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Predicted open reading frames (ORFs) that lack detectable homology to known proteins

are termed ORFans. Despite their prevalence in metagenomes, the extent to which

ORFans encode real proteins, the degree to which they can be annotated, and their

functional contributions, remain unclear. To gain insights into these questions, we applied

sensitive remote-homology detection methods to functionally analyze ORFans from soil,

marine, and human gut metagenome collections. ORFans were identified, clustered

into sequence families, and annotated through profile-profile comparison to proteins of

known structure. We found that a considerable number of metagenomic ORFans (73,896

of 484,121, 15.3%) exhibit significant remote homology to structurally characterized

proteins, providing a means for ORFan functional profiling. The extent of detected remote

homology far exceeds that obtained for artificial protein families (1.4%). As expected for

real genes, the predicted functions of ORFans are significantly similar to the functions

of their gene neighbors (p < 0.001). Compared to the functional profiles predicted

through standard homology searches, ORFans show biologically intriguing differences.

Many ORFan-enriched functions are virus-related and tend to reflect biological processes

associated with extreme sequence diversity. Each environment also possesses a large

number of unique ORFan families and functions, including some known to play important

community roles such as gut microbial polysaccharide digestion. Lastly, ORFans are a

valuable resource for finding novel enzymes of interest, as we demonstrate through the

identification of hundreds of novel ORFan metalloproteases that all possess a signature

catalytic motif despite a general lack of similarity to known proteins. Our ORFan functional

predictions are a valuable resource for discovering novel protein families and exploring

the boundaries of protein sequence space. All remote homology predictions are available

at http://doxey.uwaterloo.ca/ORFans.

Keywords: metagenome,metaproteome, ORFan, orphan, remote homology, profile-profile comparison, functional

annotation, comparative metagenomics

Introduction

Metagenomes are a rich resource of novel genes (Godzik, 2011) from which the metabolic and
physiological activities of entire microbial communities can potentially be inferred (Handelsman,
2004). This difficult task relies largely on the accuracy of current methods for predicting
function from sequence, which is challenging even for single microbial genomes (Wooley et al.,
2010).

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://dx.doi.org/10.3389/fgene.2015.00234
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:acdoxey@uwaterloo.ca
http://dx.doi.org/10.3389/fgene.2015.00234
http://journal.frontiersin.org/article/10.3389/fgene.2015.00234/abstract
http://loop.frontiersin.org/people/226544/overview
http://loop.frontiersin.org/people/218185/overview
http://loop.frontiersin.org/people/218094/overview
http://doxey.uwaterloo.ca/ORFans


Lobb et al. Functions of metagenomic ORFans

Standard homology-based annotation methods have become
the most common strategy for metagenome annotation (Prakash
and Taylor, 2012). Here, metagenome-derived open reading
frames (ORFs) are searched using BLAST (Altschul et al.,
1997), or related tools, against reference protein databases such
as the NCBI non-redundant (nr) and Swissprot databases.
Alternatively, reads can be scanned against databases of protein
domain models such as the Conserved Domain Database (CDD)
(Marchler-Bauer et al., 2014) and Pfam (Finn et al., 2014), where
each protein family is represented by either position-specific
scoring matrices (PSSMs) or hidden Markov models (HMMs).
If functionally annotated hits in the databases are detected,
functions are inherited from these hits.

Both frustrating and intriguing are the many predicted
genes within metagenomes (and genomes) that cannot be
readily annotated using standard homology-based methods.
The most challenging among these genes are the ORFans,
genes that lack detectable homologs in the database (Siew
and Fischer, 2003). Initially identified in some of the first
genomes (Dujon, 1996), ORFans have become a universal feature
of newly sequenced genomes and metagenomes, despite an
exponential increase in sequencing (Tautz and Domazet-Lošo,
2011). Estimates of ORFan content in metagenomes vary from
25 to 85% of total genes (Prakash and Taylor, 2012). This
proportion depends on numerous factors including read length,
metagenome complexity, species novelty, homology detection
methods and significance thresholds. In addition, a large fraction
of metagenome-derived sequences come from microorganisms
that resist current cultivation techniques (Gill et al., 2006),
which makes them dissimilar from database sequences and hard
to annotate. Prakash and Taylor (2012) showed that, of the
genes in the human gut microbiome, 75% could be annotated,
vs. only 50–55% of genes in “complex metagenomes” from
soil and ocean environments. Another recent study of a large
prairie soil metagenome reported that only 30–38% of predicted
proteins had detectable similarity (≥60% identity) to proteins in
NCBI’s M5nr database (Howe et al., 2014), and this has dropped
as low as 15% in some extreme cases (e.g., the cow rumen
virome).

Several types of alternative, non-homology-based methods
may be applicable to annotation of ORFan proteins.
Genomic context methods, for instance, predict functions
for uncharacterized ORFs based on functions of neighboring
genes since gene neighborhoods in prokaryotes tend to possess
a significant degree of functional consistency (Dandekar
et al., 1998; Marcotte et al., 1999; Galperin and Koonin, 2000;
Salgado et al., 2000; Yanai et al., 2002; Korbel et al., 2004).
These “guilt by association” methods have previously been
applied to metagenome annotation (Harrington et al., 2007;
Vey and Moreno-Hagelsieb, 2010) but depend on assembled
contigs, which can be difficult to obtain. Another popular class
of prediction methods includes remote-homology detection
approaches such as HMM profile-profile comparison. These
methods are based on the principle that distant homologies may
be apparent by comparison of conservation profiles between
families, even if they are not apparent between single sequences
(Sadreyev et al., 2003; Sánchez-Flores et al., 2008). The popular

profile HMM-HMM comparison method, HHpred/HHsearch
(Söding, 2005), is among the most sensitive methods for
homology detection and is consistently ranked among the top
automatic structure prediction methods in recent CASP (Critical
Assessment of protein Structure Prediction) competitions.

To our knowledge, no studies have applied remote homology
to large-scale annotation of metagenomic ORFans, perhaps
due to the considerable computation required. Thus, the
functions and origins of ORFans, which can be abundant in
environmental sequences, are unclear. Here, we identified and
analyzed ORFans from three large metagenome collections: the
Great Prairie Soil Metagenome Grand Challenge (GPC), the
Global Ocean Sampling (GOS), and the Human GutMicrobiome
(HG), encompassing aquatic, host-associated, and terrestrial
environments. Through an analysis of 35,307,707 total coding
sequences (CDSs), we identified thousands of novel ORFan
protein families, and inferred function for ∼15% through
remote homology to proteins of known structure. The structural
predictions provide insights into the functions and evolutionary
origins of ORFan proteins.

Materials and Methods

Datasets and Identification of Metagenomic
ORFans
We retrieved metagenomic sequence data from three large
metagenome collections: GPC [(Howe et al., 2014); MGRAST
ids 4504797.3 and 4504798.3], GOS [(Rusch et al., 2007);
http://camera.crbs.ucsd.edu/projects/details.php?id=CAM_PRO
J_GOS], and HG [(Qin et al., 2010); http://www.bork.embl.de/~
arumugam/Qin_et_al_2010/].

For CDS prediction, FragGeneScan version 1.18 (Rho et al.,
2010) was applied directly to the unassembled reads from
the GOS dataset. Due to the short read lengths from the
GPC and HG datasets, we applied FragGeneScan to pre-
assembled metagenomes from Howe et al. (2014) and Qin
et al. (2010), respectively. We used segmasker from the BLAST
version 2.2.28+ package to identify repetitive regions in putative
ORFs, and CDSs containing over 40% repetitive sequence were
discarded. To annotate CDSs with domain family homologs,
hmmsearch from HMMER version 3.1b1 was used to scan
the Pfam database (Pfam-A downloaded 15 May 2014), and
remaining CDSs were scanned against the Conserved Domain
Database (CDD) (20 Feb. 2014 release fromNCBI) using rpsblast
from the BLAST version 2.2.28+ package. An E-value cut-off
of 10−3 was used for both methods. CDSs without identified
domain family homologs, were clustered with CD-HIT version
4.6.1 using a 60% identity threshold. Spurious CDS predictions
were identified as singleton clusters (those containing one
sequence), clusters whose representative (longest) sequence was
shorter than 100 amino acids, and clusters comprised entirely
of sequences with 99% or greater identity to the representative
sequence. These spurious clusters were excluded from further
analysis. Representative sequences of each remaining cluster
were used for blastp database searches (downloaded 15 May
2014 from NCBI). Clusters with either no similarity to the nr

Frontiers in Genetics | www.frontiersin.org 2 July 2015 | Volume 6 | Article 234

http://camera.crbs.ucsd.edu/projects/details.php?id=CAM_PROJ_GOS
http://camera.crbs.ucsd.edu/projects/details.php?id=CAM_PROJ_GOS
http://www.bork.embl.de/~arumugam/Qin_et_al_2010/
http://www.bork.embl.de/~arumugam/Qin_et_al_2010/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Lobb et al. Functions of metagenomic ORFans

database or with a top nr blast match exceeding the cutoff of
E = 10−3 (used previously by Kuchibhatla et al., 2014) were
defined as ORFans. Multiple sequence alignments of the non-
spurious clusters were generated with MUSCLE version 3.8.31
(www.drive5.com/muscle), and these were further enlarged with
sequences from the nr20 database (12 Aug. 2011 release from
HH-suite) using HHblits from the HH-suite version 2.0.16
package with default settings.

Remote Homology Detection and FDR Estimation
Profile-profile comparisons were performed using HHsearch
from the HH-suite version 2.0.16 package with the PDB70 HMM
database (17 May 2014 release from HH-suite) and default
settings. For each prediction, an E-value and probability score
were collected. To determine appropriate thresholds, we repeated
remote homolog detection using random, reshuffled alignments
as described below. Based on the results, a probability threshold
of 80% was chosen with the E-value set at 1, equivalent to a∼9%
false discovery rate (see Results). To obtain an FDR estimate,
the pipeline was repeated using shuffled alignments which
represent artificial sequence families that maintain compositional
characteristics and column-specific conservation (Margulies and
Birney, 2008; Guturu et al., 2013). One thousand ORFan
clusters obtained by CD-HIT were randomly selected from
each metagenome, and the columns of each cluster’s multiple
sequence alignment were shuffled. The shuffled alignments were
run through the HHblits and HHsearch algorithms as described
previously using the non-shuffled clusters.

Genomic Context Analysis
The CDS locations on contigs (for GPC and HG) and reads
(for GOS) were used to define genomic neighbors and perform
genomic context analysis. The Pfam-GO mapping from InterPro
(Hunter et al., 2009) was used to assign GO terms to ORFs.
For Pfam domain homologs, the GO terms of all significant
(E < 10−3) domain matches were included in its functional
annotation. For the non-spurious CD-HIT clusters (ORFans and
clusters with homologs from the NCBI nr database), a GO term
collection was assigned to each cluster based on the top three
significant remote homologs found by HHsearch, using the PDB-
GO annotation table obtained from the EBI (http://geneontology.
org/gene-associations/gene_association.goa_pdb.gz). GO terms
were assigned to each CDS within the CD-HIT cluster.

For each metagenome, we then compared the list of GO
terms for an ORFan against the list of GO terms associated with
its directly neighboring CDSs (one on either side, in the same
orientation and within 1 kb) on the same contig, and calculated
the number of shared terms (S) between both sets. This value was
then summed for all ORFans within a metagenome (m) to obtain
an overall statistic (Sm) reflecting the similarity between ORFans
and their annotatable genomic neighbors. To estimate statistical
significance, we compared Sm to a null distribution computed
by swapping the ORFans amongst their original locations. The
count was then calculated as above, shuffling ORFans only while
maintaining the positions of all other CDSs. Shuffling followed
by the shared GO terms summation was performed 1000
times.

Analysis of Overrepresented Functions
To determine the frequency of GO terms in each metagenome,
10,000CDSs with Pfam domain hits were randomly selected
from each metagenome and run through HHblits with only one
iteration and a limit of 30 sequences in the output alignment
followed by HHsearch with default settings (using the databases
described previously). The functional information for ORFan
sequence clusters and the subset of Pfam domain hits was
gathered using themost confident GO term-associated HHsearch
hit (using the PDB-GO map and only assessing significant
HHsearch hits). Similar to previous studies (VanDriel et al., 2006;
Vazin et al., 2009), analyses were restricted to sixth level GO
terms in the biological process or molecular function trees since
this level was more informative (greater biological specificity)
than other trimmed ontologies such as GO Slim terms. GO
term levels were calculated using the “is a” relationship, with the
starting terms (biological process and molecular function) being
considered level one. Only the longest path from the root terms
was considered. The frequency of each GO term in the Pfam
and ORFan subsets and PDB70 were calculated, with zero counts
converted to a pseudocount of 1 to avoid division errors. The fold
change of each GO term in the ORFan sequence clusters over
the Pfam domain hits subset was calculated and compared across
metagenomes. P-values were calculated in R using the binomial
test with false discovery rate adjustment (p.adjust function) as
described elsewhere (Doxey et al., 2010).

Analysis of Environment-Specific ORFan Families
For each metagenome, we computed the proportions of the total
number of ORFans matching a PDB entry as the top remote
homolog. Three-dimensional scatterplot were generated with
each axes representing this quantity. The binomial test was used
to compute p-values with background probabilities based on the
total counts observed in the other two metagenomes. These p-
values were then corrected using the Bonferroni adjustment. The
same procedure was repeated based on proportions of ORFans
from each metagenome possessing GO terms (1769 total terms).

ORFan Metalloprotease Discovery
ORFan clusters were searched for those that: (1) possessed a top
remote homolog match to a PDB entry possessing “protease”
or “peptidase” terms in any functional description category;
(2) had a representative sequence with at least one match
to a HExxH motif. ORFan CD-HIT clusters meeting both
conditions were considered putative ORFan metalloproteases or
metallopeptidases.

Results

Identification of ORFan Sequences in Three
Large Metagenomes
With the goal of characterizing ORFans from diverse
metagenomes, we retrieved and analyzed three large, publicly
available datasets: the Great Prairie Soil Metagenome Grand
Challenge (GPC), Global Ocean Sampling (GOS), and Human
Gut Microbiome (HG). We selected metagenomes from
diverse biomes (terrestrial, marine, host-associated) since
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FIGURE 1 | Pipeline for detection and functional annotation of

metagenomic ORFan proteins. Protein-coding sequences (CDSs)

were predicted from assembled metagenomic contigs, and searched

against conserved domain databases. CDSs that could not be

annotated by domain homology were further clustered, and

representatives were BLASTed against the NCBI nr database.

Remaining CDS clusters lacking detected homologs were considered

ORFans, and these were subjected to remote homology detection

using HHblits and HHsearch, which were used to perform

profile-profile searches against the Protein Data Bank.

observed differences in ORFan content and functions may be
biologically relevant while commonalities may indicate general
trends.

First, all genes within these metagenomes were predicted
regardless of whether they could be verified through homology
to known sequences. This initial set included a staggering
number (35,307,707) of CDSs, equivalent to about 20% of the
entries in the current NCBI GenBank database. Each CDS
was processed using the computational pipeline described in
Figure 1 (seeTable 1 for statistics at each step), with the intention
of separating the ORFans from the homology-annotatable
sequences. Potential ORFans were identified as CDSs whose
products lacked detectable homology to known protein domain
families (Pfam and CDD) or proteins in the NCBI database

(see Materials and Methods). Since these potential ORFans likely
contain a mixture of real ORFan proteins and false positives
(Gilbert et al., 2008), additional steps were required to remove
spurious ORFs. We therefore clustered the CDSs and removed
singletons (Siew et al., 2004; Gilbert et al., 2008), clusters with low
sequence variation, and clusters composed exclusively of short
fragments (see Materials and Methods). This left 85,422 (GPC),
251,857 (GOS), and 146,842 (HG) putative ORFan proteins from
each metagenome (Table 1). By definition each ORFan within
this final set is an apparent gene coding for a protein, is a member
of a sequence cluster with at least one representative of 100 amino
acids or longer, and yet has no detectable homology to any known
protein or conserved domain family. All following analyses were
performed on this set of ORFans.
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TABLE 1 | Number of CDSs and ORFans at key stages of metagenomic

ORFan identification.

GPC GOS HG

Predicted CDSs 5,606,711 17,204,095 12,496,901

CDSs removed containing conserved

domain matches (Pfam + CDD)

2,480,274 4,542,071 4,674,912

Spurious (singleton, short and

repetitive) CDSs removed

2,758,146 11,458,304 6,603,567

CDSs removed with BLAST matches to

nr database

282,869 951,863 1,071,580

Candidate functional ORFans 85,422 251,857 146,842

ORFan CD-HIT clusters 33,013 73,428 32,078

Annotated (HHsuite) ORFan CDSs 21,358 38,900 13,638

Annotated (HHsuite) ORFan CD-HIT

clusters

7848 10,973 3119

ORFans Are Shorter but Compositionally Similar
to Real Proteins from their Environments
Next we examined whether the detected ORFans share
compositional characteristics with homology-annotatable CDSs
(those with PFAM or CDD domain matches) from their
environments. If so, this would suggest that predicted ORFans
are under similar evolutionary pressures as real proteins and
indicate potential functionality. We therefore investigated the
distributions of CDS length and GC content (Table 2) for
each CDS category. Biases have been observed previously
for ORFans (Yin and Fischer, 2006; Cortez et al., 2009;
Yomtovian et al., 2010). Consistent with previous studies,
ORFans tend to be shorter in all datasets (Table 2), and the
relative abundance of ORFans also decreases with increasing
read length (Figure S1). Overall, the GC content distributions of
the homology-annotatable CDSs and ORFans are highly similar
within but vary considerably between metagenomes (Figure S2).
Although the length distributions are also affected by sequencing
method, this is not the case for GC content, suggesting that the
predicted ORFans exhibit characteristics of the real (homology-
annotatable) CDSs from their environments.

Many ORFans Exhibit Remote Homology to
Proteins of Known Structure
Although ORFans, by definition, do not possess detectable
homology to existing protein families using standard database
search techniques like BLAST or HMMER, we were interested
whether remote homology detection techniques could prove
effective. We applied profile-profile, remote homology detection
using HHblits/HHsearch (Söding, 2005; Remmert et al., 2011),
which compares the conservation profile derived from the
multiple sequence alignment (MSA) of the ORFans to those
of known protein families. These methods can often identify
remote relationships between protein families, even if individual
members do not share detectable homology. To facilitate remote
homology detection, we first generated initial MSAs for each
ORFan cluster, and detected remote homologs in the Protein
Data Bank using HHblits/HHsearch. Since each ORFan cluster

TABLE 2 | Average G + C content and length of domain-annotated vs.

ORFan sequences from three metagenomes.

Average G + C

content (%)

Average CDS length (#

nucleotides, nt) excluding

sequences under 300 nt

GPC Pfam and CDD hits 56.8 411.4

GPC ORFans 54.8 407.4

GOS Pfam and CDD hits 39.2 731.7

GOS ORFans 39.4 548.7

HG Pfam and CDD hits 46.6 781.7

HG ORFans 43.0 525.2

contained multiple non-redundant sequences, a non-trivial MSA
and profile could be generated in each case. Thus, not only was
the sequence clustering step useful in removing spurious ORFs,
but it was also essential for generating the conservation profiles
used in profile-profile comparison.

A considerable number of ORFans (73,896 sequences, 15.3%;
21,940 clusters, 15.8%) exhibited significant remote homology to
proteins of known structure, with some metagenomes producing
a greater fraction of annotated ORFans than others: 25.0%
(GPC), 15.4% (GOS) and 9.3% (HG) of ORFan clusters (Table 1).
This represents a new dataset of annotated, extremely divergent
metagenome-derived proteins and provides a means to profile
ORFan functions in general.

Despite thorough benchmarking of HHblits/HHsearch
(Remmert et al., 2011), there remains a possibility that the
predictions are false positives due to factors associated with
our pipeline and dataset. Therefore, we empirically measured
a false discovery rate by repeating the entire procedure on an
artificial dataset composed of ORFan clusters with shuffled
sequences (Figure 2A). Specifically, 3000 random ORFan
clusters were selected (1000 from each metagenome), and
their alignment columns were shuffled, thereby preserving
conservation information and compositional characteristics,
while destroying potential similarity to real proteins. Any
detectable homology between these artificial protein families
and the PDB database indicates a false positive prediction. The
random dataset generally produced low HHsearch probability
scores, whereas the real metagenomic ORFans resulted in a
large abundance of high-scoring predictions (Figure 2A). At a
probability score of 80% or higher, the HHsearch method was
able to annotate 15.8% of the real ORFan clusters and only 1.4%
of false sequence clusters, which is indicative of a low (∼9%)
false discovery rate. This result provides support for the quality
of the remote homology predictions, and suggests that many
ORFans (15.3%) are divergent homologs of existing structural
families.

ORFan Functions Are Consistent with those of
their Gene Neighborhood
Given that a sizeable portion of metagenomic ORFans exhibit
remote homology to protein structures, a key follow-up question
concerns what functional information can be gained from these
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FIGURE 2 | Estimated false discovery rate of ORFan remote

homology detection and functional prediction. (A) Distributions of

HHsearch probability scores for ORFans from three metagenomes, and

shuffled sequences, searched against a PDB-derived HMM library. There is

an abundance of high-scoring predictions (i.e., above 80% probability) for

ORFan proteins compared to the expected (null) distribution. This separation

becomes even greater when an HHsearch E-value threshold of 1 is applied

(see inset). (B) The number of shared GO terms between functionally

annotated ORFans (probability scores >80%) and their metagenomic

neighbors (see Materials and Methods) is shown for three metagenomes.

The null distributions, as estimated by randomly shuffling ORFan

identities/positions, are shown along with the z-scores relative to these

distributions. The mean values for the random distributions are: GOS (486.3),

GPC (57.8), and HG (494.4).

detected relationships. For functional annotation, we assigned
the same GO terms as those associated with their identified
remote PDB homologs. To assess whether the predicted ORFan
functions are accurate and thus biologically meaningful, we
measured their functional consistency with neighboring genes,
a well established phenomenon in prokaryotes (Dandekar et al.,
1998; Marcotte et al., 1999; Galperin and Koonin, 2000; Salgado
et al., 2000; Yanai et al., 2002; Korbel et al., 2004). We reasoned
that if predicted ORFan functions are accurate, they should
show significantly elevated functional consistency compared to
a random distribution (see Materials and Methods). Functional
consistency was calculated as the number of shared GO terms
between an ORFan and its metagenomic neighbors, defined as
one gene on either side of an ORFan, in the same orientation
and within a 1 kb boundary. As a statistical test, we computed
the total number of shared GO terms for all annotated ORFans,
and compared this to an estimated random distribution in
which the ORFans were shuffled amongst their original locations.
ORFans from all three metagenomes exhibited extremely high,
statistically significant levels of functional consistency with their
neighbors (Figure 2B). This effect was abolished completely
when the ORFans randomly swap their positions. Overall, the
significant functional congruence between ORFans and their
gene neighbors suggests that the predicted functions are of
high quality and thus potentially meaningful for biological
interpretation.

Enriched Functions among ORFans
An important next question concerns the predicted ORFan
functions themselves, how they compare to the homology-based
functional profile inferred for the remaining metagenome, and
what insights they may provide into hidden functions of their
respective environments. To examine ORFan functions as a
whole for each metagenome, we computed ORFan functional
profiles as collections of GO terms and their frequencies, as based
on previous studies (Tringe et al., 2005). We also calculated
separate functional profiles for 10,000 Pfam-annotated CDSs of
eachmetagenome as a reference, to whichORFan functions could
be compared.

These comparisons reveal that ORFans possess a distinct
functional profile from that of homology-annotatable proteins.
This is evident from a clustering analysis in which the ORFan
functional profiles from the three metagenomes group together
(Figure S3). However, this is also somewhat expected since
ORFans from different metagenomes will be inherently similar
by virtue of lacking conserved functions present in the homology-
annotated subset.

Consistent with the unique functional profile of ORFans,
we identified numerous functions that were significantly
overrepresented within the ORFans of each metagenome
(Table 3, Table S1). These ORFan-enriched functions include
terms relating to viral processes, carbohydrate metabolism, as
well as several functions with particular relevance to their
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respective metagenomes (explored in following sections). We
ensured that the reported functions are also significantly enriched
(all with adjusted p < 0.05) compared to the reference database
(PDB) and are thus not simply due to random matches to PDB
entries.

The detected enrichment of viral functions is consistent
with previous suggestions that a large proportion of ORFans
may be bacteriophage derived (Daubin and Ochman, 2004).
Since viruses undergo rapid rates of evolution and are relatively
undersampled in genomic databases, their proteins may also
appear significantly divergent from database sequences. Our
results provide strong support for this hypothesis since numerous
virus-related functional terms are significantly enriched (adjusted
p < 0.05) among the annotated ORFans (Table 3, Table S1). For
example, the term “viral release from host cell” was among top
enrichedORFan functions in the GOS (p = 1.1×10−16) andGPC
metagenomes (p = 1.2×10−10). Other enriched functional terms
associated with viruses include “RNA ligase” (Doherty et al.,
1996), “lysozyme” (Fastrez, 1996), and “phospholipase” (Zádori
et al., 2001) (Table 3, Table S1).

Although enriched, we estimate that viral sequences may be a
relatively small proportion of ORFans overall, similar to previous
reports (Yin and Fischer, 2006). That is, only 4.1% (GPC),
6.3% (GOS) and 5.6% (HG) of ORFans matched viral protein
structures (Table S2), while the majority matched structures of
bacterial origin. Interestingly, however, the proportions of viral
PDB matches are roughly four-fold higher than that observed
for the homology-annotatable proteins which ranges from 1.4 to
2.4%, which provides additional support for an enrichment of
viral functions among metagenomic ORFans.

Another common function overrepresented in the ORFans
of all three metagenomes relates to carbohydrate degradation
or transport. This finding is consistent with the considerable
sequence and structural diversity of carbohydrate-active enzymes
(Cantarel et al., 2009). Enriched carbohydrate-related functions
among ORFans include “polysaccharide catabolic process” in
all three metagenomes (all with p < 1 × 10−5), “cellulase
activity” (p = 6.1 × 10−7) in the GPC metagenome and
“phosphatidylinositol alpha-mannosyltransferase activity” in the
GOS metagenome (p = 4.9× 10−25) (Table 3, Table S1).

Ultimately, both the clustering and enrichment analyses
demonstrate that ORFan functions do not merely mirror the
functions expected from homology-annotatable proteins. Thus,
the efforts of remote homology detection have uncovered a
highly divergent sequence space, including viral proteins and
carbohydrate-active enzymes, which was not detectable in the
annotatable subset of each metagenome.

Environment-Specific ORFan Families and
Functions
Potentially more interesting than the functions generally
enriched among ORFans are the specific ORFan families and
functions unique to each environment. Indeed, it has been
hypothesized that ORFans may be unique in their potential to
encode ecologically important functions (Wilson et al., 2005).
One explanation for this is that environment-specific functions
may be encoded in part by environment-specific genes that differ
from characterized genes in the database.

To explore this in greater detail, we visualized metagenome-
specific ORFan functions using 3D scatterplots (Figure 3),

TABLE 3 | Top five significantly enriched GO terms among ORFans in each metagenome relative to non-ORFans and the PDB.

GO term ORFan clusters

(individual

sequences)

Proportion of

ORFan

clusters with

GO term

Proportion of

Pfam-annotated

subset with GO

term

Fold p-value against

Pfam-annotated

subset

(adjusted)

p-value

against

PDB70

(adjusted)

GPC

GDP-dissociation inhibitor activity 66 (157) 1.1× 10−2 6.1× 10−4 18.1 7.5× 10−55 1.6× 10−90

Dibenzothiophene catabolic process 35 (110) 5.9× 10−3 4.9× 10−4 12 1.7× 10−22 3.7× 10−55

Mitochondrial fission 28 (79) 4.7× 10−3 3.7× 10−4 12.8 2.2× 10−18 7.1× 10−40

Sequence-specific DNA binding 162 (415) 2.7× 10−2 1.3× 10−2 2.1 6.4× 10−14 2.1× 10−49

Viral release from host cell 14 (39) 2.3× 10−3 1.2× 10−4 19.2 1.2× 10−10 5.1× 10−2

GOS

Polysaccharide catabolic process 62 (210) 7.2× 10−3 4.5× 10−4 16.3 1.2× 10−48 8.0× 10−6

L-ascorbic acid binding 89 (306) 1.0× 10−2 1.8× 10−3 5.8 4.7× 10−35 1.0× 10−74

ADP-heptose-lipopolysaccharide heptosyltransferase activity 35 (136) 4.1× 10−3 2.2× 10−4 18.4 1.6× 10−28 4.0× 10−88

Phosphatidylinositol alpha-mannosyltransferase activity 26 (104) 3.0× 10−3 1.1× 10−4 27.3 4.9× 10−25 5.6× 10−42

Endonuclease activity 157 (576) 1.8× 10−2 6.7× 10−3 2.7 1.6× 10−24 1.2× 10−11

HG

Sequence-specific DNA binding 149 (617) 6.5× 10−2 2.9× 10−2 2.2 3.2× 10−15 1.6× 10−94

Polysaccharide catabolic process 49 (139) 2.1× 10−2 4.6× 10−3 4.6 1.3× 10−14 1.2× 10−21

Regulation of sporulation resulting in formation of a cellular spore 11 (74) 4.8× 10−3 5.6× 10−4 8.5 2.3× 10−4 4.8× 10−20

Ribonuclease activity 18 (88) 7.8× 10−3 2.0× 10−3 3.9 3.7× 10−3 1.0× 10−3

Only four significantly enriched terms were identified for the HG metagenome.
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similar to previous three-way comparisons of metagenome
functional profiles (Tringe et al., 2005). In these plots, ORFan
functions that are of similar abundance in all three metagenomes
will appear close to the origin, whereas ORFan functions that
are relatively abundant in one metagenome will project outwards
along that metagenome’s axis. In addition to GO terms, we also
performed the same analysis at the level of ORFan families, as
represented by the top identified remote homolog in the PDB.

This three-way comparison reveals several broad functions
(Figure 3, right) and a much larger number of families (Figure 3,
left) that are significantly enriched in the ORFans from one
metagenome. Below we highlight some interesting examples.

HG-specific ORFans

Several of the most abundant HG-specific ORFan families have
predicted roles involved in gut metabolism and host interactions.
These include HG-specific ORFan homologs of thiaminase, an
enzyme that breaks down vitamin B1, the virulence factor
internalin, and the collagen-binding domain which could play
roles in gut adherence or invasion (Figure 3).

Most intriguing are the ORFans with predicted functions in
“polysaccharide catabolic process,” a function that is significantly
enriched (p = 1.3 × 10−14, Table 3) in the HG metagenome
(Figure 3). This is of great interest in the context of the human
gut microbiome because breakdown of indigestible dietary
polysaccharides is one of the fundamental roles of intestinal
bacteria (Flint et al., 2008). Among the most abundant HG-
specific ORFan families is one with detected remote homology
to PDB ID 3zmr, a crystal structure of xyloglucanase from the
common human gut organism, Bacteroidetes (Larsbrink et al.,
2014). This enzyme functions in the gut microbial digestion of
the plant-cell wall derived polysaccharide, xyloglucan (XyG), and
was only recently characterized as the first xyloglucanase enzyme
in the gut microbial community (Larsbrink et al., 2014). The

HG-specific ORFans identified here exhibit remote homology
to the Bacteriodetes-Associated Carbohydrate-binding Often N-
terminal (BACON) domain within these enzymes, suggesting a
function in gut carbohydrate metabolism.

Another HG-specific ORFan family includes 74 ORFan
proteins from 11 sequence clusters in the HG metagenome
with a predicted function in regulation of sporulation. This
was the third most enriched function (by fold) among HG
ORFans (p = 2.3 × 10−4, Table 3) and yet was not enriched
in the other two metagenomes as illustrated in Figure 3. These
ORFans are primarily distant homologs of the DUF199/WHIA
transcriptional regulator or the sporulation response regulator,
SPO0A. While sporulation is a general function also observed
elsewhere, numerous studies have demonstrated its particular
enrichment within the human gut microbiome. This has been
attributed to the relative abundance of gut Firmicutes species,
which include many spore-forming members (Turnbaugh et al.,
2007). However, specific genes and sporulation pathways may
be unique to the human gut microbiome. For instance, a
recent analysis of Lachnospiraceae genomes revealed that key
sporulation-related genes are exclusive to human gut associated
Lachnospiraceae and absent elsewhere (Meehan and Beiko, 2014).
It is therefore interesting that both ORFans and homology-
annotatable proteins from the gut microbiome show this
functional pattern. This data further implicates sporulation
as a particularly important function within the human gut
community, and provides motivation for further exploration of
divergent gut sporulation proteins.

GOS-specific ORFans

Several abundant GOS-specific ORFan families and functions are
indicated in Figure 3. Enriched functions include antibiotic
biosynthesis and L-ascorbic acid (vitamin C) binding.
Interestingly, the most abundant GOS-specific ORFan families

FIGURE 3 | Metagenome-specific ORFan families and functions.

Shown are projections of three-dimensional scatterplots in which each axis

indicates the proportion of ORFans from a specific metagenome with a

specific annotation (left panel—families; right panel—functions). ORFan

families are defined based on their top remote homology match in the PDB

database, and functions are defined by GO terms as described in the

Methods. Data points that project uniquely along one axis therefore indicate

metagenome-specific ORFan families or functions, while those close to the

origin indicate similar proportions among all three metagenomes. Cases

described in the text have been labeled.
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show patterns consistent with a marine environment. These
include a family of ORFans with remote homology to a
cyanophage (an abundant marine virus that infects oceanic
cyanobacteria) protein, and another family with remote
homology to PDB ID 2rg4, an uncharacterized protein from the
marine bacterium, Oceanicola granulosus. The identification of
GOS-specific ORFans matching viral structures (see Figure 3

for another example, bacteriophage gp15) is consistent with
Yooseph et al. (2007) who reported a viral origin for a significant
number of divergent GOS sequences.

GPC-specific ORFans

One of the most interesting GPC-specific ORFan families has
remote homology to dibenzothiophene (DBT) desulfurization
enzyme B (PDB ID 2de3_A). This is also a significantly enriched
ORFan function compared to non-ORFans from the same
metagenome (p = 1.7 × 10−22, Table 3). DBT desulfurization
genes have been identified in petroleum-polluted soils where they
are implicated in DBT degradation, and are of interest to the oil
industry to reduce the levels of sulfur in fuel (Duarte et al., 2001).

Targeted Discovery of ORFan Metalloproteases
Regardless of whether a particular function is overrepresented
among ORFans and/or metagenome-specific, its detection within
ORFans may be valuable for its own sake to expand its knowledge
and sequence space. Indeed, metagenomes are a useful resource
for the discovery of novel families of biotechnologically and
scientifically important enzymes such as glycosyl hydrolases (Li
et al., 2009) and proteases (Waschkowitz et al., 2009).

To explore its potential as a resource for enzyme discovery,
we mined the annotated ORFans for novel metalloproteases.
Metalloproteases are of particular biological (Nagase and
Woessner, 1999; Duarte et al., 2014), evolutionary (Rawlings
and Barrett, 1995; Doxey et al., 2008; Mansfield et al.,
2015) and biotechnological (Adekoya and Sylte, 2009) interest.
“Metallopeptidase activity” was also a significantly enriched
function among ORFans from the GOS metagenome (p = 1.6×
10−20, Table S1). Lastly, we also selected metalloproteases as
a target function because these enzymes possess a convenient
functional motif that provides additional evidence of predicted
activity; namely, a conserved, zinc-binding, catalytic motif
(HExxH). Remarkably, we identified 257 ORFan sequence
clusters possessing both this motif and significant remote
homology to protease or peptidase structures (Table 4). One
example is highlighted in Figure 4, in which a predicted ORFan
family from the HG displays significant remote homology to the
zinc-metalloprotease domain of the anthrax toxin. Although the
overall sequence similarity is quite weak, there are short regions
of motif similarity and numerous residues within the catalytic
site are conserved. The 257 ORFan subfamilies represent a rich
resource of highly divergent metalloproteases that await future
experimental characterization.

Discussion

We developed a pipeline to identify and structurally annotate
ORFans from three large and highly distinct metagenomes.

TABLE 4 | Predicted ORFan clusters with the HExxH motif and remote

homology to metalloprotease structures.

Number of

clusters

Remote homology match (PDB

entry and description)

GPC 96 Total

10 3cqb_A Peptidase M48

8 4jix_A Peptidase M56

8 4in9_A Peptidase M10, Matrixin

GOS 132 Total

24 3cqb_A Peptidase M48

11 4jiu_A DUF45 metallopeptidase

10 4jix_A Peptidase M56

HG 29 Total

5 3dte_A DUF955 peptidase-like domain

3 3b4r_A Peptidase M50

3 2y6d_A Peptidase M10

The top three most abundant clusters by PDB match are listed.

Our results demonstrate that a considerable fraction (15.3%) of
metagenomic ORFans exhibit remote but significant homology
to structurally characterized proteins. This is surprising since
neither BLAST nor profile-based methods were able to annotate
them. These findings are consistent with previous structural
studies that have consistently revealed ORFans to be divergent
members of existing protein families (Godzik, 2011). For
instance, a previous analysis of 248 structures of domains
of unknown function (DUF) families selected from Pfam,
determined that ∼2/3 are divergent members of known protein
families (Jaroszewski et al., 2009). These structural studies,
together with the 15.3% of annotated ORFans presented here,
support a classic duplication-divergence model (Ohno, 1970) in
which ORFan genes might arise when one of two duplicated
genes (paralogs) diverge rapidly to a point where homology
becomes undetectable.

While initially attributed to an inadequate knowledge of
sequence space, pseudogenes or prokaryotic “junk DNA”
(Andersson and Andersson, 2001; Mira et al., 2002), or
incorrectly annotated genes (Schmid and Aquadro, 2001),
there is considerable evidence that many detected ORFans are
functional (Hu et al., 2009). A functional role for many ORFans is
also supported by the many high quality functional annotations
we were able to predict. These annotations are themselves
supported by a low estimated false discovery rate based on
non-homologous shuffled sequences, as well as the significant
level of functional similarity detected between ORFans and their
neighboring genes.

The overrepresented functions among ORFans are also
consistent with previous but debated (Yin and Fischer, 2006)
claims that ORFans tend to be of viral and other mobilomic
origins (Doherty et al., 1996; Cortez et al., 2009). For instance,
one study examined 119 prokaryotic genomes for gene clusters
exhibiting atypical sequence composition and found that over
39% of ORFans were contained within these clusters, strongly
suggesting that integrative elements are a major evolutionary
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FIGURE 4 | One example of 257 predicted metalloprotease

ORFan sequence clusters. The example shown is a predicted

metalloprotease ORFan from the HG metagenome with similarity to

the protease domain of the anthrax toxin. The catalytic

zinc-metalloprotease (HExxH) catalytic motif is conserved between

the query and template, however the remaining sequence similarity

is weak. In general, ORFan metalloproteases were predicted based

on detected remote homology to protein structures of known or

putative proteases and peptidases, as well as presence of the

HExxH motif.

source of ORFans (Cortez et al., 2009). Viral and mobilomic
origins of ORFans make sense from a biological perspective given
the rapid mutation rates observed in viral DNA as well as a
technical one given the relative undersampling of viral sequences
in the database.

Lastly, our results agree with previous suggestions that
ORFans encode environment-specific roles (Kaessmann, 2010;
Tautz and Domazet-Lošo, 2011), specifically through the many
metagenome-specific ORFan families and functions that we
identified (Figure 3). Indeed, ORFans have been implicated in
taxon-specific functions (Wilson et al., 2005) and lineage-specific
developmental or morphological adaptations (Kaessmann, 2010;
Tautz and Domazet-Lošo, 2011; Böttger et al., 2012).

Although annotatable ORFans may represent a relatively
minor component of a metagenome, they differ dramatically
in their functional profiles from typical, homology-annotatable
proteins. Their inclusion within metagenome annotation
pipelines may not significantly alter overall estimates of
metagenome functional profiles, but they are themselves
interesting to pursue and expand our understanding of key
protein functions of interest. Ultimately, ORFan characterization
through remote homology provides a glimpse into the
highly divergent, occasionally viral, and environmentally
important functions they contribute to their respective microbial
communities.

Resource

All ORFan predictions are available at http://doxey.uwaterloo.
ca/ORFans/. The resource contains predicted ORFan protein

sequences in FASTA format for each metagenome, as well
as data files that include predicted ORFan relationships
to PDB structures, functional descriptions, and additional
statistics.

Acknowledgments

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), through
a Discovery Grant to AD. This work was also made possible
through SHARCNET (https://www.sharcnet.ca) supercomputing
resources.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2015.00234

Figure S1 | ORF length (# nucleotides) distributions for

homology-annotatable vs. ORFan sequences from three metagenomes.

The relative abundance of ORFans decreases with increasing read length, which

reflects the tendency for ORFans to be shorter than average proteins.

Figure S2 | GC content distributions for homology-annotatable vs. ORFan

sequences from three metagenomes. Homology-annotatable vs. ORFan

sequences display highly similar GC content distributions within the same

environment, but these distributions differ significantly between

environments.

Figure S3 | Heatmap of GO function terms in the Pfam-annotated

subset and the ORFan subset. Only terms enriched (>1.25 fold) in at

least one dataset are included in the heatmap to avoid display of invariant

functions.
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