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The effective population size over time (demographic history) can be retraced from a

sample of contemporary DNA sequences. In this paper, we propose a novel methodology

based on importance sampling (IS) for exploring such demographic histories. Our starting

point is the generalized skyline plot with the main difference being that our procedure,

skywis plot, uses a large number of genealogies. The information provided by these

genealogies is combined according to the IS weights. Thus, we compute a weighted

average of the effective population sizes on specific time intervals (epochs), where the

genealogies that agree more with the data are given more weight. We illustrate by a

simulation study that the skywis plot correctly reconstructs the recent demographic

history under the scenarios most commonly considered in the literature. In particular,

our method can capture a change point in the effective population size, and its overall

performance is comparable with the one of the bayesian skyline plot. We also introduce

the case of serially sampled sequences and illustrate that it is possible to improve the

performance of the skywis plot in the case of an exponential expansion of the effective

population size.

Keywords: importance sampling, effective population size, skywis plot, coalescent process, serially sampled

sequences

1. Introduction

The demographic history of a population leaves its signature in the genome, whichmeans that DNA
sequences contain information about the demographic history of the population from which they
are sampled. Therefore, it is possible to use genetic data to infer demographic parameters, an issue
with important implications in many fields such as public health, epidemiology and conservation
biology (Minin et al., 2008).

The first methods for estimating the demographic history from gene sequences were parametric
and used coalescent theory. Suchmethods require a simple demographic model in order to describe
the changes in the population size over time in terms of one or more parameters. They are based on
importance sampling, e.g., (Slatkin and Hudson, 1991; Stephens and Donnelly, 2000), or Markov
ChainMonte Carlo (MCMC) sampling, e.g., (Kuhner et al., 1995, 1998). For example, in the case of
exponential growth, the size of the population at any time t measured from the present to the past
is given by N(t) = N(0) exp(−βt), and the unknown parameters are N(0) and β .
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Usually, in practice, it is not known in advance which
demographic model fits the sampled gene sequences. Further,
population histories are often more complex than those
described by simple parametric models. This has motivated the
development of non-parametric and semi-parametric methods
for inferring the demographic history from sequence data or
from an estimated genealogy (e.g., Fu, 1994; Pybus et al.,
2000) without resorting to some previous information about the
demographic model.

Our method is nonparametric and is closely related to the
family of skyline plotmethods. The first method in this family was
introduced by Pybus et al. (2000), and is referred to as the classical
skyline plot. The classical skyline plot involves two separate steps,
see (Ho and Shapiro, 2011): (1) estimating the genealogy from
the sequence data and (2) estimating the population history from
the estimated genealogy. Step 1 gives an estimated genealogy that
includes the relationships among the individuals (tree topology)
as well as their times of divergence. Genealogical estimation
is done using standard phylogenetic methods under the so-
called strict molecular clock. The strict molecular clock condition
means that the branch lengths of the tree are proportional to
time, with time being measured in mutations, and all lineages
evolve at the same rate. It is also possible to estimate a genealogy
in a relaxed-clock framework (Drummond et al., 2006). Further,
in step 2 in order to estimate the population history from the
estimated genealogy, Pybus et al. (2000) apply coalescent theory
in a specific way by considering the times of divergence (node
times) as coalescent times. When the true population size is
constant, this assumption is equivalent to estimating the mean
of an exponential distribution using a single realization from this
distribution (Minin et al., 2008). This uncertainty is referred to as
coalescent error. Further, the single phylogeny of the sequences
is assumed to be known without error (i.e., phylogenetic error is
assumed to be negligible).

Thus, Pybus et al. (2000) estimate the population size N̂ekµ,

for each coalescent interval γk = µtk, by the product of
(k
2

)

and γk, where µ is the mutation rate per site per generation and
γk is measured in substitutions. Thus, the classical skyline plot
produces a piecewise reconstruction of the demographic history
that is quite noisy, especially in the presence of small intervals
when the sampled sequences are similar.

To improve the classical skyline plot estimation, several
extensions have been proposed. Without being exhaustive,
we discuss the extensions that are most relevant to our
work.

Strimmer and Pybus (2001) developed a generalized skyline
plot estimate based on the Akaike Information Criterion
correction (AIC) in order to reduce the number of free
parameters in the classical skyline plot. This method allows
multiple coalescent events, i.e., for which little divergence time
information is available, to be grouped together. Important
developments were obtained in a Bayesian framework. Thus,
Drummond et al. (2005) and Opgen-Rhein et al. (2005) use
multiple change-point (MCP) models to estimate population size
dynamics.

In particular, Drummond et al. (2005) use a Markov chain
Monte Carlo (MCMC) sampling procedure that efficiently

samples a variant of the generalized skyline plot, given sequence
data, and combines these plots in order to generate a posterior
distribution of the effective population size through time. Due
to the averaging effect of the MCMC sampling, the Bayesian
skyline plot introduced by Drummond et al. (2005) produces
smoother estimates than previous skyline plot methods. Also
in the Bayesian framework, Minin et al. (2008) propose an
alternative to change-point modeling that exploits Gaussian
Markov random fields to achieve temporal smoothing of the
effective population size. The advantage of the skyride method
is that in contrast to estimates given by MCP models, explicit
temporal smoothing does not require strong prior decisions like
fixing the total number of change points a priori.

Finally, Heled and Drummond (2008) introduced the
extended Bayesian skyline plot, which permits the analysis of
multiple unlinked loci. Increasing the number of independent
loci allows the uncertainty in the coalescent to be assessed,
leading to an improvement in the reliability of the demographic
inference and a substantial reduction in estimation error (Ho and
Shapiro, 2011). Further, unlike previous skyline plotmethods that
use a piecewise-constant model, the extended Bayesian skyline
plot permits the use of a piecewise-linear model to describe
the demographic history, allowing the population size to change
continuously along each interval.

In order to estimate the effective population size, we propose
a new method in a likelihood-based perspective. Unlike some
skyline methods that use a single estimated phylogeny of the
sequences, or others that use MCMC approaches, we resort
to an efficient importance sampling scheme and our estimate
comes to an weighted average over a large number of simulated
genealogies, each with a different set of coalescence times.
The methodology is described in detail in Section The Skywis
Method.

2. Background

2.1. Coalescent Theory
In this section, we present the basic ideas behind the standard
coalescent, as well as its extension to the case of fluctuating
population size. An introduction to coalescent theory can be
found in Nordborg (2003). Coalescent theory allows one to
produce genealogies relating the sampled sequences according
to a large class of population genetic models. In particular,
the classical coalescent process assumes a single, isolated and
panmictic population (e.g., a Wright-Fisher model), which
evolves with constant (haploid) size N over many generations.
For sufficiently large N and a sample size n such that n ≪ N,
the ancestral relationships between the gene sequences can be
approximated by Kingman’s coalescent (Kingman, 1982).

In short, the ancestry of a sample of sequences is modeled
back in time, starting from the current sample and until the most
recent common ancestor (MRCA) of the sample is found. At
each step in the genealogical tree, one of the following events
can occur: (1) two sequences coalesce if they share a common
ancestor; (2) one sequence mutates. In the coalescent framework,
time is measured in units of N generations, and N is large. The
mutation rate µ per sequence per generation is rescaled so that
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θ = 2Nµ. Further, one can consider that each pair of lineages
coalesces independently as a Poisson process with rate 1, and so,
when there are k ancestral lines, coalescent events occur as in a
Poisson process with total rate k(k− 1)/2 (Stephens, 2000).

In the classical coalescent process, and in the presence of k
gene sequences, the waiting time Tk to the next coalescent event

is exponentially distributed with rate
(k
2

)
, while the distribution of

the time until the first mutation event in any of the k lineages is
exponential with parameter kθ/2. Since mutations are assumed
to occur independently of coalescence, the waiting time until a
mutation or coalescent event is exponentially distributed with
parameter

(
k

2

)
+ kθ

2
= k(k− 1+ θ)

2
. (1)

The classical coalescent framework can be extended to include
simple deviations from the idealized Wright-Fisher model, like
recombination, fluctuating population size, population structure,
and selection. In our paper, we focus on a single extension of the
coalescent, namely variable population size.

In the case of non-constant population size, the number of
descendants of a sequence in one generation does not follow the
Poisson distribution with intensity one (Hein et al., 2005). As a
result, when the basic coalescent is used to model a real physical
population, the size N of the population in the (haploid) Wright-
Fisher model cannot be assumed to be equal to the size of the real
population.

Let Ne(t) denote the effective population size at time t with
Ne(0) = N. The effective population size reflects the number
of individuals that contribute offsprings to the descendant
generation and is almost always smaller than the census
population size. The variable population size coalescent model
for contemporary gene sequences was introduced by Griffiths
and Tavaré (1994c) and Donnelly and Tavaré (1995). In this case,
the coalescence times T2,T3, ...,Tn do not follow independent
exponential distributions.

LetVk = Tn+ ...+Tk be the accumulated waiting time so that
the number of sequences pass from n to k− 1 sequences, i.e.,

Vk =
n∑

ℓ= k

Tℓ, (2)

and let 3(t) the cumulative coalescent rate over time measured
relative to the rate at time t = 0:

3(t) =
∫ t

0

1

ν(u)
du, (3)

where ν(t) = Ne(t)/N, the relative size of Ne(t) to N.
The waiting time until the next event depends only on the

time of the previous event by the Markov property. The survival
function of the time Tk conditional on Vk+ 1 = v is

P(Tk > t|Vk+ 1 = v) = exp

{
−

(
k

2

)
(3(t + v)− 3(v))

}
, (4)

where vn+ 1 = 0.

We note that when replacing3(t) by t (i.e., in the caseNe(t) =
N, t > 0 ) in Equation (4), we get the survival function of
the exponential distribution. From Equation (4), we obtain the
density

fTk|Vk+ 1 (tk|v) =
(k
2

)

Ne(tk + v)
exp

[
−

∫ tk + v

v

(k
2

)

Ne(x)
dx

]
. (5)

It is precisely from this equation that Pybus et al. (2000) derived
the estimation of the effective population size N̂ek in the presence
of k sequences.

2.2. Importance Sampling
Parameter estimation in population genetic models require
optimization of the likelihood of the data given the parameters,
P(D|θ). The likelihood is then evaluated by:

L(θ) =
∫

G

P(D|G, θ)P(G|θ)dG, (6)

where θ is the collection of parameters (such as population
size and migration rates) for the population process. Typically,
the objective of the analysis is to estimate these parameters by
averaging the likelihood over all possible genealogies. A naive
Monte Carlo method for the integral in Equation (6) is given by

L(θ) ≈ 1

J

J∑

j= 1

P(D|G(j), θ), (7)

where G(1),G(2), ...,G(J) are an independent sample from P(G|θ).
Importance Sampling (IS) allows us to improve the efficiency

of the Monte Carlo integration. The main idea of the IS approach
is to reduce the inefficiency of the approximation (Equation
7) by concentrating the simulation on the trees that are more
likely with the observed data. Instead of choosing histories from
the distribution Pθ (G), we want to sample genealogies from a
proposal distribution Q(G) that better supports the observed
data, D. The IS method is based on rewriting (Equation 6) as

∫

G

P(D|G, θ)
P(G|θ)
Q(G)

Q(G)dG. (8)

The Monte Carlo approximation of Equation (8) gives

L(θ) ≈ 1

J

J∑

j= 1

P(D|G(j), θ)
P(G(j)|θ)
Q(G(j))

, (9)

where G(1),G(2), ...,G(J) ∼ Q(G). Good choices of the
distributionQ(.) make this method of approximationmuchmore
efficient than (Equation 7). Ideally, we would like to sample from
Q(G) = P(G|D). However, this is impossible because it supposes
perfect knowledge of the likelihood which is not true in practice.

Importance sampling (IS) was first used in this context
by Griffiths and Tavaré (1994a,b,c). Stephens and Donnelly
(2000) proposed improvements to the method by suggesting an
approximation to an optimal proposal distribution for IS, P(G|D).

Frontiers in Genetics | www.frontiersin.org 3 August 2015 | Volume 6 | Article 259

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Ait Kaci Azzou et al. Skywis-plot estimate of demographic history

3. The Skywis Method

In this section, we describe our estimation method of
the effective population size, when n gene sequences are
available. The main idea behind our method is to simulate
a large number of genealogies and create a weighted average
of the effective population sizes, where the most probable
genealogies are given larger weight. In short, reconstructing the
demographic history from these sequences involves four distinct
steps:

1. simulate J genealogies: G(1),G(2), ...,G(J);

2. compute N̂e
(1)
k

, N̂e
(2)
k

, ..., N̂e
(J)
k

where N̂e
(j)
k

, k = 2, 3, ..., n,
represents the estimated effective population size for the

genealogy G(j) for each coalescent time t
(j)
k

(in the presence of
k sequences);

3. compute the weights w(1),w(2), ...,w(J), where w(j) represents
the weight of the genealogy G(j) in the likelihood of the data;

4. estimate N̂ek based on genealogies G(1),G(2), ...,G(J), by the

weighted mean of N̂e
(j)
k
, for j = 1, 2, ..., J, and k = 2, 3, ..., n,

i.e.,

N̂ek =
J∑

j= 1

w(j)N̂e
(j)
k

. (10)

For example, with a variable population size that is expanding
from the past to the present, as we progress toward the MRCA
one can expect the population size to be smaller, or coalescence
times to be shorter, than in the case of a constant population
size. This fact, of shorter coalescence times, should be reflected

more faithfully by the most probable genealogies. Since such
genealogies receive the largest weights, one can see that through
the weighting system the estimator is adapting itself to the
information contained in the data.

In what follows we describe our method in full detail,
namely:

• how to simulate genealogies;
• how to set the weights;
• how to estimate the effective population size.

3.1. Skywis Plot for Homochronous Sampling
3.1.1. Simulation of Genealogies
In order to generate genealogies we use the proposal distribution
Q(.) introduced by Stephens and Donnelly (2000) assuming a
constant population size and a finite sites model with known
mutation parameters. Given the Stephens and Donnelly (2000)
method is crucial to our approach, we describe it briefly.

Let:

• E: the set of possible types of gene sequences;
• H−i: the set of all sequences when event i occurs (coalescence

or mutation) where i decreases from the present to the past in
steps of 1 for each event (see Figure 1);

• H = {H0,H−1, ...,H−m}: a history of sequences where H0 =
D, m is the total number of events in the history H, and H−m

is a singleton (the MRCA);
• P: the mutation transition matrix;

In the Stephens and Donnelly (2000) method, theH−i are viewed
as states of a Markov process starting at genetic type H−m ∈ E

FIGURE 1 | Example of a realization of the coalescent process viewed from past to the present with n = 7 sequences (red squares), with 6 coalescent

events (blue squares) and 3 mutation events (orange circles).
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and ending withH0 ∈ E. Let P be the mutation transition matrix.
Let Pαβ be the probability of a DNA sequence of type α to mutate

to a DNA sequence of type β , and let Mβ
α denote a mutation

of a gene sequence from type α to type β according to P; let
Cα

α denote a coalescence of two gene sequences of type α. Then,
the forward transition probabilities pθ (Hi|Hi−1), are defined by
Equation (11):

pθ (Hi|Hi− 1) =





n
(α)
i− 1
ni−1

θ
(ni− 1 − 1+ θ)

Pαβ ifMβ
α ,

n
(α)
i− 1
ni−1

ni− 1 − 1
ni− 1 − 1+ θ

if Cα
α ,

0 otherwise,
(11)

where n(α)i−1 is the number of sequences of type α in Hi−1, ni−1 is
the number of sequences in Hi−1.

Stephens and Donnelly (2000) consider randomly
constructing histories backward in time in a Markov way,
from the sample H0 to an MRCA (single type), according to
some backward transition probabilities qθ (Hi−1|Hi) in the
class M = {Hi−1|Pθ (Hi|Hi−1) > 0} with the constraint
qθ (Hi−1|Hi) ∝ pθ (Hi|Hi−1). Their proposed backward
transition probabilities q̃θ (Hi−1|Hi) which define Q(.) are given
by Equation (12), namely:

q̃θ (Hi− 1|Hi) =





C−1 θ
2 · n(α)i · π̂(β|Hi − α)

π̂(α|Hi − α)
· Pαβ ifMβ

α ,

C−1

(
n
(α)
i

2

)
· 1

π̂(α|Hi − α)
if Cα

α ,

0 otherwise,

(12)
where n

(α)
i is the number of sequences of type α in Hi,

ni is the number of sequences in Hi, {Hi − α} is the set
of all sequences in Hi without the chosen sequence α, and
C = ni(ni − 1 + θ)/2 is a constant of proportionality.
The estimated conditional probability π̂(α|Hi) is described
below.

In the proposed reconstruction, when Hi contains ni
chromosomes, the new type α is obtained by choosing
a chromosome from Hi at random and then mutating it

a geometric number of times. If n
(β)
i is the number of

chromosomes of type β in Hi, then (Stephens and Donnelly,
2000),

π̂(α|Hi) =
∑

β∈E

∞∑

m= 0

n
(β)
i

ni

(
θ

ni + θ

)m ni

ni + θ
(Pm)αβ . (13)

In our approach, the genealogies are simulated
backwards in time by the following algorithm based on
Equation (12):

1. initialize ni: = n, where n is the number of DNA sequences at
time t = 0 (present), and i = 0;

2. simulate the time to the next event, W−i−1, as an exponential

distribution with parameter

(
ni

2

)
+ niθ

2
;

3. randomly choose a sequence from Hi; the chosen sequence
type is denoted α;

4. for each type β ∈ E for which Pαβ > 0, compute π̂(β|Hi−α);
5. compute the quantities x1 and x2, where

x1 = θπ̂(β|Hi − α)Pβα and x2 = n
(α)
i − 1.

Then, choose:

• a coalescence event with probability x2
(x1 + x2)

;

• a mutation event (to β) with probability x1
(x1 + x2)

.

6. depending on the type of event chosen in step 5, we continue
as follows:

• if there is a coalescence event, choose another sequence of
type α randomly, and let ni−1: = ni − 1;

• if there is a mutation event, mutate the sequence α into a
sequence β , without changing ni, i.e., let ni−1: = ni;

7. let i: = i− 1 and continue until ni = 1.

After implementing the above algorithm, the coalescence times
that are at the core of our method can be deduced. In the
genealogy G given in Figure 1, we can deduce the coalescent
times from the event times. For example, T7 = W−1 whereas
T6 = W−2 + W−3 because we have a mutation event before a
coalescence event.

3.1.2. Weights of Genealogies
After generating genealogies using the Stephens and Donnelly
(2000) proposal distribution, it is possible to compute the
importance weight w(j) for each genealogy G(j), with j =
1, 2, ..., J. Then w(j) is given by:

w(j) = W(j)

∑J
j= 1W

(j)
, (14)

where

W(j) = P(D|G(j), θ)
P(G(j)|θ)
Q(G(j))

, (15)

with

Q(G(j)) =
−m∏

i= 0

q̃θ (Hi−1|Hi), (16)

and

P(G(j)|θ) =
−m∏

i= 0

pθ (Hi|Hi−1). (17)
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3.1.3. Estimation of the Effective Population Size
When building genealogies backwards in time, as we move
backwards in time, fewer coalescence events occur. As a result,
coalescence times close to the present are very short and become
larger gradually going back in time. These short coalescence
times create an undesirable variability in the estimation of the
effective population size. Therefore, we propose to cumulate
small coalescence times in order to improve the estimation of
the effective population size. These cumulated time intervals are
called epochs. To define epochs that get larger as we go backwards
in time, we followed (Durbin and Li, 2011), and used a special
time scale based on the TMRCA. Forest (2014) adopted the same
method.

Finally, we note that the idea of cumulating small coalescence
times in order to smooth the graph of the estimator of the
effective population size was first proposed by Strimmer and
Pybus (2001); it has since become quite standard in the related
literature.

Once the genealogies have been simulated using the method
described in Section 3.1.1, we cumulate the coalescence times as
follows:

• we fix the total number of epochs, ncum, i.e., the total number
of time intervals where we estimate the effective population
size;

• for each simulated genealogy G(j), we compute the MRCA

time, T
(j)
MRCA;

• we use formula (Equation 18) proposed by Durbin and Li
(2011) in order to define epochs where estimates of the
effective population size are computed. In other words, the
following time cutting points in a genealogy G(j), j = 1, 2, .., J
are used:

t
(j)
cut,b = 0.1 · exp

(
b

ncum
· log(1+ 10 · T(j)

MRCA)

)
− 0.1, (18)

b = 1, 2, ..., ncum ,

where t
(j)
cut,ncum = T

(j)
MRCA.

For each genealogy, formula (Equation 18) gives the
boundaries of the epochs, measured from the present to the
past where b = 0, 1, 2, ...ncum (in units of N generations). The
boundaries of epochs are different for each genealogy G(j) and

depend on the length of the tree. For example if T(1)
MRCA = 1 in

units ofN generations and ncum = 5, then according to Equation
(18), the boundaries of the intervals are 0.0615, 0.1609, 0.3215,
0.581 (backward in time). For example, for the first epoch, this
means that we must cumulate coalescence times from Tn until
reaching 0.0615 N generations.

The skyline plot can be viewed as a method of moments
estimator based on the standard coalescence distributions
(Strimmer and Pybus, 2001). For a genealogy G(j), we have:

E

(
T
(j)
k

·
(
k

2

))
= N (generations), (19)

because T
(j)
k

is exponentially distributed as exp
((k

2

))
. Therefore,

we use the estimate

N̂e
(j)
k

≈ t
(j)
k

(
k

2

)
, j = 1, 2, ..., J. (20)

The expectation of the accumulated waiting time in order to pass

from n to ℓ lineages, T
(j)
n→ℓ =

∑n
k=ℓ T

(j)
k
, is given by (see, for

example, Rodrigo et al., 1999)

E
(
T
(j)
n→ℓ

)
= 2c

n(n− c)
N (generations), (21)

where c = n − ℓ represents the number of coalesced sequences.
From Equation (21), we can see that we can estimate, using
the method of moments, the effective population size for the
cumulated time of c coalescence times by:

t
(j)
n→ℓ ·

n(n− c)

2c
, (22)

where t
(j)
n→ℓ =

∑n
k= ℓ t

(j)
k
, and c = n − ℓ. In our case, the

cumulated waiting times for each genealogy G(j) are deduced
from Equation (18): once the boundaries of the intervals

of epochs are computed, the cumulated waiting times, 1t
(j)
b

numbered from present to the past, are derived as:

1t
(j)
b

= t
(j)
cut,b − t

(j)
cut,b−1, (23)

where b = 1, 2, ..., ncum, j = 1, 2, ..., J, and t
(j)
cut,0 = 0. It follows

from Equations (22, 18) that the estimated effective population
size for an epoch b, and genealogy G(j), j = 1, 2, ..., J, is given by:

N̂e
(j)
b

= 1t
(j)
b

·
d
(j)
b

(
d
(j)
b

− c
(j)
b

)

2c
(j)
b

, (24)

where d
(j)
b
is the number of sequences at the beginning of the1t

(j)
b

interval, and c
(j)
b
is the number of cumulated coalescence times in

the epoch 1t
(j)
b
, b = 1, 2, ..., ncum, j = 1, 2, ..., J.

The distribution of importance weights of genealogies
described by the Equation (15) is an approximation to
the posterior distribution P(G|D, θ). As a result, one can
approximate quantities of interest related to the tree by forming
a weighted average of these quantities over the sampled trees as
suggested in Stephens (2001).

In our case, we are interested in the estimation of E(Neb),

b = 1, 2, ..., ncum from the J estimates N̂e
(j)
b
, j = 1, 2, ..., J and

we let

E(Neb) ≈
J∑

j= 1

w(j)N̂e
(j)
b

. (25)

In our algorithm, the weighted average of N̂e
(j)
b

is computed for
the same time interval for all j = 1, 2, ..., J that represent the
intersections of epochs for the J simulated genealogies. This way
of proceeding gives us weighted estimates of effective population
sizes under the assumption that the effective population size is
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constant for an epoch. The reason for taking common intervals

across genealogies is that N̂e
(j)
k

estimates the integral (see Pybus
et al., 2000)


 1

tk

∫ t
(j)
k
+v

(j)
k+1

v
(j)
k+ 1

dx

Ne(x)




−1

, j = 1, 2, ..., J. (26)

Therefore, to estimate the integral Equation (26) by a weighted
average of estimates from J genealogies, we must use the same
time intervals.

For illustration, in Figure 2, we assume that two genealogies
G(1) and G(2) are simulated using themethod described in Section
3.1.1 with respective weights w(1) and w(2). Further, we assume
that we cumulate coalescence times to obtain ncum = 3 epochs.

The limits of epochs for a genealogy G(j) are denoted t
(j)
cut,b, b =

1, 2, and the time to the MRCA by TMRCA(j), j = 1, 2. The
detailed calculation of the weighted effective population size per
epochs is summarized in the following table:

Time interval N̂eℓ, ℓ = 1,2, ...,2 · ncum

[0; t(2)cut,1 ) w(1)N̂e(1)1 + w(2)N̂e(2)1

[t(2)cut,1; t
(1)
cut,1 ) w(1)N̂e(1)1 + w(2)N̂e(2)2

[t(1)cut,1; t
(2)
cut,2 ) w(1)N̂e(1)2 + w(2)N̂e(2)2

[t(2)cut,2; t
(1)
cut,2 ) w(1)N̂e(1)2 + w(2)N̂e(2)3

[t(1)cut,2; TMRCA
(2) ) w(1)N̂e(1)3 +w(2)N̂e(2)3

[TMRCA(2); TMRCA(1)] N̂e(1)3

3.2. Skywis for Heterochronous Sampling
The algorithm described in Section 3.1 can be generalized to
the case of serially sampled sequences i.e., sequences sampled
at different moments in time. Such samples are also called
heterochronous. Figure 3 illustrates a case where we sampled
sequences at times t0 < t1 < t2, and the time is measured
from the present to the past. Let S be the number of instants
where we sampled sequences (S = 3 in Figure 3). Rodrigo
and Felsenstein (1999) extend the coalescent likelihood for such
heterochronous sequences, a very important issue in the case of
rapidly evolving viruses such as HIV. For example, Rodrigo et al.
(1999) have estimated, using heterochronous sequences, the viral
generation time of HIV type1 (HIV-1). Also, serially sampling
rapidly evolving populations is used for dating evolutionary
events and divergence times (see e.g., Drummond et al., 2003).

FIGURE 2 | Division of time axis in the presence of two genealogies.

In the presence of serially sampled sequences, we have to adapt
the method of Stephens and Donnelly (2000) in order to simulate
genealogies in this case. This necessarily involves developing new
formulas for the probabilities pθ (Hi|Hi−1) and q̃θ (Hi−1|Hi), as
given below.

3.2.1. Backward and Forward Probabilities, and

Weights of Genealogies
Let n(s) be the number of additional sampled sequences at time
ts, with s = 1, 2, . . . , S − 1. The main difference between the
algorithm for homochronous sequences presented in Section 3.1,
and the new algorithm for heterochronous sequences is that the
number of lineages increases at the (known) instants ts, s =
1, 2, . . . , S − 1 where samples of sequences are added. Further,
it is necessary to use event times, because the embedded chain
differs according to the relative position of these event times with
respect to ts, s = 0, 1, 2, . . . , S− 1.

In other words, the probabilities pθ (Hi|Hi−1) and q̃θ (Hi−1|Hi)
are calculated differently from the case of a single sample
of sequences, which has an impact on how the weights of
genealogies, w(j), j = 1, 2, ..., J, are computed.

In order to present our results, we introduce these additional
notations:

• Di,v = {Hi, v}: represents the set of all sequences present in the
population after the ith event at time v; this is a generalization
of Hi with the specification of the time of event i;

• Es: represents the set of all sequences added at time ts;

Our proposal distribution is an adapted version of the
Stephens and Donnelly (2000) method for simulating
genealogies, to the case of heterochronous sequences. In
this case, as mentioned above, we consider that there is a list of
pre-specified sampling times ts, s = 0, 1, 2 . . . , S − 1 which are
dividing the time axis. In what follows, time is measured from
the present to the past and by event we mean either a coalescence
or a mutation. If an event time v is such that ts−1 < v < ts and
the time v′ of the next event is such that v′ > ts, v′ is truncated
at ts, i.e., v′ ≤ ts. Then, either there is a next event at time
v′ ≤ ts or the time is truncated at ts, new sequences are added,
and the process starts anew. Thus, from Di,v one can move to
either Di−1,v′ = {Hi−1, v

′}, v < v′ ≤ ts, where Hi−1 is obtained
from Hi by a coalescence or a mutation, or to Di−1,ts where
Hi−1 = Hi + Es. In this last case we add Es sequences at time
ts and the process starts anew, with a new set of sequences that
includes those at v. The moves of the process (embedded chain)
are given by the following formulas, and we consider separately
the case v′ < ts and the case v′ = ts.

Case 1: ts−1 < v < v′ < ts.

q̃θ (Di−1,v′ |Di,v) =





C−1 θ
2 n

(α)
i

π̂(β|Hi − α)
π̂(α|Hi − α)

Pβα ifMβ
α

C−1

(
n
(α)
i

2

)
1

π̂(α|Hi − α)
if Cα

α

0 otherwise,

(27)
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FIGURE 3 | Example of serially sampled sequences with S = 3. The red squares are the sampled sequences and the blue squares are the sequences derived

from coalescence.

Case 2: ts−1 < v < ts, v
′ = ts.

q̃θ (Di−1,ts |Di,v) =




Pr( ∃ an event in (v; ts] ) · C−1 θ
2 n

(α)
i

π̂(β|Hi − α)
π̂(α|Hi − α)

Pβα ifMβ
α ,

Pr( ∃ an event in (v; ts] ) · C−1

(
n
(α)
i

2

)
1

π̂(α|Hi − α)
if Cα

α ,

Pr(no event in (v, ts]) if Hi−1 = Hi + Es,

0 otherwise.

(28)

Normally (i.e., in homochronous sampling), the waiting time
W−i−1 from the stateDi,v with ts−1 < v < ts to the next event has

an exponential distribution with rate λi =
(
ni

2

)
+ niθ

2
, where

ni is the number of lineages at time v. Thus, the probability that
there are no events in the interval (v, v′] ≡ (v, ts] is given by the
survival function

Pr(W−i−1 > ts − v) = exp
(
−λi(ts − v)

)
, (29)

where W−i−1 is the waiting time from state Hi to state Hi−1 in a
process with homochronous sampling.

In the case of heterochronous sequences, the algorithm for
simulating the genealogies backward in time is the following:

1. initialize ni = n and s = 0, where n is the number of sampled
sequences at time t0 = 0 (present), and s is the index of
times where we perform the sampling. Further, initialize the
cumulated time tcum to 0;

2. simulate the time to the next event, W−i−1, as an exponential

distribution with parameter

(
ni

2

)
+ niθ

2
; let tevt

be the observed value;
3. compute t∗cum: = t

(i)
cum + tevt;

4. if t(i)cum < ts and t∗cum > ts, then

• let t(i−1)
cum = ts;

• let ni−1: = ni + n(s) (add a sample of sequences at time ts);
• let s: = s+ 1 and i: = i− 1, and go to step 2;

otherwise, go to step 5;

5. let t(i−1)
cum : = t∗cum and randomly choose a sequence from ni; the

chosen sequence type is denoted α;
6. compute the quantities x1 and x2, where

x1 = θπ̂(β|Hi − α)Pβα and x2 = n
(α)
i − 1.

Then, choose:

• a coalescence event with probability x2
(x1 + x2)

;

• a mutation event (to β) with probability x1
(x1 + x2)

.

7. depending on the result in step 6:
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• if there is a coalescence event, choose another sequence of
type α randomly, and let ni−1: = ni − 1;

• if there is a mutation event, mutate the sequence α into a
sequence β , without changing ni, i.e., let ni−1: = ni;

8. let i: = i− 1 and continue until ni = 1.

After the definition of how to build a genealogy in the case of
serially sampled sequences, and the proposal distribution Q, we
introduce the probability P of the genealogy by specifying the
probability of passing from the state Di−1,v′ = {Hi−1, v

′} to
the state Di,v = {Hi, v} when there are ni−1 sequences, and
we suppose that an event time v′ is such that ts < v′ < ts+1

(a coalescence corresponds to a split when viewed from the
past to the present). Therefore, as for the backward transition
probabilities, we consider separately the case v > ts and the case
v = ts.

Case 1: ts < v < v′ < ts+1.

pθ (Di,v|Di−1,v′ ) =





n
(α)
i−1

ni−1
θ

(ni−1 − 1+ θ)
Pαβ ifMβ

α

n
(α)
i−1

ni−1

ni−1 − 1
ni−1 − 1+ θ

if Cα
α

0 otherwise.

(30)

Case 2: ts < v′ < ts+1 and v = ts.

pθ (Di,v|Di−1,v′ ) =




Pr( ∃ an event in [ts; v′)) ·
n
(α)
i−1

ni−1
θ

(ni−1 − 1+ θ)
Pαβ ifMβ

α

Pr( ∃ an event in [ts; v′)) ·
n
(α)
i−1

ni−1

ni−1 − 1
ni−1 − 1+ θ

if Cα
α

Pr(no event in [ts, v′)) if Hi = Hi−1 − Es

0 otherwise,

(31)

where:

• the probability that there are no events in the interval [ts, v′) is
given by:

Pr(Wt−i−1 > v′ − ts) = exp
(
−λi(v

′ − ts)
)
. (32)

• n
(α)
i−1 represents the number of sequences of type α in

Di−1,v′ = {Hi−1, v
′};

• Hi = Hi−1 − Es: represents the event of adding the set of
sequences Es at time ts.

As in the case of homochronous sequences, after computing the
probabilities pθ (Di,v|Di−1,v′ ), and q̃θ (Di−1,v′ |Di,v) for a genealogy
G(j), j = 1, 2, . . . , J, the importance weights may be derived from
Equations (14–17).

3.2.2. Estimation of the Effective Population Size for

Heterochronous Sequences
For heterochronous sequences, the method for producing a
skywis plot is similar to the one defined in Section 3.1.3. The
main difference lies in the definition of epochs in this case 1. In
the presence of S serially sampled sequences, we cumulate the
coalescence times as follows:

• for each simulated genealogy G(j), we compute the MRCA

time, T
(j)
MRCA, j = 1, 2, ..., J;

• we fix the number of epochs at n(s)cum in each time interval
(ts; ts−1) where no new sample is added, s = 1, 2, ..., S,

tS = T
(j)
MRCA, and t0 = 0 (present);

• in order to define the epochs, the time cutting points in a
genealogy G(j), j = 1, 2, .., J are computed as follows:

t
(j,s)
cut,b = ts−1 + 0.1 · exp

(
b

ncum
· log(1+ 10 · ts)

)
− 0.1, (33)

where b = 1, 2, ..., n(s)cum and s = 1, 2, ..., S− 1.
For each genealogy and for each time interval (ts; ts−1), s =

1, 2, ..., S, formula Equation (33) gives the limits of the epochs
from the present to the past in units of N generations.

In practice, we performed minor smoothing at times ts,
because the addition of new sequences creates an artificial
discontinuity at ts, s = 1, 2, ..., S. Therefore, the population
size in the first epoch after ts is set to be equal to the effective
population size in the epoch preceding the addition of new
sequences.

4. Results

To test the ability of our method to capture the demographic
signal contained in the DNA sequences, we simulated several
demographics scenarios. Further, we compared the results of
the skywis plot with those of the generalized skyline plot
that uses single tree, and the Bayesian skyline plot that uses
MCMC approach. These methods are the closest to our
approach.

The DNA sequences were simulated using the fastsimcoal
program (Excoffier and Foll, 2011) which allows us to consider
several demographic scenarios and different mutation models.
The genealogies were simulated 2 using the method described in
Section 3.1.1. In all our simulations, the coalescence times were
cumulated into ncum = √

n− 1 epochs according to the method
described in Section 3.1.3, where n represents the number of
simulated DNA sequences. After that, we derive the skywis plot
using Equations (24, 25).

1The reason we changed the way we define the epochs is that the number of
sequences rises at the instants of the serial sampling, so the method used in Section
Simulation of Genealogies is not appropriate.
2The simulation of the genealogies was performed using MATLAB programming
language (MATLAB, 2013) and the Parallel Computing Toolbox which allows
parallelization of the simulation of genealogies. This is possible when
using IS.
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The generalized skyline plot was performed as follows:

1. From the DNA sequences generated by fastsimcoal, we
estimated a phylogeny using the PHYLIP program (the
PHYLogeny Inference Package Felsenstein, 1989) using
the maximum likelihood method with a molecular clock
constraint (we used the dnamlk program).

2. Based on the estimated tree produced by PHYLIP, we used the
APE package (Paradis et al., 2004) to produce the generalized
skyline plot according to the optimal strategy for grouping
adjacent coalescent intervals introduced by Strimmer and
Pybus (2001).

The Bayesian skyline plot was performed using the BEAST
program, version 1.8.1. In order to reproduce a parametrization
which is as close as possible to ours, we used (Hasegawa et al.,
1985) substitution model with equal base frequencies, and a strict
clock with rate 1.

Below, we present our results according to the demographic
models we considered.

4.1. Constant Effective Population Size
In this case, we consider 50 simulated DNA sequences with
parameters:

• number of nucleotides: 10,000;
• constant effective population size: 2000 generations;
• no recombination and no population structure;
• mutation rate equals to 2 · 10−7: therefore (θ = 8);
• JC69 (Jukes and Cantor, 1969) finite sites model.

The estimate of the effective population size (skywis plot) is
shown in Figure 4A. We observe that the skywis plot (orange
line) gives a relatively smooth curve of the effective population
size. Further, the estimation turns around the real value N,
with a slight over-estimation close to the present, which can be
explained by the fact that when the mutation rate θ is large,
the sampled sequences are all different, and we have many
mutations before one coalescence; thus, coalescence times are
longer, and the corresponding population sizes are larger (see
Section Simulation of Genealogies.)

In Figure 4B we present the generalized skyline plot (in
substitution units). In this case, the form of the graph is not
recognizable as a constant line.

The Bayesian skyline plot is given in Figure 4C. In this case,
the graph is very smooth and is easily recognizable as a constant
line.

4.2. Piecewise Constant Function
In this section, we present results where 25 DNA sequences of
length 10,000 nucleotides and mutation rate µ = 5 · 10−4 were
simulated under the JC69 mutation model. We assume that the
effective population size follows the piecewise constant model
function:

Ne(t) =
{
N if t < x
aN otherwise,

(34)

where N = N(0) = 104, x = 5000 generations, a = 0.25 (see
Figure 5), and the time t is measured from present to the past.

Figure 5A represents the non-parametric estimate (skywis
plot) of the effective population size for a number of epochs equal
to ncum = 4. We note that the skywis plot was able to detect
well enough the change-point of the size of the actual population
which dates back 5000 generations. However, the skywis plot
seems to overestimate the effective population size for t > 5000
generations.

In Figure 5B we present the generalized skyline plot. The
skywis plot gives a better result than the generalized skyline plot
close to the present, while the estimate given by the generalized
skyline plot is closer to the true value when we approach the
MRCA.

The Bayesian skyline plot presented in Figure 5C

is very smooth and generally reproduces the true
history except closer to the present, where the Bayesian
skyline plot over-smoothes the effective population
size.

4.3. Exponential Population Growth
In this section, we suppose that the effective population growth
is exponential assuming an instantaneous growth rate that

A B C

FIGURE 4 | Constant effective population size. (A) skywis plot, (B) generalized skyline plot, (C) Bayesian skyline plot.
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is proportional to the current population size according to
the equation Ne(t) = N exp (−βt) from present to the
past.

Using the fastsimcoal program, we simulate 50 DNA
sequences with the following parameters:

• Number of nucleotides: 1000;
• N = Ne(0) at time t = 0: 10,000;
• no recombination, and no population structure;
• mutation rate: 5 · 10−7 (θ = 1);
• JC69 finite sites model;
• β = 1 (in generations).

The skywis plot for the simulated DNA sequences from
the exponential model described above is given in
Figure 6A.

The result given in Figure 6A is quite good in the sense
that the size of the effective population decreases steadily from
the present to the past and follows the exponential curve quite
closely most of the time. However, we note that the estimated
effective population size is almost constant from some point
in time when approaching the TMRCA. This is explained by
the fact that for the last two sequences the theoretical average

time to coalesce represents half the length of the tree, and
from this point in time there is no much variability in the
estimate of the population size. In particular, this remark led us
to consider heterochronous sampling in order to improve the
effective population size estimate.

In Figure 6B the time is measured in substitution units and
we present the generalized skyline plot. As before, the generalized
skyline plot has a fluctuating shape but it exhibits a certain
tendency to decrease toward the past. In the end, when we
approach the time of theMRCA, the generalized skyline plot gives
an estimate that is close to the true value.

In Figure 6C, we present the Bayesian skyline plot. As in the
other scenarios, the Bayesian skyline plot produces a very smooth
curve; in this case it suggests that the population had a mild
exponential expansion. However, we note that the curve remains
constant closer to the MRCA.

4.4. Exponential Population Growth and
Heterochronous Sequences
In order to test the methodology proposed in Section 3.2, we use
the same parameters as in Section 4.3, but by assume that the 50
sequences were collected at different moments in time such as:

A B C

FIGURE 5 | Skywis plot for data simulated from the population model where N(t) = 10,000, if t < 5000 generations, and N(t) = 2500 otherwise (time

from the past to the present). (A) skywis plot, (B) generalized skyline plot, (C) Bayesian skyline plot.

A B C

FIGURE 6 | Skywis plot for DNA sequences simulated from an exponential model with β = 1. (A) skywis plot, (B) generalized skyline plot, (C) Bayesian skyline
plot.
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FIGURE 7 | Skywis plot for DNA sequences simulated from an

exponential model with 3 serial samples at times t0 = 0, t1 = 0.5, t1 = 1

(in units of N generations) from the present to the past, and β = 1

generations.

• n0 = 25 (present);
• n1 = 15 at time t1 = 0.5 in units of N generations (measured

from present to the past);
• n2 = 10 at time t1 = 1 (N generations).

The result given in Figure 7 suggests that the effective population
decreases exponentially from present to the past. Further, we
note that the estimated effective population size continues to
decrease when approaching the time of the MRCA, which is a
net improvement over the homochronous case. This could be
explained by the fact that as more sequences are added over time,
more information is available as one approaches the MRCA.

5. Discussion

The skywis plot is a new flexible method for exploring the
demographic history of a sample of DNA sequences based on
coalescent theory. Our nonparametric method is likelihood-
based and uses IS. More precisely, we generate a large number
of genealogies, both their times and their topology; further, we
use the importance weights of these genealogies to compute a
weighted average of the effective population size per epoch. This
allows us to produce estimates that exhibit clear cut population
growth tendencies over time, which is the main purpose of this

approach, given that it is nonparametric. In practice, we expect
our method to be used as a preliminary procedure that could be
supplemented by a parametric analysis.

We present a framework of the new method and test
by simulation its ability to capture the demographic signal
contained in the DNA sequences under several demographic
scenarios. Moreover, we consider both homochronous and
heterochronous data using a simple substitution model, JC69
(Jukes and Cantor, 1969). We could also have considered
more complicated substitution models, except those that allow
variation in evolutionary rates among lineages.

For illustration we present the results given by the generalized
skyline plot that uses a single genealogy, and those obtained by
the Bayesian skyline plot that uses anMCMC approach. Although
the Bayesian skyline plot is smoother than the skywis plot, our
estimator is able to capture the shape of the effective population
size Ne(t), as well as its main change points, but in some examples
it had a (slight) tendency to overestimate the population size as
we approached the MRCA. This is not surprising, given that the
simulation our estimation method entails first setting a constant
population size (where coalescence times are longer) and further
operating an adjustment through a weighting system. Further,
note that, unlike the methods based on a single tree, it is possible
to extend the skywis plot and include recombination. Indeed,
recombination induces a graph structure rather than a tree, and
IS methods in this context already exist (e.g., Fearnhead and
Donnelly, 2001).

As a future development, we expect the method to be
improved by considering an iterative procedure, in which the
present approach would be the first estimation step. As a new
approach, the skywis plot remains to be tested on more complex
demographic models, and models of substitution that could be
more realistic, especially for rapidly evolving RNA viruses. Also,
the skywis plot can be easily extended to include multilocus data
because, when there is no recombination, the same IS scheme can
be applied.
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