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Protein interaction networks are an important framework for studying protein function,
cellular processes, and genotype-to-phenotype relationships. While our view of the
human interaction network is constantly expanding, less is known about networks that
form in biologically important contexts such as within distinct tissues or in disease
conditions. Here we review efforts to characterize these networks and to harness them
to gain insights into the molecular mechanisms underlying human disease.
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gene expression

Introduction

Protein molecules constitute the main building blocks of cells and mediate most cellular processes.
In human, they are encoded by over 22,000 different genes, which give rise to many more proteins
through alternative splicing mechanisms. These numerous proteins do not work in isolation:
instead, they interact with each other and with other types of molecules to form complex cellular
machines and to pass signals within cells and across tissues. In recognition of the fundamental
role of these molecular interactions, much effort has been invested in the last two decades in
their mapping. From small-scale experiments that measure interactions between a few proteins,
mapping has changed to large-scale screens using high-throughput techniques such as yeast two-
hybrid and co-immunoprecipitation (e.g., Rual et al., 2005; Stelzl et al., 2005; Ewing et al., 2007;
Rolland et al., 2014). Owing to these mapping efforts, our current view of the physical interactions
between human proteins encompasses over 200,000 interactions among over 20,000 proteins, and
is continuously expanding. The resulting network of all known protein-protein interactions (PPIs),
known as the human interactome, has become a key framework for studying protein function,
cellular processes, and genotype-to-phenotype relationships, as reviewed elsewhere (Barabdsi et al.,
2011; Vidal et al., 2011). However, this broad network is also limited. PPIs have rarely been
measured in the context of distinct cell types, tissues, or in disease conditions, making it difficult to
model and understand context-related phenotypes.

While knowledge of human context-specific PPIs is limited, we are witnessing a rapid
accumulation of context-specific molecular expression profiles. The human body consists of tens
of tissues, sub-tissues, and cell types that differ from one another in morphology and function.
In a seminal study published more than a decade ago, Su et al. (2004) opened a window into their
molecular characteristics by profiling the transcriptomes of 79 human tissues via DNA microarrays.
Other studies profiled the transcriptomes of human tissues by techniques such as massively parallel
signature sequencing (Jongeneel et al., 2005), expressed sequence tags (EST) (Hillier et al., 1996),
and next generation RNA sequencing (e.g., Illumina’s BodyMap 2.0). Most recent is the RNA
sequencing of multiple human tissues from a number of individuals by the Genotype Tissue
Expression project (Mele et al., 2015). The proteomes of human tissues have also been profiled by
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immunohistochemistry (Pontén et al., 2009; Uhlén et al., 2015)
and mass-spectrometry techniques (Kim et al., 2014; Wilhelm
et al., 2014). In addition to efforts to profile normal tissues,
profiling techniques have also been employed to characterize
different diseases. One of the more prominent initiatives is
The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013),
which is actively mapping genomic, transcriptomic, proteomic,
and epigenomic changes in cancerous tissues compared to
normal tissues. These measurements shed light on the parts
of the interactome that are active in these diverse contexts,
although direct experimentation is required to reveal the actual
PPI changes, in particular the formation of novel interactions
(Ideker and Krogan, 2012). Below we discuss efforts to harness
these context-specific molecular expression profiles to elucidate
network properties of human tissues and to identify interaction-
based disease mechanisms.

Features of Tissue and Cell-type Specific
Networks

Given the lack of context-specific PPIs that were measured in
different tissues and cell types, many studies revert to identifying
PPIs that are feasible in these contexts. Their underlying
assumption is that a PPI is feasible within a specific context
if the corresponding proteins are expressed in that context.
Of course not all feasible interactions actually take place, as
they depend on many other factors such as localization and
conformation of the two proteins, yet co-expression is necessary.
Additionally, co-expression has often been based on RNA levels,
as protein expression levels were rarely available. This approach
had been used previously in model organisms to analyze their
network dynamics in response to stimuli (Luscombe et al,
2004) or during cell cycle (de Lichtenberg et al., 2005), and
has been used extensively for analyzing tissue interactomes
(e.g., Lopes et al., 2011; Barshir et al., 2013; Song et al., 2014).
Some differences in the sets of PPIs that are feasible within
tissues and involve tissue-specific (TS) proteins and globally
expressed (GE) “housekeeping” proteins are exemplified in
Figure 1.

One of the first questions that had been asked was whether
genes and PPIs that appear to be TS or GE have distinct
topological features relative to the generic human interactome or
to each other. Dezso et al. (2008) complied transcriptome profiles
of 31 tissues, and found that the set of GE genes was larger than
previously assumed. They showed that the topology of the GE PPI
network was characterized by higher connectivity and shorter
paths between proteins relative to the generic interactome. Lin
et al. (2009) analyzed the number of interactions (degree),
closeness, and betweenness centralities of GE and TS proteins
within the generic PPI network. They found that GE genes
were more central and may form a core, while clusters of TS
genes attach to the core at more peripheral positions in the
network. Using the data of Su et al. (2004), Bossi and Lehner
(2009) found extensive direct interactions between GE and TS
proteins, and suggested a model for the evolution of TS functions
through the modification of core cellular processes. Souiai et al.

(2011) used EST data across 45 tissues to test whether tissue-
specificity is encoded in the interactome. They also found that GE
genes were located at the topological center of the interactome.
Denoting interactions occurring at a subset of tissues as TS
interactions (TSI), they found that TSI involved in regulatory
and developmental functions were also central, whereas TSI
involved in organ physiological functions were peripheral. Kiran
et al. (Kiran and Nagarajaram, 2013) analyzed features of highly
connected proteins, namely hubs, in tissue interactomes. They
showed that, among other features, TS hubs were associated
with a lower degree of interactome centrality as compared with
GE hubs. Waldman et al. (2010) analyzed translation efficiency,
and showed that genes that were translated more efficiently in a
specific tissue encode proteins that tend to have more interactions
in that tissue, relative to other proteins in the same tissue.

The application of RNA-sequencing to human tissues revealed
that many more transcripts were expressed per tissue than
previously acknowledged (Ramskold et al., 2009). Emig and
Albrecht (2011) were among the first to harness RNA-sequencing
data to the analysis of tissue interactomes. They showed that, in
contrast to previous studies based on microarray profiles, TSI
were less common, and were mainly involved in transmembrane
transport and receptor activation. They also suggested that a
considerable part of tissue-specificity is likely to be achieved by
alternative splicing and interactions involving protein isoforms
(further discussed in Buljan et al., 2012). In accordance with
this suggestion, Ellis et al. (2012) demonstrated experimentally
that neural-regulated exons can remodel PPIs by stimulating
and repressing different partner interactions. Another study
showed that proteins enriched with splice variants tend to occupy
central positions in tissue interactomes (Sinha and Nagarajaram,
2014). Recently, it was claimed that splicing play mostly a
complementary role in driving cellular specificity, except for the
brain, which exhibits a more divergent splicing program (Mele
et al., 2015).

Another technological breakthrough that is taking place in
recent years is the profiling of proteomes at large scale. Since
the correlation between transcript and protein levels is partial
(Schwanhausser et al., 2011), proteome profiling opens a more
direct way to identify feasible PPIs. Liu et al. (2014) used
proteomic data (Kim et al., 2014) to analyze tissue interactomes.
They showed that, relative to the generic interactome, tissue
interactomes are smaller, sparser, and that hubs may have more
important roles. Barshir et al. (2013) combined transcript and
protein measurements to create 16 extensive tissue interactomes.
Their comparative analysis (Barshir et al.,, 2014) revealed that
each tissue interactome is dominated by a core sub-network that
is common to all tissues, with only a small fraction being TS. Most
tissue hubs were GE and retained their large PPI degree across
tissues, and were enriched in regulatory functions. Lastly, they
found in each tissue a significant correlation between transcript
expression level and number of PPIs involving the encoded
protein.

An important application of tissue interactomes is to shed
light on disease mechanisms. Lage et al. (2008) systematically
mapped over 1000 heritable diseases to the tissues in which
they manifest clinically by using text-mining. They showed that
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FIGURE 1 | Feasible protein interactions change between tissues.
All protein interactions (A) and feasible protein interactions that connect
“global genes,” which are expressed in all three tissues, with
tissue-specific genes that are expressed in one tissue out of adipose
(B), or thyroid (C), or muscle (D). Data of the genes expressed per
tissue were extracted from GTEx Portal (Mele et al., 2015) and limited
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to genes with 50 counts and above. Data of protein interactions were
extracted using MyProteinNet (Basha et al., 2015) from BioGrid
(Chatr-Aryamontri et al., 2015), DIP (Xenarios et al., 2002), IntAct
(Kerrien et al., 2012), and MINT (Licata et al., 2012) databases. Only
global genes that have tissue-specific interactions in each of the three
tissues are shown.

proteins and complexes that were linked to diseases tend to
be over-expressed in the tissue where defects cause pathology,
with the exception of proteins and complexes associated with
cancers. Magger et al. (2012) showed that the usage of tissue
interactomes, created from a generic interactome by removing
or penalizing interactions involving non-expressed proteins,
considerably improved the prioritization of disease genes. Li
et al. (2014) assessed tissue interactomes weighted by DNA
methylation data, and showed that they enhance prediction of
disease genes. Barshir et al. (2014) focused on genes causing
hereditary diseases and found that they tend to have PPIs that
occur exclusively in the tissue where defects cause pathology.
They demonstrated that these tissue-exclusive PPIs can highlight
disease mechanisms, and, owing to their small number, suggested
that they constitute an efficient filter for interrogating disease
etiologies.

Perturbed Networks in Disease

Protein networks are perturbed in disease due to sequence
mutations and expression changes. Zhong et al. (2009) were

the first to systematically probe the effect of sequence
(disease-causing) mutations on PPIs. They focused on known
mutations causing Mendelian disorders and categorized them
according to whether they have a truncation effect (“truncating,”
including nonsense mutations, out-of-frame indels, or defective
splicing) or not (“in-frame,” including missense mutations
and in-frame indels). They showed that truncating mutations
seem to lead to node-removal effects in the PPI network,
while in-frame mutations are associated with edge-specific
perturbations.

In a later study, Wang et al. (2012) examined the effect
of disease-causing mutations using a structurally resolved PPI
network, consisting of interactions and their atomic-resolution
interfaces. They found that in-frame mutations tend to occur
on the interaction interfaces of causal proteins and no similar
enrichment was detected in non-interacting domains. This
suggests that PPI perturbations play an important role in disease.
Additionally, they found that the disease specificity for different
mutations on the same gene can be explained by their location
within the interface, further underscoring the importance of PPIs
for the study of disease mechanisms.
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On the technological side, Wei and Yu (Wei et al,
2014) developed an experimental pipeline to examine the
consequences of different mutations on protein stability and
interactions. They used the pipeline to show that disease
causing mutations on interactions interfaces are more likely to
perturb the corresponding interactions than mutations away
from interfaces. Lambert et al. (2013) developed an experimental
pipeline to score modulated interactions. The pipeline couples
affinity purification to data-independent mass-spectrometric
acquisition. The authors used it to identify interaction changes
following disease-associated mutations and drug exposure.

Recently, Rolland et al. (2014) compared the impact of
mutations associated with human disorders to that of common
variants with no reported phenotypic consequences on PPls.
They focused on 32 genes with 115 disease and common variants,
testing up to four disease and four common variants per disease
gene for their impact on the ability of the corresponding proteins
to interact with known interaction partners. They found that
disease variants were 10-fold more likely to perturb interactions
than common variants; more than 55% of the 107 interactions
tested were perturbed by at least one disease-associated variant.
In a follow-up study, Sahni et al. (2015) investigated the
consequences of 2890 disease-causing missense mutations in
1140 genes. Out of 197 mutations covering 89 proteins with at
least two PPI partners (in the HI-II-14 map of Rolland et al,
2014), 26% were found to cause a complete loss of interactions,
31% resulted in specific loss of some interactions, and 43%
did not change the interaction partners. Disease mutations
were shown to perturb interactions that are functionally
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The Road Ahead
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