available for gut microbiome
studies (Figure 1). The integrative analysis of these omics data
will be important for understanding the intrinsic mechanism of
host–microbiome interaction.

Metabolic Modeling of the Human Gut
Microbiome

Even though our understanding of the gut microbiome has
advanced rapidly with NGS, genomic sequencing based analysis is
not sufficient to decipher the mechanisms of how themicrobiome
affects human health. It is necessary to infer the metabolic
activities of the gut microbiota and quantify the metabolic
interactions between the gut microbes, and the interaction
between microbes and host, which will then provide insight into
the molecular mechanisms of gut microbiome contributing to
human health. In this context, a modeling based approach will be
an effective way to study the gut microbial metabolic interactions
at the systems level (Karlsson et al., 2011; Manor et al., 2014;
Shoaie and Nielsen, 2014).

Genome-scale metabolic models (GEMs) are mathematical
representations of the cellular metabolism at the genome level
that have served as powerful systems biology tools widely
applied for studying microbial metabolism and human health
(Oberhardt et al., 2009; Väremo et al., 2013). Historically,
the first GEM was developed to study microbial metabolism,
starting with the Haemophilus influenzae in 1999 (Edwards and
Palsson, 1999). Since then, more than 120 GEMs have been
reconstructed, but organisms modeled have limited phylogenetic
coverages (Monk et al., 2014). Reconstruction of GEMs and
the subsequent computational analysis of reconstructed GEMs
have been extensively reviewed elsewhere (Thiele and Palsson,
2010; Bordbar et al., 2014). Briefly, metabolic reconstructions
are mainly based on the generation of gene-protein-reaction
associations inferred from genome annotations and related
orthologous information, which link known genes to functional
categories and bridge the genotype-phenotype map. Draft
reconstructions are typically curated by integrating available
information from the literatures, and the reconstructed
metabolic network is converted into a stoichiometric matrix
where rows represent metabolites and the columns reactions,
and thermodynamic and/or physiological constraints can be
applied to constrain the feasible space of metabolic operation.
Flux balance analysis (FBA) simulates the flow of metabolites
through the metabolic network, thereby enabling the use of
GEMs for predicting genotype-phenotype relationships of the
(Figure 2).
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FIGURE 2 | Metabolic modeling of the gut microbiome. A single-species
GEM is defined as a set of biochemical reactions that occur in a living
microorganism, which can be reconstructed starting from the corresponding
genome annotation. Here, a single-species model is illustrated, where nodes
represent metabolites and edges represent reactions, while the dashed lines
indicate exchanges of metabolites between cells and environment. The
metabolic capacity and gene essentiality of the single gut species can be
inferred using FBA. While multi-species GEMs consider each specie as an
individual component, and combine each component with a joint in silico
environment where the nutrients are supplied. The dashed arrows here indicate
the metabolic interactions between different microbial species. With such a
multi-component approach, metabolic related phenotype of the whole

multi-species system and each species can be simulated. Furthermore, the
growth and interaction (cooperation or competition) between microbial species
can be inferred at various growth conditions. Alternatively, the community-level
metabolic models concentrate on the topology of the metabolic networks,
which ignore the specie boundaries and integrate all the metabolic pathways
into a community network. Therefore, the topological difference between
different models (highlighted with red/black nodes and edges) can be
associated with observed differences in metadata, such as healthy and disease
states. Altogether, gut microbiome modeling will help in revealing metabolic
interactions between microbes or between microbiota and host, and thus
provide insight into designing healthy diets, discovering new probiotics and
reconstitution of synthetic microbiota.

The gut microbiota contributes to the human physiology
by its metabolic functions, including energy harvest, bile acid
transformations, choline transformation, and the production
of short-chain fatty acids (SCFAs), vitamins, and amino
acids (Nicholson et al., 2012). Metabolic modeling of the gut
microbiome could start from the GEM reconstructions of a
few key species from the dominant phyla in the gut ecosystem,

and FBA can be applied to explore the metabolic capacities
of key gut microbial species. Currently, several gut microbes
GEMs have been generated, such as Bacteroides thetaiotaomicron,
Eubacterium rectale, Methanobrevibacter smithii (Shoaie et al.,
2013), Bifidobacterium adolescentis (El-Semman et al., 2014), and
F. prausnitzii (El-Semman et al., 2014; Heinken et al., 2014). B.
thetaiotaomicron and E. rectale are representatives of the two
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most abundant phyla in the human gut ecosystem, Bacteroidetes
and Firmicutes, respectively. While F. prausnitzii is one of the
most abundant Firmicutes species in the human gut, and is
found to be underrepresented in patients with Crohn’s disease or
ulcerative colitis (Sokol et al., 2008). The functional metabolic
maps and growth requirements of these beneficial gut bacteria
have been extensively explored by simulation with GEMs. In
silico modeling confirmed the biosynthetic capabilities of SCFAs
(acetate, butyrate or propionate) in these species (Shoaie et al.,
2013; Heinken et al., 2014). Furthermore, B. thetaiotaomicron
is able to synthesize all the essential human amino acids from
inorganic ammonia (Varel and Bryant, 1974). In contrast, the
presence or absence of amino acids in a defined minimum
medium significantly affected the production of propionate.
Metabolic flux analysis showed that increased fluxes through
acetyl-CoA and anaplerotic oxaloacetate synthesis under amino
acid deficiency was linked to the overproduction of propionate,
which was again accompanied by increased flux through the
TCA cycle and reduced regeneration of NAD+ through lactate
synthesis (Adamberg et al., 2014). Moreover, the GEMs of several
probiotic bacteria had been reconstructed, such as Lactococcus
lactis (Oliveira et al., 2005) and Lactobacillus plantarum (Teusink
et al., 2006). These GEMs help in identifying metabolites that the
bacteria excreted and this facilitated selection and optimization
of probiotic strains.

The gutmicrobiome is a community ofmicrobial species whose
metabolism are tightly interacting with each other and with that
of the host (Nicholson et al., 2012). Thus, metabolic modeling is
not only limited to the study of the gut microbiota at the single-
species level, but also extends to the study ofmetabolic interaction
among this multi-species system. Usually, multi-species modeling
couples metabolisms of microorganisms in the community by
combining single-species models into a joint in silico environment
where the nutrients are supplied (Figure 2; Stolyar et al., 2007;
Taffs et al., 2009). Therefore, this approach considers each
organism in the system as an individual compartment where a
shared compartment is introduced for the metabolite exchanges
between different organisms. The resulting community model
can be constrained according to related experimental data, and
then be used to infer interactions between components or to
predict the phenotype of the whole system in various nutritional
conditions. With this multi-component approach, community
model of B. adolescentis and F. prausnitzii GEMs had been
used to infer the metabolic interactions between these two gut
microbial species (El-Semman et al., 2014). Hereby acetate was
found to be a key metabolite exchanged between B. adolescentis
and F. prausnitzii, and the growth and butyrate production of F.
prausnitzii was found to be dependent on the acetate supply from
B. adolescentis. Similarly, E. rectale also functions as a recipient
of acetate. In the presence of B. thetaiotaomicron, E. rectale takes
up acetate produced by B. thetaiotaomicron and converts it into
butyrate (Shoaie et al., 2013). The main interactions between B.
thetaiotaomicron and M. smithii are the exchanges of acetate and
formate. M. smithii takes up acetate and formate, and produces
methane. With a three-species model (B. thetaiotaomicron, E.
rectale, and M. smithii), it was observed that there is competition
for acetate between E. rectale and M. smithii, while CO2 and

H2 produced by E. rectale can be taken up by M. smithii,
and converted into CH4 through methanogenesis (Shoaie et al.,
2013). Further integrative analyses of transcriptomics data with
the GEMs showed that E. rectale shifted from polysaccharide
utilization to utilization of amino acids, in particular glutamine,
in the presence of B. thetaiotaomicron. This illustrates how the
GEMs could be used to gain new insight into the interactions
between species, how there is cross-feeding between them, and
how this thus provides novel insights into the commensalism of
species within more complex microbial communities. Beyond the
representative species of gut microbiota, application of automatic
GEM reconstructions starting from thousands annotated gut
microbial genome sequences will be helpful for revealing
the landscape of the microbe–microbe metabolic interactome
(Figure 2). When combining available GEMs with various
medium compositions or environmental conditions, the distinct
inter-species interactions (neutral, commensal, or mutualistic)
and phenotypic properties can hereby be explored, and provide
insights into the pattern of metabolic interaction, metabolic
potentials of the community, and nutritional scenarios for the gut
microbiome.

The gut microbiome is crucial for nutrient acquisition and
energy harvest from the diet, and the host–microbe interactions
play important roles in the host metabolism (Nicholson et al.,
2012). The approach for modeling host–microbe interactions is
similar to the way described above for modeling the microbial
interactions, and involves the integration of host metabolism and
microbial metabolism. Generic human GEMs (Recon 2, HMR
2.0), as well as tissue/cell-specific GEMs (liver, muscle, adipocytes
etc.), had been used for host–microbe modeling (Mardinoglu
et al., 2013, 2014; Thiele et al., 2013b). One of the host–microbe
interaction studies using GEMs was that of Bordbar et al. (2010).
The authors inferred the interactions between Mycobacterium
tuberculosis and human alveolar macrophages by assembling
the Mycobacterium GEM into the cytosolic compartment of a
macrophage GEM. The integrated host–microbe GEM enabled
the simulation of metabolic differences during three infection
states, which can act as scaffolds for potential drug target
prediction. Moreover, antimalarial drug targets for Plasmodium
falciparumhave been analyzed by integrating amalarial GEMwith
human erythrocyte or adipocyte GEM (Huthmacher et al., 2010;
Bazzani et al., 2012). Recently, such integrative GEM analysis has
been applied to characterize the metabolic interactions between
the representative gut microbial species B. thetaiotaomicron and
a mouse on five different diets varying in carbohydrate, fat
and protein content (Heinken et al., 2013). FBA revealed that
B. thetaiotaomicron provides various metabolites to the mouse
including essential amino acids, nucleotides, and SCFA (such as
acetate and propionate), while the mouse requires the presence
of B. thetaiotaomicron to synthesize six essential amino acids for
optimal growth.

Although the success of using GEMs for recovering metabolic
interactions indicates the potentials of these models for
gut microbiome research, some significant methodological
challenges still need to be addressed. Host–microbe GEMs
become more complicated, especially when considering a high
number of microbial species in the integrative model. Moreover,
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multi-species models or host–microbe models that focus on the
interior metabolic interactions fail to explain, for example, how
variations in species composition affect the metabolic potentials
of the microbiome. The limitations of multi-species modeling
thus call for different modeling approaches to overcome the
interior complexity of multiple components. Alternatively,
a comprehensive metabolic modeling approach, treating the
entire microbiota as a supra-organism, has been adapted to
study the metabolic activity of the gut microbiota as a whole
(Figure 2; Taffs et al., 2009; Abubucker et al., 2012; Thiele et al.,
2013a). Generally, the community-level metabolic network can
be reconstructed directly from shotgun metagenomics data by
ignoring cell boundaries and the exchange of metabolites between
species (Borenstein, 2012). In an early work (Greenblum et al.,
2012), by integrating such microbiome-level metabolic network
with corresponding gene abundances, topological differences
in both gene-level and network-level were identified as being
associated with obesity and IBD. Ultimately, such community-
based approaches ignore the boundaries between species and
compartmentalization of various metabolites, and provide
valuable insight into the metabolic potential and functional
divergence of the microbiome in the context of a complete
system.

Gut Microbiome Modeling in Healthcare
and Medicine

Diet is one of the major determinants driving the composition
and metabolism of the gut microbiome (Scott et al., 2013).
Carbohydrates, proteins and fats are the main macronutrients
whose amount, type and balance have a great impact on gut
microbiota composition and host metabolism. Monosaccharides
(i.e., glucose, galactose) are directly absorbed by the intestinal
epithelium cells, while numerous dietary polysaccharides, such
as resistant starch, non-starch polysaccharides and plant fibers,
are able to be digested by the microbes in the gut but not
by the human host (Hooper et al., 2002). After carbohydrate
fermentation in the proximal colon, proteins are the main energy
source in distal colon (Macfarlane et al., 1986). As previously
mentioned, in silico analysis of integrative bacteria–host GEMs
on five different diets varying in fat, carbohydrate, and protein
content predicted different growth optima of B. thetaiotaomicron
and mice (Heinken et al., 2013). The high-carbohydrate diet
provides a good carbon source for B. thetaiotaomicron and
maximizes its growth, which agrees with the fact that B.
thetaiotaomicron is efficient in utilizing dietary polysaccharides.
While the high-protein diet does not support the growth of
B. thetaiotaomicron, in accordance with the known incapability
of Bacteroides, to utilize proteins as sole carbon source and
the low proteolytic capacity of these bacteria (Heinken et al.,
2013). Similar to the prediction, reduced abundance ofBacteroides
was also observed in the human gut microbiota in subjects
having a high-protein/low carbohydrate diet (Duncan et al.,
2007). Thus, it is possible to design the diet that modulates
the gut microbiota based on the food nutrient composition
(Figure 2), which optimizes the growth of the microbiota and

benefits human metabolism. Previous applications of GEMs
already allow for analysis of the environmental and nutrient
requirements of microorganisms, but only restrict it to intensively
studied microbes. Consequently, combinations of large-scale
GEM reconstructions for gut microbes and media prediction may
reveal the possible interaction patterns among gut microbes, and
shed light on the nutritional prediction and the design of healthy
diets.

Manipulating the gut microbiota with probiotics or prebiotics
has been demonstrated to affect the host metabolism (i.e., glucose
homeostasis; Rijkers et al., 2010). Probiotic administration with
Lactobacillus strains have been well characterized regarding
potential antimicrobial effects against major gastric and enteric
pathogens (Liévin-Le Moal and Servin, 2014). Probiotics and
their metabolic products, called postbiotics, have therefore
been proposed as food supplements for a healthier intestinal
homeostasis and as therapeutic aids for treatment of IBD
(Tsilingiri et al., 2012). One major challenge in the development
of effective probiotic strains is the limitation of information of the
gut microbiome in both healthy and disease states. Although NGS
based metagenomics has provided numerous characterizations of
genes and species composition, the alterations in the metabolite
levels remain unsolved. To overcome this issue, GEM based
modeling is an attractive solution due to its predictive ability of
microbial metabolism (Figure 2). With GEMs, the biosynthesis
of active postbiotics can be systematically explored, which will
allow for improved design and optimization of future probiotic
strains with enhancing postbiotic production using metabolic
engineering. Moreover, the distribution of gut microbiota in
the gastrointestinal tract is heterogeneous, which will lead to
different prebiotic activities at different gastrointestinal locations
(Klemashevich et al., 2014). As demonstrated with the polyphenol
quercetin, a probiotic strain may not generate a beneficial effect
without cooperative interactions with other strains (Bolca et al.,
2013; Klemashevich et al., 2014). Thus, inferring the interactions
between gut microbial species via metabolic models, will facilitate
the discovery of probiotic mixtures and design of possible
biochemical reaction pathways to convert prebiotics into desired
postbiotics.

Recently, fecal microbiota transplantation (FMT) has become
an alternative treatment compared with standard therapies,
and this enables translation of gut microbiota knowledge into
clinical use (Borody and Khoruts, 2011). FMT has proved
to be effective for treatment of Clostridium difficile infections
(Bakken et al., 2011). In addition, a long-term follow-up study
of FMT in six patients with UC showed reduced symptoms
in all patients (Brandt et al., 2012). Usually, FMT involves
transplantation of fecal bacteria from a healthy individual into
a recipient, which hereby has gut microbiota restored by a
healthy bacterial flora. Nevertheless, concerns about pathogen
transmission, patient acceptance and treatment standardization
still remain (Claes et al., 2015), and FMT is therefore mainly
used for patients where there are no alternative treatment options.
For example, two patients with recurrent C. difficile infection
that was unresponsive to conventional therapy, were cured
by transplantation of a synthetic microbiota composing of 33
bacterial cultures isolated from the feces of a healthy donor
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(Petrof et al., 2013). Recently, a rational design of microbiota
including six phylogenetically diverse intestinal bacteria cleared
C. difficile infection in mice and restored the healthy microbiota
(Lawley et al., 2012). Consequently, the next step would be
to use gut microbiome knowledge to improve human health
by designing ideal synthetic microbiota for FMT. Therefore, a
bottom-up approach integrating GEMs of single species with pre-
defined functions will allow for identification of the interaction
patterns between multi-species and result in possible species
combinations with desirable metabolic functions (Figure 2). As
mentioned above, the interaction between two microbial species
can be neutral, commensal, or mutual (Thiele et al., 2013a).
Mapping all possible interaction patterns and identification of
all possible metabolite exchanges between two species will drive
the assembly of complex microbiota by maximizing paired
cooperation. Moreover, by application of metabolic engineering
tools and the rational design of microbiota, it will be possible
to simplify the complexity of synthetic microbiota, and provide
fundamental knowledge that can be used to infer intrinsic
mechanisms of how microbiome influences human health.

Future: the Nexus of Systematic Modeling
and the Gut Microbiome

With the advent of NGS-based metagenomics and development
of related bioinformatics approaches, we have gained a deep
understanding of the gut microbiome and its impact on human
disease and health. Such sequencing based surveys focus on the
taxonomic or functional compositions of the gut microbiome,
but provide little information about the mechanism of metabolic
interactions. Therefore, to reveal the underlying metabolic
principle of host–microbe interactions or microbe–microbe
interactions, it is necessary to go beyond solely characterizing
the gutmicrobiome composition and toward systematic modeling
and analysis of the gut microbiome (Hanage, 2014; Waldor et al.,
2015). The application of metabolic modeling approaches to gut
metabolic interactions is therefore a critical next step in gut
microbiome studies. Such system-level metabolic reconstruction
provides a predictive understanding of the metabolic capacities
in the gut microbial species and community, and associates the
metabolic changeswith the disease or healthy states.Moreover, the
GEMbasedmodeling approach is helpful for systematical analysis
of the gut microbiome through the quantitative integration
of transcriptomics, proteomics and metabolomics data with
metabolic phenotypes. Finally, GEMs based in silico growth or
metabolite production prediction can be easily compared with

obtained experimental data to provide theoretical explanation for
observed metabolic phenotypes.

Due to the inherent complexity and heterogeneity of the
gut microbiome, a simple approach to study the metabolic
interactions is to build artificial microbiota from monocultures
in defined combinations (Mee and Wang, 2012; Vos, 2013).
Therefore, there is a clear need to further develop both the
experimental and design framework for synthetic microbial
communities. GEMs have been successfully applied to develop
cross-feeding microbial communities for industry (Wintermute
and Silver, 2010). In these engineered microbial communities,
syntrophic growth can be achieved by exchanging cross-feeding
metabolites across different species. Similarly, the principle
of syntrophic design can be applied to develop engineered
probiotics with enhanced catabolism of nutrients or biosynthesis
of postbiotics. In addition, the application of modeling approach
requires systematic manipulation of gut microbiota through
well-designed in vitro/in vivo experiments for in silico model
testing and validation. An example of such an in vitro system
is the simulator of the human intestinal microbial ecosystem
(SHIME; Van den Abbeele et al., 2010). This system mimicked
the fermentative processes in the stomach, small intestine
and three colon regions, and supported anaerobic growths of
the microbiota. Combining such in vitro co-culture system
with predefined gut microbiota will allow a controlled testing
system for engineered microbial consortia. Similar to in vitro
systems, germ-free (GF) animals, when colonized with synthetic
microbial consortia, will be able to associate specific functions
or specific microorganisms with the host, and thus be able to
validate interactions between pre-defined microbiota and the
host (Karlsson et al., 2013a). Furthermore, the alteration of
diet, environment, or genetic background can be integrated
into these in vivo/in vitro experimental systems to simulate
the host–microbiota or microbe–microbe interactions. Finally,
metabolic modeling combined with knowledge and data
from experiment will greatly strengthen our understanding of
metabolic interactions among microbes or between the microbe
and host, and hereby provide insight into the clinical application
of gut microbiota in diagnoses and therapies.
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