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Whole exome sequencing (WES) is increasingly being used for diagnosis without

adequate information on predictive characteristics of reportable variants typically

found on any given individual and correlation with clinical phenotype. In this study,

we performed WES on 89 deceased individuals (mean age at death 74 years,

range 28–93) from the Mayo Clinic Biobank. Significant clinical diagnoses were

abstracted from electronic medical record via chart review. Variants [Single Nucleotide

Variant (SNV) and insertion/deletion] were filtered based on quality (accuracy >99%,

read-depth >20, alternate-allele read-depth >5, minor-allele-frequency <0.1) and

available HGMD/OMIM phenotype information. Variants were defined as Tier-1

(nonsense, splice or frame-shifting) and Tier-2 (missense, predicted-damaging) and

evaluated in 56 ACMG-reportable genes, 57 cancer-predisposition genes, along with

examining overall genotype–phenotype correlations. Following variant filtering, 7046

total variants were identified (∼79/person, 644 Tier-1, 6402 Tier-2), 161 among 56

ACMG-reportable genes (∼1.8/person, 13 Tier-1, 148 Tier-2), and 115 among 57

cancer-predisposition genes (∼1.3/person, 3 Tier-1, 112 Tier-2). The number of variants

across 57 cancer-predisposition genes did not differentiate individuals with/without

invasive cancer history (P > 0.19). Evaluating genotype–phenotype correlations across

the exome, 202(3%) of 7046 filtered variants had some evidence for phenotypic

correlation in medical records, while 3710(53%) variants had no phenotypic correlation.

The phenotype associated with the remaining 44% could not be assessed from a typical

medical record review. These data highlight significant continued challenges in the ability

to extract medically meaningful predictive results from WES.
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Introduction

The decreasing cost and turn-around time of next generation
sequencing (NGS) is accelerating the availability of clinical
personal genomes and exomes (Church, 2005; Altshuler et al.,
2010). However, data on the predictive clinical utility of whole
genome sequencing (WGS) or whole exome sequencing (WES)
are minimal, particularly among unselected patients. Also, the
capacity for interpretation of the functional consequences of the
vast number of variants reported from sequencing data is lagging,
but this has not dampened the optimism and expectation that
personal WGS/WES will benefit numerous individuals. Many
institutions are pursuing this path, anticipating that the evidence
supporting this approach will emerge with experience.

A normal individual has been estimated to have approximately
100 loss-of-function mutations and 50–100 mutations in the
heterozygous state that can cause a recessive Mendelian
disorder as a homozygous genotype (Altshuler et al., 2010;
MacArthur et al., 2012). Currently, few large-scale studies have
comprehensively evaluated the number of clinically interpretable
variants fromWES of an individual and how the genetic variants
fromWES correlate with the medical phenotype of an individual.

The ClinSeq project aims to sequence 1000 subjects in order
to determine genotype-phenotype association of variants and
modes of returning results to individual subjects (Biesecker
et al., 2009; Biesecker, 2012). To date, this group has identified
12 participants (1.2%) with a gene mutation that leads to
markedly increased risk of cancer. In a recent study, a Harvard
Medical School team utilized published recommendations
of the National Heart, Lung, and Blood Institute (NHLBI)
group for the return of results (Cassa et al., 2012). They
evaluated a representative sample of 160 published disease-
associated variants and extrapolated a conservative genome-wide
estimate of 3955–12,579 variants per individual to be reported
back. The NHLBI recommendations include selecting variants
with important health implications where associated risks are
established and substantial, genetic finding is actionable, test
is analytically valid and proper informed consent has been
recorded. In a second study of actionable, pathogenic incidental
findings in 1000 WES participants, 114 genes selected by experts
for medically actionable conditions were screened in more detail
(Dorschner et al., 2013). They reported that 585 of the 1000
participants harbored 239 unique variants identified as disease
causing in Human Gene Mutation Database (HGMD). A study
from Stanford (Dewey et al., 2014) analyzed 12 WGS samples
and highlighted the lack of coverage in some of the 56 American
College of Medical Genetics (ACMG) reportable genes and large
discordance of INDEL from two sequencing technologies. They
curated 90–127 variants per person yielding 2–6 personal disease-
risk findings per individual.

To further understand howWES findingsmight correlate with
medical events during a person’s life, we conducted WES on 89
individuals from the Mayo Clinic Biobank who were deceased
at the time they were selected for sequencing. All 89 had a long
history of medical care and extensive medical records at Mayo
Clinic, had enrolled in the Mayo Clinic Biobank, and were from
the Rochester, Minnesota vicinity. We evaluated the number and

characteristics of reportable variants found from WES on this
cohort and describe how the variants correlated with medical
diagnoses.

Materials and Methods

Sample Selection
The Mayo Clinic Biobank protocol has been approved by
the Mayo Clinic Institutional Review Board. All experiments
conform to regulatory standards. Informed consent was obtained
from all subjects.

The Mayo Clinic Biobank is a research resource that has
enrolled over 50,000 Mayo Clinic patient volunteers since 2009
(Olson et al., 2013). Patients at Mayo Clinic who are 18 years
or older, English speaking, have mental capacity to consent,
and are residents of the USA are eligible for the Mayo Clinic
Biobank. Recruitment was conducted via a mailed invitation
to people scheduled for an appointment in internal medicine,
family medicine, preventive medicine, and the specialty areas
of obstetrics/gynecology and executive health. No threshold for
health or disease was required to enroll in the Biobank. A blood
sample was collected from consented participants providing
DNA from white blood cells, serum, plasma and buffy coat.

The first group (group-1) of 39 Biobank participants
(Table S1) was selected for WES based on three major criteria:
(a) being deceased; (b) long period of electronic medical record
(EMR) information (median 15 and mean 13 years); and (c) later
age of death. Preference was given to those with a death certificate
available at the time of selection to confirm cause of death. Fifty-
three deceased subjects were available at the time of the group-1
selection. Nearly all of the confirmed causes of death were due
to diseases common in the USA (cancer, heart/lung disease, or
trauma) which is consistent with causes of death in the general
population of this age group. Of the 39 participants, 23(59%)
had a diagnosis of cancer. As further funding became available
for the project, the second group (group-2) of 50 Biobank
participants (Table S1) was selected. We attempted to diversify
the medical diagnoses among this group by preferential selection
of individuals without a history of cancer, non-smokers and those
with a younger age of death. Since there were not strict inclusion
or exclusion criteria, 16(32%) of this group of 50 participants had
a diagnosis of cancer. Overall, 39(44%) of the 89 participants had
a diagnosis of cancer.

Patient Phenotype
To gain a high-level view of how genotype might correlate
with phenotype, a medical geneticist abstracted all significant
medical diagnoses from the EMR at Mayo Clinic for each study
participant. Of the 89 participants with a mean EMR of 13 years,
55(61%) had more than 15 years of EMR while the remaining
34 had a median EMR of 12 years (inter-quantile range of 8–14
years). Diagnoses were entered into a free-text field. Participants
on average had 12 diagnoses (range 2–20). Diagnoses made
only as part of the terminal event were not included when they
reflected end-of-life situation. Many, but not all participants had
seen multiple specialists. Undoubtedly this type of chart audit
misses some diagnoses and clinical findings depending on the
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reasons for each medical visit, but given the routine use of
the self-reported past medical illnesses and review of systems
forms, the records were fairly comprehensive. The complete
chart review of diagnoses for individual participants is not
provided in order to avoid recognition in the small community.
A representative set of 200 unique diagnoses is listed in Table S2.

Sample Preparation and DNA Exome Capture
DNA samples from the two groups of Mayo Clinic Biobank
participants were sequenced a year apart, based on resources
becoming available for WES and analysis. The samples in group-
1 (N = 39) were captured using Agilent’s 50 Mb SureSelect
Human All Exon chip, while the group-2 samples (N = 50)
were captured using Agilent’s SureSelect V4 + UTR kit. The
enriched DNA samples from the two groups were sequenced
as one sample per lane on Illumina Genome Analyzer IIx flow
cell and three samples per lane on the Illumina HiSeq 2000,
respectively. Sequencing was performed as 101 bp × 2 paired-
end reads using the TruSeq SBS sequencing kit version 1 and
data collection version 1.1.37.0 followed by base-calling using
Illumina’s RTA version 1.7.45.0.

Bioinformatics Analysis and Annotation
The data was analyzed using an in-house workflow and updated
TREAT annotation package (Asmann et al., 2012). Briefly, the
sequencing reads were quality checked using FASTQC (Andrews,
2012) and custom tools, aligned using Novoalign (Hercus, 2012),
re-aligned and re-calibrated using GATK (McKenna et al., 2010;
DePristo et al., 2011), followed by base-quality and variant-
quality score recalibration and Single Nucleotide Variant (SNV),
Insertion/Deletion (INDEL) calling using GATK (Figure 1). The
variants were then annotated using SeattleSeq (Ng et al., 2009,
2012), SIFT (Ng and Henikoff, 2003), PolyPhen (Adzhubei et al.,
2010), Variant Effect Predictor and internal annotation databases
and reported in VCF and Excel formats. Custom parsing scripts
were used to include HGMD v2012.3 (Stenson et al., 2003)
and Online Mendelian Inheritance in Man (OMIM) Feb-2013
(Online Mendelian Inheritance in Man, 1998) annotation. The
list of data sources used for variant annotation is provided in
Table S3.

Array Genotyping
Group-1 samples was genotyped using either the Illumina
Infinium HumanOmni2.5-8 plus arrays (N = 4) or the Illumina
Infinium HumanOmni5-Quad array (N = 35); group-2 was
genotyped using the Illumina Infinium HumanOmni2.5vv1.1
array (N = 50). Concordance rates comparing WES variant
calls to array genotypes were calculated for each subject. All
WES variant calls with read-depth >10 were included in the
concordance analysis.

Custom Variant Filtering
Because clinical correlation was an eventual goal, a customized
filtering strategy was devised for SNVs. First, only SNVs found in
a gene with a listed HGMD or OMIM phenotype were included.
SNVs in genes not listed in either database were excluded as
those genes have no described clinical consequences (note—this

exclusion will make our list of variants smaller than studies that
record all variations in DNA in all genes). The exact variant was
not required to be reported in OMIM or HGMD. In HGMD,
there are a variety of variants and genes that have had some
functional work conducted but have not been associated with
any disease state and these were removed as uninterpretable.
In addition, reported non-disease traits were also removed
(Table S4).

SNVs were required to have a minimum (PHRED-scale)
mapping quality score of 20 (implying an accuracy >99%), a
minimum depth of 20 mapped reads, and a minimum alternate
(non-reference allele) read-depth of 5 (Figure 1). The variants
with minor allele frequency of ≥10% in the 1000 genomes
(Abecasis et al., 2012) (phase1 release v3 from Nov 2010),
HapMap (Feldman et al., 2013) (v3.3), NHLBI ESP exomes (Fu
et al., 2013), or 200 BGI Danish exomes (Li et al., 2010) were
excluded. For missense variants, a deleterious in-silico prediction
was required from either PolyPhen or SIFT. Finally, only SNVs
that were defined as follows were included: (1) Tier-1 SNV—gain
of stop-codon (nonsense), loss of start-codon or stop-codon, or
splice site variants; and (2) Tier-2 SNV—missense variants (with
in-silico support for pathogenicity).

With respect to INDELs, again only those affecting genes
with a listed phenotype in HGMD or OMIM were selected. A
minimum alternate (indel supporting) read-depth of 5 reads was
required to filter out false positive calls. INDELs were also split
by potential impact as: (1) Tier-1 INDEL, frameshift or splice site;
and (2) Tier-2 INDEL, codon change or codon deletion/insertion.

Gene Inheritance Mode
Prior to evaluating genotype–phenotype correlation, it was
necessary to assign each genetic entry to the inheritance pattern
generally associated with disorders caused by that gene. For each
gene containing a variant included in the Tier-1 or Tier-2 files,
a medical geneticist assigned that gene to one of seven groups:
(1) autosomal dominant (AD); (2) autosomal dominant or
autosomal recessive (AD/AR); (3) autosomal recessive only (AR);
(4) X-linked recessive (XLR); (5) X-linked dominant (XLD);
(6) Y-linked (YL); and (7) Genome Wide Association Study
(GWAS) association only (single nucleotide polymorphism or
SNP). Genes whose only known relevance was for containing a
SNP of interest per GWAS studies were further subdivided by
whether the variant found was an exact match with the associated
GWAS SNP or if the variant was in the same gene but was in fact
different from the SNP with the known association. Assigning
genes to one of these seven groups was a very inexact science
as some classical autosomal dominant disorders contain SNV
with associations in GWAS for entirely different phenotypes. In
general, a good faith effort was made to assign each gene into the
most established category for that gene.

Genotype–Phenotype Correlation Scoring
Once the inheritance pattern and the clinical phenotypes
were added to the Tier-1 and Tier-2 variants, a medical
geneticist manually scored each genetic variant by comparing the
participants’ disease phenotypes with all of the phenotypes that
had been reported in the gene (not restricted to a specific variant).
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FIGURE 1 | Flowchart for data analysis stages starting with sequencing to variant calling, filtering and annotation.

The phenotype listings were obtained from both HGMD and
OMIM and were compared side by side with the patient disease
diagnosis list. A “Yes” score meant the participant phenotype
overlapped in some way with one of the reported phenotypes
for that gene. A “No” meant there was no overlap seen. An “X”
indicated inability to assess for genotype–phenotype correlations,
for example, a monoallelic change in a recessive gene, gene
variant associated with prostate cancer found in a woman; a gene
resulting in abnormal sperm shape, which would not have been
identified on typical medical visits; or variants that reduced risk
for various conditions.

Coverage Analysis of 56 ACMG-reportable and
57 cancer genes
Individual gene level coverage analysis was performed using
BEDTools (Quinlan and Hall, 2010) and custom scripts on the
aligned BAM files to evaluate efficient reporting of variants from
the 56 genes for which clinical reporting has been recommended
by the ACMG (ACMG-reportable genes) (Green et al., 2013).

Cancer-predisposition Genes and Cancer
Phenotypes
The subset of genes known to be linked to cancer in the ACMG-
reportable list of 56 genes (Green et al., 2013) (N = 23), and

those now included on some of the cancer-predisposition NGS
panels offered clinically (Table S5) were collected (N = 34). The
resulting 57 genes were used to select all Tier-1 or Tier-2 SNVs
and INDELs potentially disrupting the function of these genes.
Manual curation was conducted for each variant in this list by
a clinical molecular geneticist and variants were scored using
the scale: 1 = neutral/non-pathogenic, 2 = likely neutral/non-
pathogenic, 3 = variant of uncertain significance; 4 = likely
pathogenic, and 5 = pathogenic. The 89 Biobank participants
were separated into those with cancer (excluding non-melanoma
skin cancers) and those without cancers to compare the genetic
results and variant burden.

Results

Data Metrics
An average of 270 million reads (range of 140–421 million) and
116 million reads (range of 69–147 million) of sequence data
were obtained for the group-1 and group-2 samples, respectively
(Table 1). The difference in throughput is attributed primarily
to differences in the number of samples sequenced per lane; one
sample per lane was used for group-1 compared to three samples
per lane sequenced for group-2. Approximately 94% (min 87.6,
max 96.5) of the targeted region was covered with at least 20
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TABLE 1 | Number of reads and variants per sample from the 89 WES individuals.

Total number of variants Group-1+ of 39 samples

(per-person count)

Group-2+ of 50 samples

(per-person count)

Mean Max Min Mean Max Min

Total reads (in millions) 270 421 141 116 147 69

Mapped reads (in millions) 259 405 134 115 146 68

Mapped reads on target (in millions) 134 212 58 92 117 38

% Coverage of targeted region at 5x 94.34 97.3 91.98 98.9 98.93 98.76

% Coverage of targeted region at 10x 91.13 94.7 88.16 98.1 98.78 96.05

% Coverage of targeted region at 20x 87.52 91.8 82.98 94.4 96.52 87.62

Total SNV in the coding regions 42,661 49,065 38,444 64,696 68,875 61,996

Tier-1 = stop gained/lost/start lost/splice site 149 172 134 191 215 169

Tier-1 after filtering* 374 4 7 0 4 9 1

Tier-2 = missense 8751 9504 8164 11,039 11,387 10,650

Tier-2 after filtering* 5703 65 88 44 63 95 47

Total INDELs in the coding regions 3087 3860 2517 7332 7862 6694

Tier-1 after filtering* 270 3 7 0 3 10 0

Tier-2 after filtering* 699 6 15 0 9 15 3

Total Tier-1 SNV/INDEL after filtering* 644 7 14 0 7 19 1

Total Tier-2 SNV/INDEL after filtering* 6402 71 103 44 72 110 50

Total Tier-1 and 2, SNV/INDEL after filtering* 7046 78 107 56 79 119 62

The per-sample data is separated into the two groups in which the actual sequencing was performed. Mean, maximum and minimum metrics are shown for each field.
+Group-1 samples were captured using Agilent 50 Mb capture kit and sequenced one sample per lane while group-2 samples were captured using Agilent V4-UTR capture kit and

sequenced three samples per lane.
*Filtering metrics are (a) HGMD/OMIM annotation, (b) minimum mapping quality 20.

(PHRED-scale), minimum read-depth 20, minimum alternate (non-reference allele) read-depth 5 and the maximum common alternate frequency of 10% (in any of the 1000-genomes,

HapMap, BGI or ESP dataset population groups) and (c) in case of Tier-2 SNV, predicted damaging/deleterious by at least one of SIFT or PolyPhen2.

reads (or 20x coverage) for group-2 samples compared to 87.5%
(min 83, max 91.8) for group-1 samples. The Agilent SureSelect
V4+UTR capture kit used for the group-2 samples had much
better capture efficiency with a greater fraction of all sequenced
readsmapping to the intended capture region and greater balance
and uniformity in the overall coverage of the capture region. Due
to the larger capture region in Agilent SureSelect V4+UTR, there
were a greater number of variants (SNVs and INDELs) reported
for group-2. However, when evaluating the final filtered lists of
Tier-1 and Tier-2 variants, there were minimal differences in the
number of variants between the two groups (Table 1).

Concordance with Array Genotype Calls
Per-sample call rates considering all variant positions in the
WES capture region were greater than 94.7% for all samples in
group-1 (average= 96.02%, range: 94.70–97.10) and greater than
99.5% for all group-2 samples (average = 99.68%, range 99.50–
99.80). The concordance between WES-called SNVs and array-
called genotypes was also indicative of high-quality sequencing
(average 99.73, range: 99.67–99.76 for all samples in group-
1 and average = 99.51, range: 98.62–99.57 for all samples in
group-2).

Genotype–Phenotype Correlation
The EMR diagnoses obtained for each of the participants and the
OMIM/HGMD annotations for each of the genetic variants from

the WES data were manually compared. A high-level summary
of the proportion of variants which correlated with any known
phenotypic finding is shown in Table 2.

The majority of medical diagnoses observed for these Mayo
Clinic Biobank individuals were common complex genetic
disorders, similar to that seen in the general population
(atherosclerotic cardiovascular disease, Type 2 Diabetes, obesity,
degenerative joint disease, cataracts, osteoporosis, etc.), for
which there is little useful genotypic information. Overall,
3% (N = 202) of the total 7046 Tier-1 and Tier-2
SNV/INDEL variants had a matching phenotype from clinical
chart review while 53% (N = 3710) variants did not exhibit
a correlating phenotype. The remaining 44% (N = 3134)
variants were unable to be assessed for genotype-phenotype
correlations.

For variants in genes known to have autosomal dominant
expression (AD or AD/AR), there were 129 Tier-1 variants
(73 SNVs and 56 INDELs) identified. Of these, four Tier-
1 SNVs and five Tier-1 INDELs were in genes for which
there was a phenotypic match (Table 3). On the other hand,
66 Tier-1 SNVs and 50 Tier-1 INDELs in AD or AD/AR
genes did not have an apparent phenotypic match to the
individual’s medical record (Table S6). Among the 1091 Tier-2
SNVs in AD or AD/AR genes, we observed 42 with phenotypic
matches (Table S7) compared with 1006 Tier-2 SNVs with
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TABLE 2 | Summary of the proportion of variants and their correlation with any known phenotypic findings from the chart review.

Tier-1 SNV # of variants Match No match Cannot assess Tier-1 INDEL # of variants Match No match Cannot assess

VARIANTS IN GENES IN WHICH MUTATIONS CAUSE MENDELIAN DISORDERS

AD 60 3 55 2 AD 39 4 34 1

AD/AR 13 1 11 1 AD/AR 17 1 16 0

Digenic 2 0 2 0 Digenic 7 1 6 0

AR 92 2 0 90 AR 84 0 0 84

XLR 11 1 2 8 XLR 0 0 0 0

XLD 2 0 2 0 XLD 0 0 0 0

VARIANTS IN GENES ASSOCIATED WITH NON-MENDELIAN DISORDERS

All SNP* 181 11 152 18 Variants* 120 4 97 19

Novel SNP in gene 147 10 122 15 Novel variant in gene 114 4 97 13

Exact variant 34 0 17 17 Exact variant 6 0 0 6

Others 13 0 0 13 Others 3 0 0 3

Total 374 18 224 132 Total 270 10 159 101

Tier-2 SNV # of variants Match No Match Cannot assess Tier-2 INDEL # of variants Match No match Cannot assess

VARIANTS IN GENES IN WHICH MUTATIONS CAUSE MENDELIAN DISORDERS

AD 914 27 861 26 AD 212 2 179 31

AD/AR 177 15 145 17 AD/AR 6 4 2 0

Digenic 58 4 50 4 Digenic 0 0 0 0

AR 2129 2 0 2127 AR 113 2 0 111

XLR 51 0 12 39 XLR 35 0 11 24

XLD 11 0 8 3 XLD 1 0 1 0

VARIANTS IN GENES ASSOCIATED WITH NON-MENDELIAN DISORDERS

All SNP* 2326 107 1897 322 Variants* 198 11 161 26

Novel SNP in gene 2170 97 1788 285 Novel variant in gene 198 11 161 26

Exact variant 156 7 116 31 Exact variant 0 0 0 0

Others 37 0 0 37 Others 134 0 0 134

Total 5703 155 2973 2575 Total 699 19 354 326

Tier-1 variants are most likely to be significant; Tier-2 variants contain many variants of uncertain clinical significance (See text for definitions). Autosomal Dominant (AD) and Recessive

(AR), X-linked Dominant (XLD) and recessive (XLR). Two SNP groups were delineated: those previously identified as associated with a phenotype in genome wide association studies

(“exact variant”) and novel changes that occurred in a different place in a gene with a known GWAS-associated variant (“novel SNP in gene”) and Single Nucleotide Polymorphism (SNP)

identified only in genome wide association studies. SNPs were compiled as separate lists. The category “Others” includes variants that are only seen as Somatic and never Germline or

in a gene part of a large deletion interval and thus not known to cause phenotype by itself.
*Single nucleotide variants (SNPs) and indel variants are further subdivided into those that occur in a gene for which a phenotype has been described (but not with this variant) and

those for which a phenotype has been associated with this exact variant in this gene.

no apparent phenotype match to the individual’s medical
record.

We then examined the genotype-phenotype correlation
from the perspective of starting with the phenotype that
participants presented with and then looking at the presence
or absence of variants in presumed genes responsible for
those phenotypes. In this analysis, 16 of the 89 participants
had none of their phenotypes potentially explained by the
filtered WES genotypes (Table S8). For the remaining 73
participants, 146(23%) phenotype matches (average 2 per
person, range 1–7 matches) were observed from a total of
636 phenotypes. A maximum of seven phenotypic matches
were observed in an individual with eight phenotypes
obtained from chart review. The genotypes contributing
to phenotype matches were all Tier-2 SNVs in genes
with AD or AD/AR inheritance or GWAS SNP candidates
(Table S8).

Clinically Significant Variants in
ACMG-Reportable Genes
The average base level coverage of the coding region for 56
ACMG genes in the 89 WES samples is shown in Figure S1.
Among the list of 56 ACMG-reportable genes, we found an
average of 1.8 OMIM/HGMD annotated Tier-1 or Tier-2 filtered
variants (range 0–6, median 2) per individual. Fifteen individuals
had no variants. The 161 variants (13 Tier-1 and 148 Tier-2)
found in 74 of Biobank samples involved 27 of the 56 ACMG
genes. The 8 Tier-1 SNVs are from five genes (APOB, BRCA2,
LDLR, MYBPC3, SMAD3) and consist of seven stop-gain and
one splice variant from seven samples. The 5 Tier-1 INDELs
(in five samples) are all frame-shift from four genes (BRCA2,
DSC2, PCSK9, DSP). The BRCA2 variants included a nonsense
SNV (p.K3326∗, noted to be a low-penetrance disease-associated
polymorphism), and a frame-shift insertion at c.100096 (which
is also considered non-pathogenic, as truncating mutations

Frontiers in Genetics | www.frontiersin.org 6 July 2015 | Volume 6 | Article 244

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Middha et al. Phenotype correlation with WES genotype

TABLE 3 | AD genes or AD/AR genes with Tier-1 SNV and with Tier-1 INDEL genotypes for which there was a match (shown in bold) with phenotype in a

Biobank participant.

Gene Name HGMD and OMIM descriptions Matching phenotype(s) Gender

SMAD3 Aneurysms-osteoarthritis syndrome|Aortic aneurysms and dissections with early-onset

osteoarthritis|Osteoarthritis|Thoracic aortic aneurysms and dissections;

Loeys-Dietz syndrome, type 3

Degenerative joint disease,

abdominal aortic aneurysm

M

MSR1 Atherosclerosis, increased risk, association with|Barrett esophagus/esophageal

adenocarcinoma|Chronic obstructive pulmonary disease, in smokers, association with|Prostate

cancer|Prostate cancer, association with.

Atherosclerosis F

TULP3 Glaucoma, primary open angle (due to copy number variant in this gene) Glaucoma suspect M

FLG Eczema |Eczema, association with|Eczema, association with and Asthma, association with|Fissured

skin on hands of patients without dermatitis|Genetic modifier in pachyonychia congenita|Hand eczema,

association|Ichthyosis vulgaris|Peanut allergy, association with|Psoriasis|Psoriasis vulgaris|Psoriasis,

increased risk, association…….

Eczema M

CFHR5 Nephropathy |Membranoproliferative glomerulonephritis, association with|Haemolytic uraemic

syndrome, susceptibility to|Haemolytic uraemic syndrome, atypical|Glomerulonephritis C3|Factor

H-related protein deficiency|Dense deposit disease, reduced risk|Chronic kidney disease after

streptococcal infection

Chronic renal failure F

CFHR5 Nephropathy |Membranoproliferative glomerulonephritis, association with|Haemolytic uraemic

syndrome, susceptibility to|Haemolytic uraemic syndrome, atypical|Glomerulonephritis C3|Factor

H-related protein deficiency|Dense deposit disease, reduced risk|Chronic kidney disease after

streptococcal infection

Chronic renal failure M

GJB2 Non-syndromic hearing loss |Knuckle pads, leukonychia, sensorineural deafness|Knuckle pads,

hyperkeratosis and deafness|Keratoderma, palmoplantar|Keratitis-ichthyosis-deafness

syndrome|Ichthyosiform erythroderma, corneal involvement and deafness|Non-syndromic hearing loss

|Oral squamous cell carcinoma|Postnatal permanent childhood hearing impairment|Sensorineural

hearing loss|Sensorineural hearing loss, non-syndromic …

Hearing loss F

DSC2 Arrhythmogenic right ventricular cardiomyopathy |Arrhythmogenic right ventricular

dysplasia/cardiomyopathy|Cardiomyopathy, dilated

Ventricular tachycardia F

GJB4 Progressive symmetric erythrokeratodermia of Gottron|Erythrokeratodermia variabilis|Deafness Hearing loss M

Details on the Tier-1 mutations are found in Supplemental files Tier-1 SNV (Table S10) and Tier-1 Indels (Table S11).

proximal to this are benign or at least hypo-morphic). All these
variants were reported as heterozygous. No confirmatory testing
was conducted on any variant.

Evaluation of Variants in Cancer-Predisposition
Genes
We also examined the frequency of variants among 57 cancer-
predisposition genes (23 from the ACMG list), as defined in
the Materials and Methods. The average base level coverage of
the coding region for 56 ACMG genes in the 89 WES samples
is shown in Figure S2. A total of 115 genetic Tier-1 or Tier-
2 variants were found using our custom variant filtering. The
distribution of these variants by cancer history and gender is
shown in Figure 2 and Table S9. Overall, 39(44%) of the 89
participants had a diagnosis of cancer: 23(59%) of these were
from the 39 group 1 participants and 16(32%) from the 50
group two participants. There were an average of 1.3 (range 0–3)
variants per subject with cancer and about 1.1 (range 0–4)
variants in subjects without cancer. After manual curation of
pathogenicity scores, there were two variants in the subjects with
cancer with a score of 4 (likely pathogenic) compared to none in
the subjects without cancer (Fisher’s exact test p = 0.19). These
two variants, both heterozygous, are a missense SNV in BRIP1
and a frame-shift mutation in ATR.

Tables S10–S13 show genetic details of the variant calling of
all types and Table S14 shows details of the Tier-1 gene variants

for which no phenotypic matches were evidence by medical
record review.

Discussion

This study evaluated potentially significant coding region DNA
variants in genes of reported clinical significance. Our goal
was to examine the genotype–phenotype correlation from WES
studies in a series of individuals representing a broad range of
phenotypes. WES and systematic interpretation was carried out
on 89 individuals who had lived out their entire lifespan and
whose medical records were available for correlation with WES
genotypes. We selected a set of samples from the Mayo Clinic
Biobank that itself moderately represents the general population
(Olson et al., 2013). Overall, there were 51 males and 38 females
with an average age at death of 74.5 years (range 28–93, median
78 years). In comparison, the average age of death in the US is
79, 80.9 years in the state of Minnesota and 82.4 years in Olmsted
County (Olmsted County Public Health Service Records, 2014)
where Rochester, MN is located. As expected, a majority of
their medical diagnoses were those of the general population
(atherosclerotic cardiovascular disease, Type 2 Diabetes, obesity,
degenerative joint disease, cataracts, osteoporosis, etc.) and
were not accounted for by highly penetrant Mendelian gene
variants. The contribution of WES in providing information that
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FIGURE 2 | Distribution of Tier-1/Tier-2 variants by cancer history and gender for the cancer predisposition genes. Overall, 39 (44%) of the 89 participants

had a diagnosis of cancer: 23 (59%) of these from the 39 group-1 participants and 16 (32%) of the 50 group-2 participants.

allows people to be proactive for these multifactorial disorders
is understood to be minimal. Of more interest to this study,
however, was the degree to which mutations in genes of more
Mendelian/single gene disorders did or did not correlate with
medical events in these individuals’ lifetimes.

Overall, a total of 374 Tier-1 SNVs (stop codon-gain/loss,
start codon-loss or splice altering) were identified following our
filtering strategy. Among these, only four SNVs (3.1%) and five
INDELs (3.8%) out of 129 variants in AD or AD/AR genes
known to have autosomal dominant expression were found to
have a phenotypic match (Table 3). The first variant for which
a phenotypic match was identified is a novel splice variant in
SMAD3 gene.While the affected individual did not have a Loeys–
Dietz phenotype, he did have a small abdominal aortic aneurysm
and degenerative joint disease in his 60s. In addition, he had
idiopathic pulmonary fibrosis, which has not been associated
with SMAD3 in humans. However, animal studies have suggested
a role for SMAD3 in fibrosing disorders in mice (Gauldie et al.,
2006; Warburton et al., 2013). Had this variant been discovered
during the individual’s lifetime, it would have been concerning,
but optimal clinical management is unknown. Of the other
three SNVs with overlap between gene and patient phenotype,
the Tier-1 FLG mutation p.R501∗ (Table 3, Table S10) likely

contributes significantly to the person’s eczema. Regarding genes
associated with atherosclerosis and glaucoma, it is unlikely
that the identified gene variants were major contributors to
these common and complex phenotypes and prior knowledge
of these variants would not likely have led to specific medical
interventions beyond typical medical care.

Of the 1091 Tier-2 SNV (missense predicted-damaging)
identified in AD or AD/AR genes, 42(4%) demonstrated a clinical
correlation (Table S7). However, most of these are multifactorial
disorders and the match called out is unlikely to be a major
cause. Two exceptions to this may be the RUNX1 mutation
in an individual with myelodysplastic disorder and the MC1R

mutation in an individual with two melanomas. These variants
were found in 0 and 2 other Biobank individuals, respectively
with a frequency of 0% and 1.7% within the 1000 Genomes
dataset, respectively, and so are not common and may be
important in these individuals. All of the Tier-2 SNV variants in
recessive genes were found only as a single copy, and thus carriers
only. There were no homozygotes or compound heterozygotes.

On the other hand, the list of Tier-1 SNVs in AD or AD/AR
genes for which no phenotypic match was apparent (66 of 73,
90%) was much longer (Table S6). Even if some of these genes are
not well-established as disease causative or reported to have lower
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penetrance than typical Mendelian, it is still notable that the list
of variants in genes with no evident phenotype is multiple times
larger than the list of genes with phenotypic matches. A clinician
undertaking testing of an individual would not knowwhich of the
Tier-1 SNV might actually be relevant to this person and which
would not.

The majority of Tier-2 variants were classified as having
uncertain significance using draft guidelines presented at the
2013 National Society of Genetic Counselors (NSGC) meeting
(final guidelines and manuscript were not available when this
study done). Although these guidelines, presented by a member
of the ACMG task force working on variant classification,
deemed in-silico analysis alone as insufficient to distinguish
pathogenic from non-pathogenic variants, we used in-silico calls
to include “damaging” variants in this correlation study. We
observed a stark contrast between the large number of variants
discovered and the low number of times for which a phenotypic
match, even very leniently defined, could be found (Table 2).
In this dataset, there were thousands of variants that have
been reported in OMIM/HGMD genes that in-silico analysis
defined as likely damaging, but the evidence for that effect in
the lives of these individuals was absent in the vast majority of
instances.

We observed a similar trend of few matches when viewing
the genotype–phenotype correlation from the perspective of
assessing the phenotypes available from chart review with the
genotype from WES analysis. None of the phenotypes from 16
of the 89 individuals had a match. For the remaining individuals,
approximately two from an average of nine phenotypes per
individual matched the WES analyzed genotypes (Table S8).
Moreover, a majority of these matches were GWAS SNPs
that would be expected to make minor contributions to the
phenotypes.

We also evaluated the 56 genes for which clinical reporting
was recommended by the ACMG (Green et al., 2013). We
found a median of 2 (range 0–6) OMIM/HGMD annotated
Tier-1 or Tier-2 filtered variants per individual among the list
of 56 ACMG-reportable genes. Of the 89 participants, 15 had
no variants in ACMG-reportable genes. These numbers are
comparable to median of 3 (range 1–7) potentially pathogenic
variants found in 12 WGS samples reported by Dewey et al.
(2014).

Because the presence or absence of cancer diagnosis is more
straightforward to categorize from chart review than other
medical disorders (e.g., limited ability to determine if diagnoses
like cardiomyopathy or renal failure are primary or secondary on
most chart reviews), a deeper evaluation of Mendelian cancer-
predisposition genes was conducted. There were no significant
differences in the number of filtered variants per individual
identified in cancer-predisposition genes in individuals with
or without cancer (Table S9). After manual assignment of
pathogenicity scores, there were two variants in subjects with
cancer with a score of 4 (likely pathogenic) compared to none in
the individuals without cancer. Presently, our ability to determine
which DNA variants are pathogenic and which are benign is a
major limiting factor in tapping into the clinical utility of WES.
This sub-analysis of cancer genes does suggest that a subset of

the genetic variants might be contributing to disease, but that
most missense variants, which were present in similar numbers
in those with and without cancer diagnoses, are not creating
apparent risk.

Our WES dataset of 89 samples generated on average 79
(range 56–119) filtered variants (SNV and INDEL) per individual
(Table 1). Correspondingly, a median of 108 (range 90–127)
variants (including SNV, INDEL and structural changes) per
sample were identified from a WGS study of 12 individuals
(Dewey et al., 2014). Although not largely different, varying
sequencing coverage and stringency of filtering methods used are
likely to be the reason for differences between WES and WGS
results. For instance, an important step to identify local artifacts
from bioinformatics analysis is to filter frequently reported
variants. This step was performed for our data removing more
than 30% of the called variants by filtering variants seen in 10%
or more of the 89 WES samples. The 12 sample WGS dataset
(Dewey et al., 2014) was too small to take advantage of the
filtering.

Notable challenges of this analytic approach include personnel
time needed for manual literature review, the subjective nature
of bioinformatics filtering thresholds, and uncertainty about
variant pathogenicity. Though not timed, we would agree with
recent reports that expert review of each variant to score for
pathogenicity could take around an hour per variant (Dewey
et al., 2014). Despite stringent bioinformatics filtering there
are a large number of variants, especially missense, requiring
classification. Working groups of experts in genomic research,
analysis and clinical diagnostic sequencing are collaboratively
looking for recommendations and guidelines for investigating
genetic variants’ causality in human disease (MacArthur et al.,
2014) and databases of curated variants are needed even more
urgently than ever as WES/WGS launches.

Our study has a number of important limitations, including
the following. One of the technical aspects of this study, and in
WES studies in general, is the missing coverage of important
genes. An average of 9(17%), with a range 4–17(7–30%) out of
the 56 ACMG-reportable genes had sub-optimal coverage per
individual for efficient variant calling in our WES data even if
the coverage was dropped from 20x (lower cut-off used for the
study) to 10x. This study was also limited to SNV and small
INDEL identified from WES data. Compared to WGS, WES
is not optimal for detecting Copy Number Variation (CNV)
and large structural variants. Most of the available tools suffer
from limited power to detect CNVs (Tan et al., 2014). Our
project involved a single medical geneticist expert evaluating the
gene inheritance and pathogenicity classification as opposed to
a group of experts engaged in other studies (Dorschner et al.,
2013; Dewey et al., 2014). The EMR at Mayo Clinic may have
omitted some important diagnoses as patients may have received
care elsewhere and not recorded significant findings on their
intake forms. The bioinformatics tools used in this study are
not clinically validated and arbitrary quality and read-depth
thresholds were used for data filtering. The data we analyzed
are from self-reported Caucasian individuals only. Our filtering
had a heavy reliance on HGMD and OMIM for gene filtering
and initial pathogenic mutation identification. Multiple genes
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whose functions remain unknown were excluded from this study.
A large number of the variants assigned in-silico as pathogenic
may be neutral. To develop a disorder, multiple genes may need
to be involved—single gene disorders may be rather rare in
reality.

In spite of these limitations, however, this study provides new
insights and begins to quantitate the limited correlation between
DNA variants and clinical manifestations on an individual basis,
and as such, provides a cautionary note regarding the current
predictive value of most DNA variants in the setting of a non-
disease selected population. The many technical challenges likely
affecting the results are unlikely to account for the gap between
variants found and absent medical diagnoses. Resolving and
understanding these issues will require sustained and large-scale
collaborative research.
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Figure S1 | Average base level coverage of the coding region for 56 ACMG

genes in the 89 WES samples. Boxplots show the per-base coverage for each

gene. The box itself shows the limits of the middle half of the observed data with

the top and bottom of the box representing the 75th and 25th percentile and the

line inside the box represents the median value. Whiskers are drawn to the nearest

values inside of 1.5∗ IQR where IQR = Interquartile Range = 75–25% and values

outside of 1.5∗ IQR are displayed as circles.

Figure S2 | Average base level coverage of the coding region for 57 cancer

genes in the 89 WES samples. See Figure S1 for description of box plot.

Table S1 | Age and gender information of the 89 WES Biobank samples.

The age information is shown by gender and also by group, as the 89 samples

were sequenced in two groups or batches based on availability of resources and

funding.

Table S2 | Representative set of 200 unique diagnoses abstracted from

chart review of the 89 participants.

Table S3 | Sources used for variant annotation. The collection of various

resources used and split by the type of information queried from the annotation

sources.

Table S4 | Representative set of 100 non-disease entries in HGMD/OMIM

excluded from further evaluation.

Table S5 | List of 57 cancer-related genes evaluated for the 89 WES

samples. The three columns denote binary presence or absence of these cancer

pre-disposition genes in the various clinical NGS gene panels, the list of 56

ACMG-reportable genes and other genes selected based on our experience.

Table S6 | AD genes or AD/AR genes that are either dominant or

recessive, with Tier-1 SNV variants for which there was No match with

phenotype (n = 55 examples).

Table S7 | Number of autosomal dominant genes or dominant/recessive

genes with Tier-2 single nucleotide variants for which there was a match

(shown in bold) with phenotype in a Biobank participant. A total of 1091

variants of this type were noted and this was the subset with any phenotypic

overlap or match. The other 1006 are not shown.

Table S8 | Phenotypes of 89 individuals from chart review and the

matching genotypes from WES data along with variant type, affected gene

and gene inheritance information. T1S, Tier-1 SNV; T2S, Tier-2 SNV; T1I,

Tier-1 INDEL; T2I, Tier-2 INDEL; CAD, coronary artery disease; DM2, diabetes

mellitus type 2; CHF, congestive heart failure; CM, cardiomyopathy; SCC/BCC,

squamous/basal cell carcinoma; AAA, abdominal aortic aneurysm; HCM,

hypertrophic cardiomyopathy; BP, blood pressure.

Table S9 | Distribution of 89 WES samples by cancer diagnosis and

gender. Also included are metrics on Tier-1/Tier-2 SNV and INDEL along with the

list of cancer predisposition genes found in the groups.

Table S10 | Genetic details for all Tier-1 SNVs.

Table S11 | Genetic details for all Tier-1 indels.

Table S12 | Genetic details for all Tier-2 SNV.

Table S13 | Genetic details for all Tier-2 indels.

Table S14 | Tier-1 SNVs and indels for which no phenotypic match was

evident.
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