
ORIGINAL RESEARCH
published: 28 July 2015

doi: 10.3389/fgene.2015.00252

Frontiers in Genetics | www.frontiersin.org 1 July 2015 | Volume 6 | Article 252

Edited by:

Spyros Petrakis,

Aristotle University of Thessaloniki,

Greece

Reviewed by:

Guanglong Jiang,

Indiana University School of Medicine,

USA

Kyle Bergin Gustafson,

University of Maryland - College Park,

USA

Yong Wang,

Academy of Mathematics and

Systems Science, Chinese Academy

of Sciences, China

*Correspondence:

Luonan Chen,

Chinese Academy of Sciences, 320

Yueyang Road, Shanghai 20031,

China

lnchen@sibs.ac.cn;

Kazuyuki Aihara,

University of Tokyo, 4-6-1 Komaba,

Meguro-ku, Tokyo 153-8505, Japan

aihara@sat.t.u-tokyo.ac.jp

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Genetics

Received: 14 May 2015

Accepted: 13 July 2015

Published: 28 July 2015

Citation:

Chen P, Liu R, Chen L and Aihara K

(2015) Identifying critical differentiation

state of MCF-7 cells for breast cancer

by dynamical network biomarkers.

Front. Genet. 6:252.

doi: 10.3389/fgene.2015.00252

Identifying critical differentiation
state of MCF-7 cells for breast
cancer by dynamical network
biomarkers
Pei Chen 1, Rui Liu 2, Luonan Chen 3, 4* and Kazuyuki Aihara 3*

1 School of Computer Science, South China University of Technology, Guangzhou, China, 2 School of Mathematics, South

China University of Technology, Guangzhou, China, 3Collaborative Research Center for Innovative Mathematical Modelling,

University of Tokyo, Tokyo, Japan, 4 Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute

of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

Identifying the pre-transition state just before a critical transition during a complex

biological process is a challenging task, because the state of the system may show

neither apparent changes nor clear phenomena before this critical transition during the

biological process. By exploring rich correlation information provided by high-throughput

data, the dynamical network biomarker (DNB) can identify the pre-transition state. In this

work, we apply DNB to detect an early-warning signal of breast cancer on the basis

of gene expression data of MCF-7 cell differentiation. We find a number of the related

modules and pathways in the samples, which can be used not only as the biomarkers

of cancer cells but also as the drug targets. Both functional and pathway enrichment

analyses validate the results.

Keywords: cell differentiation, dynamical network biomarker (DNB), pre-transition state, critical transition, early-

warning signal, breast cancer

Introduction

Breast cancer, one of the most common cancers, is clearly a heterogeneous, complex, interrelated
disease involving multi-factorial etiologies. The tumorgenesis of breast cancer is typically
characterized by a combination of the interactions between environmental (external) factors and a
genetically susceptible host (Ou et al., 2010). The prevalence of breast cancer as well as the growing
economic and societal burden of the treatment is making it urgently necessary to implement
interventions to prevent or at least delay the occurrence of breast cancer. However, it is still a
challenging task to detect breast cancer in its early stage since it is usually silent and without
clear symptoms in its initial stages, while irreversible complications may develop rapidly before the
implementation of effective treatment (Saini et al., 2011).Many studies of breast cancer are based on
MCF-7 cells. MCF-7 is the acronym of Michigan Cancer Foundation-7. TheMCF-7 cells are cancer
cells that are classified as invasive breast ductal carcinoma. Although the underlying molecular
mechanism of the progression for MCF-7 cells is far from clear, it has been found that heregulin
(HRG) and epidermal growth factor (EGF) are involved in inducing the critical transition of cell
differentiation or proliferation (Normanno et al., 1994; Suzuki et al., 2004; Nagashima et al., 2007;
Saeki et al., 2009). In this work, we quantitatively analyze time-course microarray data of MCF-7
cells, and identify the key genes, i.e., dynamical network biomarker (DNB), which may indicate the
imminent critical transition of the cancer cells during cell differentiation or proliferation.
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We previously hypothesized that a complex biological process
(e.g., disease progression) can be divided into three stages or
states (Figures 1A,B): (A) a before-transition stage (or a normal
state) with high resilience and robustness to perturbations; (B)
a pre-transition stage (or a pre-disease state), just before the
critical transition to the disease state, i.e., occurring before an
imminent phase transition point is reached, therefore, with
low resilience and robustness due to its dynamical structure;
(C) an after-transition stage (or a disease state), representing
a seriously deteriorated stage possibly with high resilience and
robustness again, because it is generally difficult for the system
at this state to recover or return to the normal state even after
treatment (Chen et al., 2012; Liu et al., 2012a). This classification
is supported by the observations that there exist catastrophic
shifts during the progression of many chronic diseases, i.e., the
sudden deterioration of diseases (Litt et al., 2001; McSharry et al.,
2003; Venegas et al., 2005; Hirata et al., 2010; He et al., 2012).
A drastic or qualitative transition in a focal system or network,
from a normal state to a disease state, corresponds to a so-called
bifurcation point in dynamical systems theory (Gilmore, 1993;
Murray, 2002). When the system is near a bifurcation point,
or a critical point, there exists a dominant group, which we
called as the DNB. The DNB can be defined by the following
three conditions (Chen et al., 2012): The correlation between any
pair of members in DNB becomes very strong; The correlation
between one member of DNB and any other molecule of non-
DNB becomes very weak; Any member of DNB becomes highly
fluctuating. The DNB is not only a theoretical concept, but also
has been successfully applied to real biological data, and used to
identified the early-warning signals of sudden deterioration of
several complex diseases (Li et al., 2013; Liu et al., 2013a,b, 2014a;
Zeng et al., 2014; Tan et al., 2015).

In this work, by applying the DNB approach to the datasets
of MCF-7 breast cancer cell line (GSE13009, GSE6462, and
GSE10145), we identify the DNB members composed by a group
of genes that may indicate the imminent critical transition during
the progression of breast cancer cells.

Methods

We first describe the theoretical basis, i.e., the DNB theory, and
then provide the procedures used to preprocess input datasets
and implement the detail DNB score algorithm.

Theoretical Basis
As explained in Section Introduction, a biological process can
be generally divided into the three stages, i.e., (A) the before-
transition state (or normal state in complex diseases), (B) the
pre-transition state (or pre-disease state in complex diseases)
and (C) the after-transition state (or disease state in complex
diseases) (Figure 1A). The before-transition state is a stable
state representing a stable stage with high resilience, during
which the state may change gradually. The pre-transition state
is a state defined as the limit of the before-transition state just
before a critical transition. This state is considered to be still
reversible to the before-transition state since appropriate external
interventions can drive it back to the before-transition state

relatively easily. However, further progression beyond the pre-
transition state will result in a drastic transition to the after-
transition state, another stable state, and it is difficult to return to
the before-transition state even with intensive interventions. The
after-transition state represents a seriously ill stage in complex
diseases.

Different from the traditional biomarkers, e.g., molecular
biomarkers and network biomarkers (Liu et al., 2012b; Wen
et al., 2014; Zhang et al., 2014, 2015), which are designed to
distinguish the disease samples from normal samples and thus
reflect the severity or presence of the illness at the disease state,
the DNB theory aims to distinguish the pre-disease samples from
normal samples according to the critical dynamical behavior of
DNB molecules (Liu et al., 2014b). In other words, the DNB
method is designed to identify a group of strongly correlated
and significantly fluctuating molecules, which are also called “the
leading network” because those genes may lead the transition of
the whole system from the normal state to the disease state (Liu
et al., 2012a).

Although elucidating the critical transition at the network
level holds the key to understand the fundamental mechanism
of disease development or cell differentiation, it is notably hard
to reliably identify the pre-transition state because there may
be little apparent difference between the before-transition and
pre-transition states. This is also the reason why diagnosis based
on traditional biomarkers may fail to indicate the pre-transition
state. The theoretical basis for detecting DNB is summarized
by the following conditions (Figures 1C,D), which have been
proven to hold simultaneously when the system approaches the
pre-transition state (Chen et al., 2012):

1. Deviations of a group of molecules called DNB among the
whole population of molecules, drastically increases (the
fluctuation condition);

2. Correlation between any twomolecules among DNB increases
(the internal correlation condition);

3. Correlation between any molecule in DNB and another in
non-DNB decreases (the external correlation condition);

4. There are no drastic changes for deviations and correlations of
molecules among the remaining molecules of the system, i.e.,
non-DNB.

Dynamics satisfying the preceding conditions can be viewed as
locally herding behavior, i.e., members in a DNB subnetwork act
together with strongly correlated fluctuation. These conditions
imply an imminent regime shift or a phase transition, and
therefore, can be used to signal the impending emergence of the
critical transition. Such a phenomenon can also be described as
the DNB molecules get dynamically correlated or connected so
that the system can be reorganized in a different way.

Data Processing and Algorithm
Three gene expression profiling datasets were downloaded
from the NCBI GEO database (ID: GSE13009, GSE6462, and
GSE10145) (www.ncbi.nlm.nih.gov/geo). In these datasets, probe
sets without corresponding gene symbols were not considered
in our analysis. The expression values of probe sets mapped
to the same gene were averaged. Genes in the DNBs for the
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FIGURE 1 | The outline for identifying the transition state by DNB

based on time-course data. (A) The progression of breast cancer cells

can be divided into three states, i.e., the before-transition state, the

pre-transition state, and the after-transition state. (B) A system at the

before-transition state or the after-transition state is stable with high

resilience, while it is unstable with low resilience when it is at the

pre-transition state. (C) In the pre-transition state, large fluctuations of the

DNB members are correlated strongly. This critical phenomenon do not

appear at the before-transition and the after-transition states. (D) The

DNB members show large fluctuations in their expressions at the

pre-transition state, compared with smaller fluctuations of the expressions

at the before-transition and the after-transition states.

three datasets were linked and correlated by the combined
functional couplings among them from various databases of
protein-protein interactions of STRING, FunCoup, and BioGrid.
In each disease dataset, the expression profiling information was
mapped to the integrated networks individually for identifying
the corresponding DNB. For each species, we downloaded
the biomolecular interaction networks from various databases,
including BioGrid (http://www.thebiogrid.org), TRED, KEGG
(http://www.genome.jp/kegg), and HPRD (http://www.hprd.
org). First, the available functional linkage information for
Mus musculus and Homo sapiens was downloaded from these
databases and combined. For instance, after removing any
redundancy in dataset GSE13009, we obtained 37,950 linkages
in 13785 human genes. Next, the genes evaluated in these
microarray datasets were mapped individually to their integrated
functional linkage networks. In order to trigger critical changes,
MCF-7 cells were exposed to growth factors heregulin (HRG) for
up to 6 h and the temporal expression of transcription factors was
monitored (Saeki et al., 2009). There were the case group and the
control group for the experiment. For the case group, the gene

expressions were recorded respectively in 17 time points (10min,
15min, 20min, 30min, 45min, 1 h, 1 h 30min, 2 h, 3 h, 4 h, 6 h,
8 h, 12 h, 24 h, 36 h, 48 h, and 72 h). The networks were visualized
using Cytoscape (www.cytoscape.org) and a part of the functional
analysis was based on Integrate and understand complex omics
data (IPA). The detailed algorithm is given in the Supplementary
Materials.

Results

The Identified DNB and the Pre-transition State
Applying the DNB method to dataset GSE13009, the DNB
containing 104 genes was identified for HRG-induced
differentiation of cancer cells. We listed all of the identified
DNB members in Supplementary Table S1 “Detail description
of the identified DNB.” The process of identifying the DNB
can be found in “The algorithm for identifying the DNB” of
Supplementary Materials. During the progression of cancer
cells, we also identified the pre-transition state between the
before-transition state and the after-transition state (Figure 2),

Frontiers in Genetics | www.frontiersin.org 3 July 2015 | Volume 6 | Article 252

http://www.thebiogrid.org
http://www.genome.jp/kegg
http://www.hprd.org
http://www.hprd.org
http://www.cytoscape.org
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Chen et al. Identifying cell differentiation by DNB

which is the critical stage when the progression of MCF-7 cells
is just before the differentiation triggered by HRG (Nagashima
et al., 2007). Actually, based on Figure 2, the sharp increase
of the DNB score (the red curve) represents an indicative
early-warning signal 1–1.5 h after the expose to HRG, and thus
before the differentiation detected by molecular markers. In fact,
the original assay showed that the AP-1 complex in HRG-treated
MCF-7 cells contains c-JUN, c-FOS, and FRA-1, although the
association of c-JUN in the complex is transient (Saeki et al.,
2009). Besides, the stimulation of MCF-7 breast cancer cells
with EGF and HRG resulted in very similar early transcription
profiles up to 90min; however, subsequent cellular phenotypes
differed after 3 h (Saeki et al., 2009), which suggests that the
differentiation is around 3 h (the 9th sampling time point). The
bootstrap validation (the blue curves) is also known in Figure 2,
which exhibits that the randomly chosen groups containing the
same number of genes with DNB are insensitive to the critical
transition.

Figure 3 shows the dynamical evolution in the whole feature
network based on the case data. It can be seen from Figure 3

that the selected 104 genes (the top right corner in each network)
are strongly correlated with large fluctuations 1–1.5 h before the
critical transition, which provides a significant signal indicating
the pre-transition stage of cell differentiation, while other genes
show no significant signal. Clearly, when the differentiation is
impending, these selected genes form a special subnetwork, the
so-called DNB, which makes the first move from the before-
transition state toward the after-transition state during the
transition. Interestingly, members of the DNB behaved similarly
to other genes after the system moved to the after-transition
state. It can be seen that, on the other hand, neither the
whole gene network nor the DNB presents a signal before or

FIGURE 2 | The DNB scores for the identified dominant group and

bootstrap groups. The DNB scores are shown for the identified dominant

group (red curve) and 10 groups from bootstrap (blue curves). It can be seen

that for the red curve, the DNB score increases sharply from the 6th point (1 h)

and reaches the peak at the 7th point (1.5 h). For the bootstrap analysis, we

randomly selected 10 gene sets, each of which is composed of the same

number of members as the dominant group. Then the DNB score was

calculated for each randomly chosen group.

after the transition, which shows the sensitivity of the DNB
method only at the pre-transition state. In fact, the DNB method
reveals the existence of the pre-transition state, which, however,
may not be detected by molecules such as EGR4, FOSL-1,
FHL2, and DIPA, although these four transcription factors are
proved to be effective for indicating the differentiation of breast
cancer cells (Saeki et al., 2009). In other words, the molecular
biomarkers cannot provide early-warning signals before the cell
differentiation (at 3 h, or the 9th sampling time point). Therefore,
the benefits brought by the DNB method in signaling the pre-
transition state make the identification and management of
high-risk cases effective.

Validation
Hereto we have shown the sensitivity and effectiveness of
the identified DNB. Figures 4A,B respectively show the DNB
scores based on independent datasets GSE6462 and GSE10145.
From dataset GSE6462, it can be seen from Figure 4A that the
identified DNB also showed a signal for large dose (1 and 10 nM)
HRG expose at the 4th sampling point (30min), while there is
no clear signal for small dose (0.1 and 0.5 nM) HRG expose. It
agrees with the original experiments (Nagashima et al., 2007) that
HRG-induced cellular differentiation of MCF-7 cells is observed
around 60min. From Figure 4B, it can be seen that the signal is
detected by theDNB score at the 4th time point, which also agrees
with the observations and shows the sensitivity of the identified
DNB. The bootstrap analysis for both datasets is shown in Figure
S1 of Supplementary Materials.

Functional Analysis
Heregulin (HRG) can induce dose-dependent transient
and sustained intracellular signaling, proliferation, and
differentiation of MCF-7 breast cancer cells (Barlund et al.,
2002; Huang et al., 2009). In the infected host, some metabolic
pathways responded to these interruptions and became
increasingly disordered. The following results show that some
reported phenomena were consistent with our investigations,
which also provides novel insights into the biological
processes.

The identified DNB module is related to the regulation
of an apoptotic process (GO:0042981) with the significant P-
value (2.93E-06), the regulation of the programmed cell death
(GO:0043067) with the significant P-value (4.10E-05) and the
regulation of the cell death (GO:0010941) with the significant
P-value (7.41E-04) by the website tool DAVID Bioinformatics
Resource (Huang et al., 2009). By the pathway analysis in the
KEGG database, we found that seven genes (CEBPA, SMAD3,
GSK3B, LAMC2, MMP1, PIK3R3, and RXRA) in this DNB
module participate in cancer pathways, and many genes of
this module also take part in other cancer-related pathways,
e.g., the Wnt signaling pathway with P-value (9.10E-03), the
p53 signaling pathway with P-value (1.10E-04), and the ECM-
receptor interaction with P-value (2.30E-03).

Many genes in this DNB module have been proved to be
related to a cancer or tumor process, and in particular, some
of these genes are associated with breast cancer. For example,
BCAS4 is an important gene for breast tumor development
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FIGURE 3 | Dynamical changes in the network including the

selected DNB during the progression of HRG-induced breast

cancer. The figures show the dynamical changes of the molecular

network at (A) 0.25 h, (B) 0.5 h, (C) 1 h, (D) 1.5 h, (E) 2 h, (F) 4 h, (G)

8 h, and (H) 24 h. It can be seen that, the DNB members are correlated

strongly while each member shows large fluctuation in its expression

during 1–1.5 h. This critical phenomenon does not appear before or after

this period, i.e., the before-transition or the after-transition state. Thus, the

pre-transition stage is around 1–1.5 h, just before the cell differentiation

triggered by HRG (7).

and progression (Barlund et al., 2002). ARID3B is one of genes
which regulates cell motility and actin cytoskeleton organization
(Casanova et al., 2011) and is found to be associated with breast
cancer onset (Akhavantabasi et al., 2012). TNFRSF21 encodes
a tumor necrosis factor receptor, which can regulate the NF-
kappaB and mediate an apoptosis process (Kasof et al., 2001).
LAMC2 encodes the gamma chain isoform laminin, which is
involved inmany biological processes, and LAMC2 is also proved
to be related to the breast cancer process (Sathyanarayana et al.,
2003; Koshikawa et al., 2005). Therefore, DNB for HRG-induced
breast cancer can mainly induce cancer by affecting the processes
of regulation of apoptosis, regulation of programmed cell death
and regulation of cell death.

Discussion

Breast cancer is a progressive disease and its deterioration
course is primarily characterized by cancer cell differentiation
or proliferation, which significantly damages the health of

women all over the world. Detecting the early-warning
signal of the cell differentiation of cancer cells provides an
opportunity to interrupt and prevent the continuing costly
cycle of managing breast cancer and its complications. The
critical transition of cancer cells involving proliferation or
differentiation can be induced by a ligand of the ErbB family
receptor, heregulin, which evokes kinase activity of MCF-
7 cells. Actually, in MCF-7, HRG induced graded signaling
and early transcription, followed by auto-induction of multiple
positive/negative feedback mechanisms, and prolongation of
signaling activity might switch cells irreversibly (Saeki et al.,
2009). It is an important future problem to analyses whether the
HRG-induced critical transition is reversible in the pre-transition
state.

In this work, we applied the DNBmethod to the identification
of the pre-transition state on the basis of a composition of
microarray data from the breast cancer cell line. First, we
introduced theDNB approach which aims at detecting the critical
signals of the cell differentiation and indicating the pre-transition
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FIGURE 4 | The validation of DNB based on independent datasets.

To validate the sensitivity and effectiveness, we calculated the DNB score

using the identified genes, based on two independent dataset. (A) The

DNB scores based on GSE6462. The red curve represents the case of

large dose HRG usage (1and 10 nM), while the blue curve stands for the

case of small dose HRG expose (0.1 and 0.5 nM). It can be seen that

there is a signal at the 4th sampling point (30min) when the MCF-7 cells

are exposed to large dose of HRG. (B) The DNB score based on

GSE10145. The curve shows that a peak of DNB score is at the 4th

sampling point (4 h).

state or stage. Second, based on the cell line data, we identified the
pre-transition stage right before the cell differentiation induced
by heregulin (HRG) during the progression of cancer cells.
Actually, an indicative early-warning signal is presented by DNB
at 1 h after the expose to HRG. The validation based on bootstrap
(Figure 2) and other two datasets (Figure 4) demonstrated the
sensitivity and effectiveness of the identified DNB for the HRG
triggered differentiation. Besides, we showed that somemetabolic
pathways responded to the HRG-induced interruptions and
became increasingly disordered during the biological process.
Therefore, the DNB method provides a new way to pry into the
underlying mechanism of cell differentiation and thus is helpful
to achieve the timely intervention. This is the main value in the
potential applications of the DNB method from a network point
of view.

On the other hand, there are limitations of this work. First,
the validity of the identified pre-transition state and the DNB
needs further supports from biological experiments and clinical
studies. Second, the method is insensitive when the genes are
not differentially expressed (see the algorithm stated in the
Supplementary Material). The algorithm is also needed to be
further improved on the aspects of both sensitivity and accuracy.
Although this work is merely a step toward detecting the

early-warning signals of critical transition during cancer cell
progression of breast cancer and the algorithm is expected to be
improved in both time saving and capacity efficient ways, it opens
a window of an opportunity for experimental and clinical study
on the early-warning system of breast cancer.
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