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Pleiotropy arises when a locus influences multiple traits. Rich GWAS findings of various

traits in the past decade reveal many examples of this phenomenon, suggesting the

wide existence of pleiotropic effects. What underlies this phenomenon is the biological

connection among seemingly unrelated traits/diseases. Characterizing the molecular

mechanisms of pleiotropy not only helps to explain the relationship between diseases,

but may also contribute to novel insights concerning the pathological mechanism of

each specific disease, leading to better disease prevention, diagnosis and treatment.

However, most pleiotropic effects remain elusive because their functional roles have not

been systematically examined. A systematic investigation requires availability of qualified

measurements at multilayered biological processes (e.g., transcription and translation).

The rise of Big Data in biomedicine, such as high-quality multi-omics data, biomedical

imaging data and electronic medical records of patients, offers us an unprecedented

opportunity to investigate pleiotropy. There will be a great need of computationally

efficient and statistically rigorous methods for integrative analysis of these Big Data in

biomedicine. In this review, we outline many opportunities and challenges in methodology

developments for systematic analysis of pleiotropy, and highlight its implications on

disease prevention, diagnosis and treatment.

Keywords: genome-wide association studies (GWAS), pleiotropy, functional annotation, mining Big Data in

biomedicine, data integration

1. Introduction

In the past decade, genome-wide association studies (GWAS) have been conducted to study the
genetic basis for thousands of phenotypes (Hindorff et al., 2009; Eicher et al., 2015), including
diseases (e.g., the seven diseases from WTCCC, The Wellcome Trust Case Control Consortium,
2007), clinical traits (e.g., cholesterol levels), anthropometric traits (e.g., height, Wood et al.,
2014), brain structures (Hibar et al., 2015) and social behaviors (e.g., educational attainment,
Rietveld et al., 2013; marriage, Domingue et al., 2014). As of April, 2015, more than 15,000
single-nucleotide polymorphisms (SNPs) have been reported to be significantly associated (p <

5 × 10−8) with at least one phenotype (see GWAS catalog, Welter et al., 2014). By exploring
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these fruitful findings fromGWAS, recent progress has suggested
that a single locus may influence multiple seemingly different
phenotypes (Solovieff et al., 2013). This phenomenon, termed
“Pleiotropy,” was formally introduced into the scientific literature
by the German geneticist Ludwig Plate in 1910 (Stearns, 2010).
Accumulating evidence suggests that pleiotropy widely exists
among complex traits, such as psychiatric disorders (Cross-
Disorder Group of the Psychiatric Genomics Consortium,
2013a,b), metabolic syndrome traits (Vattikuti et al., 2012)
and cancers (Sakoda et al., 2013). Examples of pleiotropy in
human diseases include the PTPN22 locus associated with
multiple auto-immune disorders (Cotsapas et al., 2011), such
as rheumatoid arthritis, Crohn’s disease, and type I diabetes;
the TERT-CLPTM1L locus associated with bladder, glioma, and
lung cancers (Fletcher and Houlston, 2010). Although the first
survey (Sivakumaran et al., 2011) of pleiotropic effects (PE) was
published in 2011, it may underestimate PE as the database
of GWAS results was far less than what is available today
. Fortunately, the Genome-Wide Repository of Associations
between SNPs and Phenotypes (GRASP) database has been
built up as a repository of many results from published GWAS
(Leslie et al., 2014). A recent update (Eicher et al., 2015)
on GRASP has provided even more comprehensive GWAS
results—about 8.87 million SNP-phenotype associations in 2082
studies with p ≤ 0.05. Such a rich data resource allows
characterizing the molecular mechanisms of PE on diverse
phenotypes. Undoubtedly, it will not only greatly deepen
our understanding of the genetic architecture that underlies
complex human phenotypes, but also have clinically important
implications.

2. Benefits from Characterization of

Pleiotropic Effects

To demonstrate the potential benefits from characterization of
PE, we consider a recent study from Butte’s team at Stanford (Li
et al., 2014b). Based on available information from the VARiants
Informing MEDicine (VARIMED) database (Ashley et al., 2010),
Butte’s team hypothesized that diseases (e.g., type 2 diabetes)
and non-disease traits (e.g., blood pressure and cholesterol levels;
for convenience, we shall refer to “non-disease traits” as “traits”
hereafter) could be related to each other through shared genetic
variants. They first identified significant associations between 801
unique genes and 69 diseases, and between 796 unique genes and
85 traits. Next, they identified 120 disease-trait pairs that could
be reliably linked via shared genetic variants, and 26 of them are
novel to the community. Among these novel findings, five pairs
can be directly validated by electronic medical records of patients
from three independent clinical centers: Stanford Hospital and
Clinics, Mount Sinai Medical Center and Columbia University
Medical Center. For example, gastric cancer and the serum
magnesium level is one of these five pairs. This pair is linked
via three genes—MUC1, THBS3, and TRIM46, as implicated
by some previous studies of gastric cancer (Wadhwa et al.,
2013) and the serum magnesium level (Meyer et al., 2010). To
validate this disease-trait pair, 804 patients were selected as cases

because they had a magnesium measurement 1 year before their
diagnosis of gastric cancer, and 324,160 individuals who had at
least one magnesium measurement without diagnosis of gastric
cancer were selected as controls. The comparison showed that
the cases had a significantly higher magnesium levels than the
controls. If this finding could be further replicated independently,
it would have a very important clinical implication—the serum
magnesium level could be used as a bio-marker which predicts
the risk of gastric cancer 1 year beforehand.

There would be more benefits in clinical practice if the
biological mechanisms of PE on some disease-trait pairs could
be timely validated. One immediate benefit is the development
of more affordable clinical tests, such as blood tests and imaging
tests, for disease prevention and diagnosis, as implied by the
real example above. Another potential benefit is the discovery
of new drugs for disease treatment. Consider two diseases that
are connected through a common biological mechanism. If a
drug works well in treating one disease, it will also likely to be
effective for the other disease. For example, calcium antagonist
drugs have been used for the treatment of hypertension since
1960s (Wood et al., 1999). Recently, the Psychiatric Genomics
Consortium (PGC) identified the L-type calcium channel subunit
gene CACNA1C as a risk gene for several psychiatric disorders
(Cross-Disorder Group of the Psychiatric Genomics Consortium,
2013b). As reported in Solovieff et al. (2013), this new finding has
drawn the attention in trials of calcium antagonist drugs because
these drugs could be potentially useful for psychiatric disorder
treatment.

3. Statistical Perspectives on

Characterization of Pleiotropic Effects

Although results from thousands of GWAS are readily available,
systematical analysis of existing GWAS results toward fully
characterizing PE is not trivial. Historically, the genome-wide
significant level was set to p ≤ 5 × 10−8 (McCarthy et al.,
2008) as empirical data in European-decent GWAS suggested
adjustment for 1–2 million independent tests (The International
HapMap Consortium, 2005; McCarthy et al., 2008). However,
it may not be wise to narrow down the search range of
PE within the significant GWAS hits because they can only
explain a very small proportion of phenotypic variance, which
is known as the “missing heritability” phenomenon (Manolio
et al., 2009). In 2010, Yang et al. showed that 45% of the
variance for human height of 3925 unrelated individuals could
be explained by 294,831 common SNPs (Yang et al., 2010). So far,
researchers have found similar results for many other complex
phenotypes (Visscher et al., 2012), such as metabolic syndrome
traits (Vattikuti et al., 2012), and psychiatric disorders (Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2013a;
Yang et al., 2014). An important lesson learned from GWAS
is the polygenic architecture of complex human phenotypes—
besides the significant GWAS hits, a complex human phenotype
is often affected by many genetic variants with small or moderate
effects (Visscher et al., 2012). Due to the limited sample size,
these genetic risk variants may not be identified at the stringent
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genome-wide significant level, i.e., p ≤ 5 × 10−8. The survey
of PE in 2011 showed that 4.6% of identified SNPs and 16.9%
of identified genes were associated with multiple phenotypes
(Sivakumaran et al., 2011). This result could be an underestimate
of PE as many variants with weak or moderate effects have
not been identified. For better characterization of PE among
multiple phenotypes, the uncertainties arise in single-GWAS
analysis should be taken into account. For example, it may be
not easy to determine whether a variant with p-value about
10−5 is disease-associated or not if we only focus on the variant
itself. Statistics plays a critical role in incorporating indirect but
relevant information (Efron, 2010) to account for uncertainties
as discussed below.

Before discussion of statistical methods to characterize PE, we
first introduce the local and global measures of PE. Originally, the
term “pleiotropy” referred to the phenomenon that a single locus
affects two or more phenotypes (Stearns, 2010). Let u(1) and u(2)

be the effect sizes of this locus on two phenotypes, respectively.
According to this definition, this locus is said to have pleiotropic
effect if both u(1) and u(2) are nonzero. Clearly, this is a local
measure of pleiotropy as it only refers to a specific locus. In the
genomics era, the local measure has been extended to a global one
which is defined as the correlation between the effect sizes of all
genetic variants on the two phenotypes (Cross-Disorder Group
of the Psychiatric Genomics Consortium, 2013a). Here we first
introduce the method to estimate the global PE, and then discuss
the issue about localization of PE in the next section.

At first glance, it seems to be straightforward to obtain
the global PE by a two-step strategy: estimate the effect sizes
individually for each variant and then calculate their correlation.
However, accurate estimation of all the effect sizes in the
first step can be very challenging due to limited sample sizes.
Uncertainty arises in characterizing global PE due to the
estimation error accumulated in the first step, resulting in the
reduction of efficiency in correlation estimation in the second
step. Fortunately, linear mixedmodels (LMM) arise as a powerful
tool to address this challenge (Lee et al., 2012).

For simplicity, let us consider GWAS of two distinct
phenotypes and without overlaped samples. Denote the
phenotypes and genotypes as y(k) ∈ R

nk×1 and G(k) ∈ R
nk×M ,

respectively, where M is the number of SNPs in the genotyped
matrix and nk is the sample size of the k-th GWAS, k = 1, 2.
Bivariate LMM can be used for estimating global PE as follows:

y(1) = X(1)β(1) + G(1)u(1) + e(1),

y(2) = X(2)β(2) + G(2)u(2) + e(2),

where X(k) is a design matrix of fixed effects collecting all the
covariates (e.g., sex and age) for the k-th phenotype, β(k) is the
coefficient vector of the fixed effects, u(k) is the coefficient vector
of the genetic effects viewed as random, and e(k) is the residual,

k = 1, 2. Let u
(1)
m and u

(2)
m be the m-th element of u(1) and u(2),

respectively. Then they are assumed to jointly follow the bivariate
Gaussian distribution as

[

u
(1)
m

u
(2)
m

]

∼ N

([

0

0

]

,

[

σ
2
u1

ρuσu1σu2

ρuσu1σu2 σ
2
u2

])

,

where σuk is the standard deviation of the effect sizes on the
k-th phenotype, and ρu ∈ [−1, 1] is the genetic correlation
to capture global PE. In such a way, these random effects
u(k) can be integrated out analytically, which helps us bypass
the great challenge in accurate estimation of weak individual
effects. After that, the model parameters (σu1 , σu2 , ρu) can
be estimated using maximum likelihood (ML) or restricted
maximum likelihood (REML) (Lee et al., 2012). In other words,
all available information can be simultaneously incorporated
under a statistically rigorous framework unlike the naive two-
step strategy discussed above. Through this approach, the genetic
relationship between five psychiatric disorders has been explored
based on genome-wide SNPs (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013a). The estimated genetic
correlation was very strong between schizophrenia and bipolar
disorder (ρ̂u = 0.68 with s.e. 0.04), low between schizophrenia
and autism spectrum disorders (ρ̂u = 0.16 with s.e. 0.06), and
non-significant for some other pairs of disorders. The results
may have clinically important implications for the classification
of psychiatric disorders which has been done conventionally on
the basis of symptoms. Due to the limited space here, readers
interested in technical details of LMM shall refer to Jiang (2007)
and McCulloch et al. (2008).

As discussed above, the global PE can be estimated
accurately after accounting for the uncertainties in estimating
individual genetic effects. Similarly, leveraging pleiotropy and
accounting for this estimation uncertainty can lead to significant
improvement of disease risk prediction, as recently demonstrated
in Li et al. (2014a); Maier et al. (2015). Interested readers can
easily try the LMM approach in GWAS data analysis using
efficient softwares, e.g., GCTA (Yang et al., 2011) and GEMMA
(Zhou and Stephens, 2014).

4. Challenges and Opportunities in

Characterization of Pleiotropic Effects

Although LMM is a very powerful tool to capture the global PE,
systematical localization of PE is still at the beginning stage. In
this section, we outline the challenges and opportunities from the
statistical point of view.

There are two major challenges in localization of PE. First,
a substantial proportion of phenotypic variance is attributed
to many variants with small effects due to the polygenicity of
complex human phenotypes. Identification of those risk variants
with a very high certainty may not be supported by the sample
size of current GWAS. A loose threshold (e.g., p ≤ 0.05) may
lead to many false positives (Type I error), while a stringent
threshold (e.g., p ≤ 5 × 10−8) may produce too many false
negatives (type II errors). Therefore, it may be problematic to
examine pleiotropy based on the intersection of identified GWAS
loci after a simple thresholding. Second, spurious pleiotropy
may appear due to the artifact in experimental design and
the linkage disequilibrium (LD) among genetic variants. On
one hand, ascertainment bias can introduce spurious PE when
sample recruitment based on the first phenotype changes the
prevalence of the second phenotypes (Smoller et al., 2000). For
example, it is possible that patients who suffer from two or more
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illnesses are more likely to be recruited than those with only one.
As accumulation of experience in GWAS design, the sampling
strategy and techniques to control confounding factors have been
improved (Feero et al., 2010). Thus, this type of artifact may be
reduced over time (Solovieff et al., 2013). On the other hand, the
strong LD with two risk variants may cause spurious PE. Suppose
SNPs A and B are two nearby risk variants for two distinct
phenotypes. It is possible that they are strongly linked due to LD
but locate in two genes with different functions. Statistically, it
would be very challenging to distinguish this spurious PE from
truly biological PE, given the limited information. Incorporation
of functional information of the two SNPs can be very helpful
to exclude this spurious PE as their distinct functions tell their
differences.

To systematically characterize PE, additional information
should be incorporated into statistically rigorous analysis. Instead
of solely relying on genetic information, the Encyclopedia of
DNA Elements (ENCODE) project (The ENCODE Project
Consortium, 2012) has provided a comprehensive map of the
regulatory elements in the human genome. Although most of
its results are from cell lines, it has highlighted the importance
of regulatory regions in the human genome. Another project,
named Roadmap Epigenomics project (Kundaje et al., 2015),
used primary cells instead of cell lines, aiming at providing
reference epigenomes of more than one hundred tissues and cell
types to tackle human diseases. Apart from epigenetic markers,
the Genotype-Tissue Expression project (GTEx) (Lonsdale
et al., 2013) aims at collection of 20,000 tissues from 900
donors, serving as a comprehensive atlas of gene expression
and regulation across human tissues. Clearly, integration of
pleiotropy and functional annotation to drive advanced scientific
hypotheses is calling for rigorous analysis (Ritchie et al., 2015).
Besides the statistical methods mentioned in the timely review
paper by Solovieff et al. (2013), several statistical approaches to
characterizing PE have been developed more recently, including
GPA (Chung et al., 2014), CPASSOC (Zhu et al., 2015b), MGAS
(Van der Sluis et al., 2015), Bayesian Test for Colocalization
(Giambartolomei et al., 2014) and others.

As an example, here we briefly introduce GPA (Chung
et al., 2014), a statistical approach recently developed by us.
As a first attempt, GPA is designed to integrate pleiotropy and
functional annotation information for risk SNP prioritization,
and significance assessment of pleiotropy and annotation
enrichment. A notable feature of GPA is that it only requires the
summary statistics from GWAS, rather than the genotype data at
the individual level, as its input, which greatly facilitates GWAS

data integration. GPA has been applied to analyze psychiatric
disorders and bladder cancer, with various types of functional
annotation. Our analysis results suggest that integration of
genomics data may potentially lead to abundant novel findings
(Chung et al., 2014).

It is noteworthy that characterization of PE should not be
restricted to phenotypes at the organismal level. Investigation the
PE between the organismal phenotype (e.g., disease status) and
the cellular phenotype (e.g., DNA methylation, gene expression,
protein expression and metabolite abundance) may lead to even
more fruitful discoveries as the genetic variants often have much

larger effect sizes on cellular phenotypes (Battle et al., 2015).
Mining the biomedical data representing different biological
processes at different layers is becoming feasible as these data
have been well organized recently, including the GTEx database
(Lonsdale et al., 2013), a cross-platform collection of human gene
expression data (Zhu et al., 2015a), a tissue-based human protein
database (Uhlén et al., 2015) and an atlas of genetic influences
on human blood metabolites (Shin et al., 2014). The potential
impact of PE at different layers can be amplified as the costs of
cellular trait measurements continue to drop with the advent of
new technologies.

5. Conclusion

The advent of big data has revolutionized biomedical research.
We are able to comprehensively characterize the health condition
of a human subject with quantitative measurements generated
at both cellular and organismal levels. From these data, we may
find direct or indirect evidence to resolve long-standing problems
and motivate advanced scientific hypotheses. Characterization of
PE based on integration of various data types is such an exciting
process, while the risk of identification of spurious PE may be
largely increased due to the enlarged search space. We believe
that statistically rigorous methods which effectively account for
uncertainties in data integration will continue to play a critical
role in improving statistical power and decreasing false positive
findings.
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