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Heterogeneous landscapes and fluctuating environmental conditions can affect species
dispersal, population genetics, and genetic structure, yet understanding how biotic
and abiotic factors affect population dynamics in a fluctuating environment is critical
for species management. We evaluated how spatio-temporal habitat connectivity
influences dispersal and genetic structure in a population of boreal chorus frogs
(Pseudacris maculata) using a landscape genetics approach. We developed gravity
models to assess the contribution of various factors to the observed genetic distance
as a measure of functional connectivity. We selected (a) wetland (within-site) and (b)
landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics
using a unique methodology. Specifically, we developed three networks that quantify
wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation
in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal.
We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from
322 individual frogs. We found that genetic connectivity was related to topographic
complexity, within- and between-wetland differences in moisture, and wetland functional
connectivity as contributed by stepping-stone wetlands. Our results highlight the role
that dynamic environmental factors have on dispersal-limited species and illustrate
how complex asynchronous interactions contribute to the structure of spatially-explicit
metapopulations.

Keywords: boreal chorus frog (Pseudacris maculata), functional connectivity, dispersal, gravity model, landscape
genetics, metapopulation dynamics, spatio-temporal dynamics
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Introduction

A fundamental goal of ecology is to understand how
environmental variation influences species persistence,
abundance, and gene flow (Cushman, 2006; Gomez-Rodriguez
et al., 2009; Goldberg and Waits, 2010). Landscape heterogeneity
is defined by fluctuations in environmental conditions that
range from relatively invariable (e.g., topography, soil texture)
to highly variable (e.g., rainfall, vegetation abundance) over
multiple spatial and temporal scales. For many species, these
abiotic conditions are necessary for species survival, recruitment,
(Fahrig, 2003; Ewers and Didham, 2007), and dispersal (Girdner
and Larson, 1995; Driscoll, 1997; Schwartz and Jenkins, 2000;
Banks et al., 2004; Mokany, 2007). Yet it remains unclear to what
extent variation in suitable conditions over space and time affects
gene flow, population genetic structure, and genetic diversity of
natural populations.

Functional connectivity, the degree to which the environment
impedes or facilitates the movement of individuals among
resource patches (Taylor et al., 1993; Bélise, 2005), is linked to
genetic connectivity between populations existing in spatially-
explicit habitat patches (Brown and Kodric-Brown, 1977;
Tallmon et al., 2004). Geographic distance is expected to
play a significant role in the explanation of genetic distance
between a pair of occupied sites (McRae, 2006), assuming
dispersal is limited over large distances. Yet the functional
connectivity of a species may be dependent on environmental
characteristics within- and between-habitat patches, whereby
landscape condition may create resistance to gene flow in
addition to animal movement.

Within-habitat characteristics (e.g., vegetation, resource
abundance, presence of conspecifics) affect dispersal by
influencing the production and survival of migrants (Banks
et al., 2004), while between-habitat patch factors (e.g., inter-patch
matrix: complex topography, vegetative cover, risk of predation)
affect the probability of colonization and establishment (Stow
and Sunnucks, 2004) in destination habitat patches. Temporal
fluctuations in these environmental characteristics may mediate
the complex ecological interactions that influence demographic
and genetic processes within and between natural populations
(Gomez-Rodriguez et al., 2009; Velo-Antón et al., 2013),
especially for dispersal-limited species. It is therefore expected
that fluctuating, heterogeneous landscapes will affect species
functional connectivity corresponding to either beneficial or
detrimental effects on demographic and dispersal thresholds
essential for species persistence and genetic diversity (Schwartz
and Jenkins, 2000; Scherer et al., 2012). Quantified values
of functional connectivity can help characterize complex
spatio-temporal interactions between landscape composition
and configuration, population genetic structure, and genetic
connectivity of a population.

Amphibians are exemplary model species to assess genetic
connectivity in spatially and temporally variable landscapes
because they are dispersal-limited, patch-dependent species
(Gamble et al., 2007) sensitive to changes in vegetation and
fluctuating hydrologic conditions. Juveniles leave ephemeral
wetlands after metamorphosis, usually as wetlands are drying

(Semlitsch, 2008) and are then subject to the spatio-temporal
dynamics of the within-patch matrix. Successful recolonization
of wetland habitat patches is more likely between neighboring
patches than distant, isolated patches (Driscoll, 1997; Smith and
Green, 2005; Rozenfeld et al., 2008) especially if the between-
patch matrix is resistant to movement. Within- and between-
patch environmental fluctuations may significantly influence
amphibian occupancy of surrounding wetland patches (Scherer
et al., 2012) altering amphibian population dynamics and genetic
structure. However, these interactions between variable abiotic
conditions and amphibian population genetic structure are
understood poorly despite significant implications for population
persistence, species diversity, and metapopulation dynamics as
the environment changes and the climate warms. Thus, our
goal was to test the effects of fluctuating environmental factors
on functional connectivity of an amphibian population using a
landscape genetics approach.

We evaluated the effect of spatio-temporal variation in
wetland availability on the genetic connectivity of a population of
boreal chorus frogs (Pseudacris maculata) in the high mountain
wetlands of the Northern Rocky Mountains in Larimer County
Colorado. Across the species range, boreal chorus frogs breed
in primarily ephemeral wetlands with emergent vegetation in
spring and summer. Individuals then disperse to wet meadows
to forage during the summer and early fall (Weyrauch and
Grubb, 2004). Spencer (1964) described the species’ relatively
low dispersal ability (∼600m average dispersal maxima) and
variation in site occupancy within years across our study area.
Given pond-breeding behavior and low dispersal capacity, boreal
chorus frogs are well-suited for measuring environmental limits
to genetic connectivity. Moreover, snowpack has the potential
to have a direct effect on seasonal wetland availability for
breeding montane amphibian populations (Corn and Muths,
2002; Pilliod et al., 2002). Dependent on winter snowpack
levels, spring and summer snowmelt is expected to affect the
hydrologic and vegetative conditions necessary for amphibian
productivity and dispersal success among wetlands. Is it also
expected that precipitation-driven snowmelt variation may alter
the spatial configuration of the wetland habitat (Corn, 2005).
We therefore consider spatio-temporal snowpack variation as
an important potential driver of the hydrological conditions
that could influence amphibian genetic connectivity in montane
regions.

We predicted genetic connectivity of P. maculata among
sampled breeding wetlands by within- and between-wetland
predictors, as well as wetland connectivity predictors,
using gravity models. Gravity models are network models
parameterized to include landscape-based attraction and
resistance factors to predict genetic distance. Our gravity
models also incorporated functional connectivity predictors
of species movement in spatially-explicit habitat networks to
further predict how landscape spatial heterogeneity affects
genetic connectivity. Additionally, we investigated the functional
connectivity predictors independently from the within- and
between-wetland predictors to evaluate the variation in spatio-
temporal wetland structure on the potential connectivity of the
wetland network. We hypothesized that spatial heterogeneity
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in habitat structure and inter-annual variation in snowpack
directly control wetland availability in a given year and predict
that isolation by distance does not explain amphibian genetic
connectivity as well as spatio-temporal precipitation and
functional connectivity predictors.

Methods

Field Collection
Permits for field data and tissue collection were provided by
the United States Forest Service and the Colorado Division
of Wildlife. All animal procedures in this study followed
recommendations of the Colorado State University Institutional
Animal Care and Use Committee; this study was approved and
permitted by the Colorado Division of Wildlife (# 09HP957) and
Colorado State University Institutional Animal Care and Use
Committee (# 09107A02).

We used a stratified random sample design (by elevation)
to select sites, augmented by sites used in the Spencer study
(Spencer, 1964). Of the 35 surveyed sites in the study area, 22
were occupied in 2009–2010. Eighteen sites yielded a sufficient
number of samples to be used in the analysis (n = 322
individuals, Table 1). Of the 18 sites with sufficient sample sizes
for genetic analysis, 14 were selected via the random stratification
(9/14 of these were occupied in Spencer, 1964) while 4 were
“augmentation” sites (occupied during the Spencer study but
not part of the random stratification; Spencer, 1964; Corn and
Muths, 2002). Wetlands varied in area (200–20,000 m2) and
were visited 1–3 times with the goal of obtaining 30 samples
(buccal swabs from adults, Goldberg et al., 2003) or tail clips
from larvae (Murphy et al., 2010b; Figure 1). Wetland depths

were categorized as <1m, 1–2m, and >2 m. Vegetation cover
was estimated by perceived percentage vegetative cover during
sampling. pH and conductivity were sampled at each wetland.

Genetic Data
DNA was extracted from tissue samples using a Qiagen
DNeasy96 tissue kit with minor modifications to manufacturer’s
protocol (Murphy et al., 2010b). We generated multi-locus
genotypes (n = 322, loci = 12, Lemmon et al., 2011, Appendix
S1) using the Qiagen multiplex kit, an Applied Biosystems 3730
automated sequencer, and scored fragments with Gene Marker
1.91 (SoftGenetics). We implemented a number of measures for
quality control: at least 2 negative controls per DNA extraction,
2 negative controls (no DNA) per each PCR amplification,
amplified a known genotype in each PCR reaction, re-amplified
all rare alleles (<5% frequency), and re-amplified in at least 10%
of samples to assess accuracy of genotyping. When using larvae,
varying sample size of full siblings may bias estimates of allele
frequencies (Goldberg andWaits, 2009). Therefore, we estimated
clusters of full siblings for each sample location (Wang, 2004)
and subsampled each sibling cluster (n) where n is the number
of individuals in the smallest sibling cluster for that location
(Goldberg and Waits, 2009; Murphy et al., 2010b). We tested for
Hardy–Weinberg proportions and gametic phase disequilibrium
and estimated genetic distance using Dps (Bowcock et al., 1994)
with Microsatellite Analyser (MSA) (Dieringer and Schlötterer,
2003) measured for all pairwise comparisons.

Gravity Models
Gravity models (Fotheringham and O’Kelly, 1989) are network-
based models that incorporate landscape data that potentially
influence genetic connectivity, and factors potentially influencing

TABLE 1 | Boreal chorus frog (Pseudacris maculata) sample sizes per studied wetland.

Site ID Field ID Name Adults Tadpoles Screened tadpoles Final sample size

1 3008 Laramie Lake North 9 0 0 9

2 3107 Spruce bog 3 30 24 27

3 3109 Laramie Lake South 11 0 0 11

4 3111 Spencer 7 2 0 0 2

5 3111.2 Old Highway 14 8 19 14 22

6 3112 Sylvatica 29 40 31 60

7 3113 Spencer 16 5 0 0 5

8 3114 Spencer 12 2 30 14 16

9 3114.3 Spencer 11 0 30 27 27

10 3117 Lily 19 0 0 19

11 3117.2 Mosquitos 11 0 0 11

12 3118 Matthews 13 0 0 13

13 3119 Zimmerman 1 0 31 28 28

14 3121.1 Zimmerman 6 0 27 27 27

15 3121.2 Zimmerman 5 0 5 5 5

16 3122.1 Tunnel B 0 30 14 14

17 3124 Lily Pond Lake 2 32 22 24

18 3126 Mosquito 2 2 0 0 2

Total 116 274 206 322
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FIGURE 1 | Study area: Headwaters of the Cache La Poudre River and
Laramie River, Colorado, USA. Sampled breeding wetlands are shown as
letters.

amphibian population dynamics. In this framework, functional
connectivity (Tij, 1-genetic distance, dependent variable) is
modeled as a response of three type of independent variables:
spatial distribution (distance between sites, w), at-site (network
nodes, v) characteristics representing production of flow
and between-site (network edges, c) characteristics describing
resistance to flow (Equation 1; Murphy et al., 2010a, 2015).
Parameter estimates for independent variables are μ, α, and
β respectively, where α and β may represent a vector
of variables (Anderson, 1979; Fotheringham and O’Kelly,
1989).

Tij = kvμ
i w

α
j c

−β
ij (1)

Geographic distance was included in all gravity models
as gravity models (“spatial interaction models”) assume
spatial autocorrelation (Anderson, 1979). To fit the gravity
models as singly constrained, we linearized the equation by
taking the natural log and fit using mixed effects models
(Murphy et al., 2010a) where each site has an independent
estimated intercept (k) but global estimate of all independent
variables (Murphy et al., 2010a). Singly constrained gravity
models balance information content and effective sample
size (Fotheringham and O’Kelly, 1989); they also account for
non-independence of pair-wise genetic distances (Murphy et al.,
2015).

To include spatially-explicit measures of functional
connectivity, we included three sets of predictors: (a) within-
habitat (v) and (b) between-wetland environmental predictors
(c), and by (c) spatio-temporal wetland connectivity predictors
(c). Our spatio-temporal wetland connectivity predictors
are quantified using three wetland networks: (1) a spatial
network, to evaluate connectivity of 18 occupied wetlands; (2)
a temporal network, to evaluate effects of annual fluctuations
in hydroperiod; and (3) a stepping-stone network, to evaluate
the effect of all 128 potential wetlands in the study area on
genetic connectivity. All candidate models within 2 �AIC
(Akaike’s information criterion, AIC; Akaike, 1974; Burnham
and Anderson, 2002) were considered the top models of
connectivity. A null model of isolation by distance (distance
alone) was used as a baseline for comparison. Model validation
techniques for gravity models are limited. However, our goal was
not to infer but to evaluate the relative contribution of within-
and between-wetland versus wetlands connectivity predictors
over space and time in predicting genetic distance. Accordingly,
we included �AIC values per single predictor in the top six
models as a proxy of predictor contribution to top-ranking
gravity models.

Within- and Between-site Predictors
Wetland characteristics are expected to control the number of
potential migrants. Therefore, we included within-wetland
(node) variables potentially important for recruitment:
peripheral habitat (ratio of meadow to forest), run-off
(impervious surfaces), water accumulation potential (compound
topographic index), precipitation timing (precipitation ratio),
site accessibility (relative slope position), and conductivity (see
Table 2 for description and justification of variables). All within-
wetland characteristics were measured within a 100m buffer
surrounding wetland edge. Between-wetland (edge between
nodes) variables are those that are hypothesized to promote
or resist dispersal: habitat (ratio of meadow to forest), roads
(impervious surfaces), water accumulation potential (compound
topographic index), precipitation timing (precipitation ratio),
and topographic complexity (surface relief ratio; see Table 2).
We tested for correlations among these variables and did not
include any variables with an R2 > 0.7. We found no significant
collinearity between remaining predictors using a VIF threshold
of 5. Between-wetland variables were evaluated for the 18
primary wetlands using a saturated network (i.e., each wetland
is connected to all other wetlands) where the sensitivity of land
cover types between wetlands was analyzed at multiple spatial
scales, measured as bandwidths along each network edge [30
(minimum resolution), 60, 120, and 240m buffers, Murphy et al.,
2010a,b]. Selection of the best bandwidth to use was evaluated
using AIC.

Wetland Connectivity Predictors
We incorporated wetland connectivity predictors in the gravity
models that represented wetland composition and configuration
data (i.e., wetland area, spatial position in landscape). These
functional connectivity metrics quantify the functional capacity
of the landscape to inhibit or facilitate movement and,
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TABLE 2 | Within-wetland, between-wetland, and wetland connectivity predictors.

Metric by
process

Predictor Abbreviation Calculation Description/Justification Res. (m2) Source

Topographic
distance

Distance dist Topographically-corrected vector
length

P. maculata are dispersal limited
(Spencer, 1964)

10 NED (Gesch et al., 2002)

Within-wetland
variables
(Production)

Meadow:Forest M:F_at Ratio of meadow to forest cells
within 100m of wetland

Meadow habitats have greater
water temperature and
productivity compared to forest
(Pilliod et al., 2002)

1 National Agricultural
Imagery Program (2010)

Impervious surfaces imperv_at Count of impervious cells within
100m of wetland

Runoff and pollution may limit
larval development (Sanzo and
Hecnar, 2006; Snodgrass et al.,
2008)

30 NLCD (Fry et al., 2011)

Compound
topographic index

cti_at Flow accumulation by catchment
size (Moore et al., 1993)

Water holding capacity
(Gomez-Rodriguez et al., 2009)
is related to hydroperiod

30 SRTM (Jarvis et al.,
2008)

Precipitation Ratio pratio_at Ratio of summer precipitation to
total precipitation (Rehfeldt et al.,
2006)

Summer snowpack melt is
important for wetland
persistence and amphibian
breeding (Corn, 2003)

30 Rehfeldt et al., 2006

Relative slope
position

rsp_at Position between valley (0) and
ridge (1) (Murphy et al., 2010b)

Wetland slope position may
deter dispersal and could limit
gene flow (Giordano et al., 2007).

30 NED (Gesch et al., 2002)

Conductivity EC_at Field measurement (Murphy
et al., 2010a)

Affects embryo survival (Brand
et al., 2010) and abundance
(Browne et al., 2009)

NA Field collected

Between-wetland
variables
(Resistance)

Meadow:Forest M:F_bet Ratio of meadow to forest cells Moisture promotes dispersal
(Munger et al., 1998); forests are
relatively dry (Goldberg and
Waits, 2010)

1 National Agricultural
Imagery Program (2010)

Impervious surfaces imperv_bet Mean value of built, impervious
land cover (Xian et al., 2011)

Roads may limit amphibian
dispersal (Mazerolle, 2004; Arens
et al., 2007)

30 NLCD (Fry et al., 2011)

Compound
topographic index

cti_bet Mean flow accumulation by
catchment size (Moore et al.,
1993)

Wetness may increase dispersal
because of decreased
desiccation potential (Bartelt and
Peterson, 2005)

30 SRTM (Jarvis et al.,
2008)

Precipitation ratio pratio_bet Mean ratio of summer
precipitation to total precipitation
(Rehfeldt et al., 2006)

Wetness may increase dispersal
because of decreased
desiccation potential (Murphy
et al., 2010b)

30 Rehfeldt et al., 2006

Surface relief ratio srr_bet Mean geometric surface texture
in a continuous raster surface
(Evans, 1972)

Ridges are often barriers for
amphibian dispersal (Funk et al.,
2005)

30 NED (Gesch et al., 2002)

Wetland
connectivity

Probability of wetland
connectivity (Saura
and Rubio, 2010):
spatial-breeding,
temporal-breeding,
and stepping-stone
networks

PC Probability (%) that a given
wetland contributes to habitat
connectivity/availability (sum of
Intra, Flux, and Connector,
described below)

Amphibian populations often
exist in a metapopulation where
larger, spatially clustered
wetlands are more likely to be
recolonized than isolated
wetlands (Driscoll, 1997;
Rozenfeld et al., 2008; Saura
and Rubio, 2010)

– NED (Gesch et al.,
2002); NLCD (Fry et al.,
2011)

(Continued)
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TABLE 2 | Continued

Metric by
process

Predictor Abbreviation Calculation Description/Justification Res. (m2) Source

Intra Contribution to connectivity by a
given wetland by area of
available habitat

Wetland area increases the
chance a wetland will be
encountered (Hanski and
Ovaskainen, 2000)

–

Flux Area-weighted contribution to
connectivity by a given wetland
by position in the network.

Both spatial position and wetland
area contribute to dispersal
through a given wetland relative
to other wetlands, facilitating
functional connectivity of
dispersal-limited organisms like
many amphibians (Driscoll, 1997)

–

Connector Contribution to connectivity by a
given wetland in the network by
spatial position alone.

Some wetlands, regardless of
area, can facilitate dispersal
among wetlands by highly
adjacent spatial position relative
to other wetlands, influencing
genetic connectivity (Fortuna
et al., 2006)

–

Explanatory parameters used to explain genetic distance (Dps) included in gravity model analyses and to measure the effect of climate fluctuation scenarios. For wetland connectivity
metrics, the same four metrics were calculated for each of the spatial, temporal, and stepping-stone networks.

consequentially, gene flow (Taylor et al., 1993). Functional
connectivity predictors were calculated per wetland based
on three types of network: (a) a spatial breeding network
(“spatial-breeding”) measuring static functional connectivity of
18 breeding wetlands; (b) a temporal network (“temporal-
breeding”), measuring fluctuating connectivity per breeding
wetland over time, dependent on snowpack variation; and (c)
a spatial wetland network (“stepping-stone”) measuring per
wetland connectivity considering the sum of 110 additional
suitable stepping-stone habitat between 18 breeding wetlands
(LinkageMapper v 0.9, McRae and Kavanagh, 2011) in ArcGIS
10.0 (ESRI, 2011).

Spatial-breeding network
We calculated functional connectivity of 18 breeding wetlands
for one static sampling period using the spatial-breeding
network to incorporate the effect of spatially-explicit habitat
structure on genetic connectivity in the gravity models. We
developed the network using frog-occupied wetlands as graph
nodes and Euclidean distance between wetlands as graph
edges. For each wetland, we evaluated the probability of
connectivity (Saura and Rubio, 2010, Appendix S2), quantified
as four per-wetland connectivity metrics: PC (overall), composed
of the sum of the three sub-metrics: Intra (probability of
wetland connectivity calculated by habitat area alone), Flux
(probability wetland connectivity calculated by spatial position,
weighted by area), and Connector (probability of wetland
connectivity calculated by spatial position alone, Table 2). These
metrics were constrained by a dispersal kernel, calculated
using the maximum observed dispersal distance of P. maculata
(∼600m, Spencer, 1964), but assuming that some individuals
have the capacity to surpass this maximum distance (5% of
individuals).

Temporal-breeding network
To evaluate the effect of interannual variation in wetland
hydroperiod on P. maculata genetic connectivity, we calculated
functional connectivity metrics for 18 breeding wetlands over
time using the temporal-breeding network. For the temporal-
breeding network, using the same frog-occupied wetlands as
the spatial-breeding network, we modified the “availability”
property of each wetland according to the amount of snowpack
(SNOTEL 1979-2010 Station CO05J37S, National Water and
Climate Center). We classified observed wetland permanence
(Amburgey et al., 2014), a qualitative proxy of ability for
wetlands to maintain a suitable hydroperiod for amphibian
productivity, under varying snowpack depths. We used the
average snotel snowpack depth over recorded years (average
depth= 63.5 cm) as a median threshold for wetland permanence
(Low permanence < 63.5 cm snow; High permanence >

63.5 cm snow; Neutral = no differences related to snowpack).
We designed this novel, qualitative method to classify what
conditions were most productive for chorus frogs based on
snowpack for a given site: (1) wetlands that are productive
only when snowpack is low and breeding areas are available
due to decreased water depth (Low); (2) wetlands that
are productive only when snowpack is high and breeding
areas are available due to increased water depth (High);
and (2) wetlands where production is not influenced by
the amount of water from snowpack (Neutral). We then
attributed the sum of years of available hydroperiod per
snowpack category occurring from 1979–2010: “low” wetlands
productive 15 of 33 years, “high” wetlands productive 18 of
33 years, and “neutral” wetlands productive in all 33 years.
Temporal functional connectivity predictors were quantified
using probability of connectivity metrics, as described for the
spatial network.
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Stepping-stone network
To evaluate the effect of neighboring wetlands on P. maculata
genetic connectivity we included all potential breeding sites
(110 additional wetlands, National Land Cover Dataset, 30m
resolution, Fry et al., 2011) to represent nodes in the spatial-
breeding network. Only wetlands greater in area than the
smallest neutral breeding wetland (>400m2). The resulting
stepping-stone network is the sum of the 18 sampled breeding
wetlands and 110 wetlands located within the study region
and were considered potentially suitable for intermediate
habitat, for 128 nodes. We considered all selected wetlands
to be neutral to snowpack variation for the stepping-stone
network. We calculated functional connectivity predictors as
described in the spatial-breeding network only for our 18
sampled, occupied wetlands to quantify the effect of neighboring
wetland habitat on functional connectivity on our focal
sites.

Results

Genetic Data
All 11 microsatellite loci were polymorphic, with between 7 and
26 alleles per locus (× = 14.16) and heterozygosity from 0.212 to
0.788 (× = 0.483) by locus (Table S1). Likely due to substructure,
loci were not in global Hardy–Weinberg equilibrium (HWE) or
linkage equilibrium. However, when considered on a pond-by-
pond basis, no single locus was consistently out of HWE or LD,
indicating that deviations are unlikely to be due to null alleles.
Global GST over all loci was 0.215 and was highly significant.
Pair-wise genetic differentiation metrics consistently revealed
generally significant levels of genetic differentiation with 65% of
pairwise GST comparisons significant after Bonferroni correction
(p-value 0.05), 84% of non-significant values were sites with less
than 700 meters separation. Pairwise GST values ranged from 0
to 0.370. Dps also indicated genetic structure in our study area,
ranging from 0.312 to 0.943 (× = 0.553).

Gravity Models
The 30m bandwidth of between-wetland factors had the lowest
competing AIC scores and thus was used for all gravity
analyses. The model set with the most support (8 models
�AIC values <2) included distance between sites (distance)
with within-site moisture (pratio, cti) and between-site resistance
(topography as measure by srr, pratio; Table 3, Appendix
S3). Models including surface relief ratio within-wetland or
precipitation ratio within-wetland as independent predictors
resulted in �AIC values < 2 but were not the top-ranking
models. Functional connectivity predictors from the stepping-
stone network (i.e., stepping-stone wetland connectivity) were
also important predictors in explaining the genetic connectivity
among P. maculata-occupied wetlands (PC_steppingstone_at,
�AIC < 2; Table 3) though did not explain genetic connectivity
as well independently (Table 3). Some measures of wetness
within-wetland (cti or pratio) were included in six of the
eight top models. Surface relief ratio was relevant in all of
the competing models while moisture (pratio) was the only
other metric describing differences between-wetlands that was

TABLE 3 | Gravity models that best explain genetic distance.

Variables Number of �AIC LogLik

parameters

distance, srr_bet, pratio_at,
PC_stepping-stone_at

4 0 −6.04

distance, srr_bet, pratio_at, pratio_bet,
PC_stepping-stone_at

5 0.70 −5.39

distance, srr_bet, pratio_at, cti_at,
PC_stepping-stone_at

5 0.92 −5.51

distance, srr_bet, pratio_bet, pratio_at,
cti_at, PC_stepping-stone_at

6 1.62 −4.85

distance, pratio_bet, pratio_at,
PC_stepping-stone_at

4 1.70 −6.89

srr_bet 1 1.81 −9.47

pratio_at 1 1.92 −8.20

distance 1 2.73 −9.47

pratio_bet 1 2.96 −8.59

cti_at 1 3.70 −6.96

PC_stepping-stone_at 1 9.33 −11.77

Distance was included in all models,�AIC, and log likelihood scores for competing gravity
models explaining genetic distance as a proxy for genetic connectivity. Single predictors
included in top-ranking models were added as a proxy for relative contribution of individual
variables to top-ranking models. The dashed line indicates any model that was not within
the threshold of �AIC < 2 and therefore not a top model describing genetic connectivity.
For abbreviations, see Table 2.

present in the top models (three of the eight models). Distance
alone (null hypothesis) was not in the top set of models
(Table 3).

Wetland Connectivity
Considering only wetland connectivity metrics in predicting
genetic distance, we found that the presence of stepping-
stone wetlands (stepping-stone network) was the highest
contributor to the top models explaining genetic connectivity
(Table 3). Percent-values of wetland connectivity measured using
the spatial-breeding, temporal-breeding, and stepping-stone
networks were variable perwetland (0.29–45.25%; 0.00–68.47%;
0.00–0.41%, respectively) (Table 4). For the spatial-breeding
network, wetland area and wetland spatial position in the
network (connectivity characteristics represented by the Flux
connectivity metric) contributed most to wetland connectivity
(Table 4, Figure 2A) whereby site “I” represented the most
functionally connected wetland spatially (PC = 45.24%;
Figure 2A) due to wetland availability alone (represented by the
Intra metric). Conversely, for the temporal-breeding network,
only wetland availability (measured by the Intra connectivity
metric) contributed to overall wetland connectivity (Figure 2B)
whereby site “C” represented the most functionally-connected
wetland over time (PC = 68.47%). In the stepping-stone
network, functional connectivity quantities (PC-values) for all 18
sampled sites were low (relatively low Flux, Intra and connection
values) but variable. The Connector metric did not contribute to
overall wetland connectivity (PC < 0.01%) for any wetlands in
any of the three types of networks.
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FIGURE 2 | Networks designed for wetland connectivity of Pseudacris maculata. Pie charts represent the proportion of influence by Intra, Flux, and Connector
to overall wetland connectivity. (A) Spatial-breeding network: all sampled sites were considered nodes. In this scenario, wetland connectivity is largely driven by Flux
(availability + spatial position). (B) Temporal-breeding network: all sampled sites were considered nodes, but categorized as temporal_low, temporal_high, and
temporal_neutral wetlands. Compared to the Spatial_breeding network, the temporal network is now driven by both Intra (availability) and Flux (availability + spatial
position). (C) Stepping-stone network: 110 unoccupied sites within the region were added to the 18 sampled sites. In the stepping_stone network, the Connector
fraction now becomes a driver of connectivity for sampled wetlands.

Discussion

Understanding how spatio-temporal variation in habitat
composition and configuration influences species dispersal,
colonization success, and gene flow is critical to predicting
species demographic dynamics in changing landscapes.
Variability in the state of environmental conditions on which
many species depend may have significant consequences on
individual development, population dynamics, and genetic
diversity (Funk et al., 2005; Fortuna et al., 2006; Gamble et al.,
2007). Considering future climatic and land cover changes, it
is essential we understand how fluctuations in environmental
factors affect species genetic connectivity toward prediction
of demographic and genetic shifts. We compared these
environmental factors to elements of functional connectivity
that influenced dispersal and gene flow in a population of P.
maculata over space and time, including climatic fluctuations to
address the potential impact of climate warming on the genetic
structure of populations. We found that complex interactions
among covariates (i.e., within- and between-site moisture,
between-wetland topographic complexity, underlying wetland
connectivity and fluctuations in annual precipitation), have
distinct and potentially critical roles in controlling genetic
connectivity in boreal chorus frogs.

Within-wetland Factors
Within-wetland characteristics were important in determining
genetic connectivity. Our results indicate stronger genetic
connectivity among wetlands with higher levels of water recharge
(measured by surface relief ratio and precipitation ratio),
a greater capacity to hold water (measured as compound

topographic index), and presence in all years (measured as
neutral snowpack). Indeed, based on�AICmodel results, surface
relief and precipitation were moisture predictors that explained
genetic connectivity independently better than other individual
predictors (Table 3). These moisture predictors are related to
hydroperiod duration indicating that resources are available for
breeding, growth, and development (Gomez-Rodriguez et al.,
2009). In an ephemeral habitat, the longer the hydroperiod, the
higher the probability that offspring and thus potential migrants
will be produced contributing to a greater probability of gene
flow (Husband and Barrett, 2002). We therefore suggest that
fluctuations in precipitation (snow) directly affect variability in
wetland availability and indirectly affect the conditions necessary
for frog productivity and dispersal (Driscoll, 1997; Schwartz and
Jenkins, 2000). We also suggest that precipitation flux affects
between-wetland conditions (i.e., topographic roughness) which
could confound dispersal costs (Funk et al., 2005; Semlitsch,
2008) and affect gene flow. Thus, frog populations that are
faced with annual variability in precipitation both within- and
between wetlands may rely on asynchronous dispersal dynamics
to maintain genetic diversity.

Between-wetland Factors
Two between-wetland characteristics influenced P. maculata
genetic connectivity: topography and moisture. Habitat and
landscape controls on functional connectivity are crucial factors
that facilitate species persistence and genetic diversity (Funk
et al., 2005). In a montane region with relatively high levels of
topographic roughness, amphibians are particularly susceptible
to genetic isolation (Gomez-Rodriguez et al., 2009; Murphy
et al., 2010b). Dispersal between wetlands is facilitated by more
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moisture suggesting that desiccation risk is an important limiting
factor to dispersal. Therefore, topographic roughness inhibits
amphibian movement while high-moisture landscape matrix—
controlled by snowmelt—facilitates movement for this dispersal-
limited species.

The stepping-stone wetland connectivity metrics were
considered most important in explaining genetic connectivity
despite a much lower magnitude in values relative to the
spatial-breeding and temporal-breeding networks. While
Euclidean distance alone was not a significant predicator in any
of the best models, the presence of wetland habitat between
the 18 occupied wetlands was a significant factor. Therefore,
wetland spatial heterogeneity likely interacts with fluctuating
environmental characteristics to affect amphibian genetic
connectivity. Stepping-stone habitat improves a given habitat’s
probability of connectivity regardless of that habitat’s area
(Saura and Rubio, 2010). Considering dispersal limitations of
P. maculata, the presence of stepping stone wetlands possibly
improves the probability of dispersal success and gene flow
among occupied wetlands and is likely important when there
is high topographic between-wetland resistance. This result
demonstrates the importance of the underlying habitat spatial
heterogeneity compared to fluctuations of critical environmental
factors potentially influencing population dynamics of a
dispersal-limited species.

Climatic Fluctuation and Genetic Connectivity
Our results indicate that winter snowfall is essential to the
amount and quality of wetland that is available to P. maculata
and that high snowpack results in consistent inter-annual habitat
availability for frogs. Thus, high snowpack is associated positively
with gene flow. Because chorus frogs produce large numbers of
propagules and show little parental investment, more wetland
should facilitate greater production and increased colonization
success (Corn, 2005), especially if wetter between-wetland matrix
is also available. Conversely, low snowpack might result in fewer
available wetlands and fewer stepping-stone wetlands. Thus, low
snowpack scenarios may reflect decreased habitat availability,
reduced reproduction, decreased colonization and less gene flow.
Global models of climate change predict changes in precipitation,
both in frequency and amount, and are suggested to impact
montane species dramatically (Corn, 2005; Castillo et al., 2014).

Metapopulation Dynamics
We argue that fluctuating environmental conditions in
heterogeneous landscapes have a potential role in structuring
spatially-explicit populations, and could be important
drivers of metapopulation dynamics. Theoretically, a classic
metapopulation structure is defined by interbreeding
subpopulations linked by dispersal and extinction-colonization
dynamics (Smith and Green, 2005). As metapopulations
are dynamic, they are influenced strongly by complex and
interacting landscape characteristics that affect reproduction
and dispersal capacity of individuals (Hanski and Ovaskainen,
2000). Based on the results of our study, we suggest that dramatic
changes in available habitat and resistance between habitat
patches (i.e., wetlands) influence the functional connectivity of

a metapopulation where dispersal is limited, likely controlling
genetic connectivity among amphibian subpopulations. Twenty-
two of the total 35 sites in the sampling region were occupied
in 2009–2010 (we analyzed only 18 in this study due to sample
size limitations). Thirteen of the 22 occupied sites in this study
were also occupied in an earlier study (21 total occupied sites,
Spencer, 1964). However, we found frogs at nine additional
sites that were described as lacking frogs in the earlier study
(Spencer, 1964) and did not find frogs in eight of the sites
described as occupied by frogs in the earlier study. Notably,
some of the original occupied sites sampled in the 1964 study
were no longer holding water or were considered unsuitable in
2009–2010. These observations suggest that shifts in occupancy
have taken place in this landscape over the past 40+ years,
likely due to succession and fluctuating snowpack patterns
affecting the hydroperiod and availability of suitable within-
and between-wetland habitat, similar to changes observed in
amphibian habitats elsewhere (McMenamin et al., 2008; Hossack
et al., 2015). Annual variability in precipitation (timing and
amount) influences a spatially-explicit metapopulation structure
(Hanski, 2001) because temporal fluctuations in biotic and
abiotic factors can modify the availability of population sources
and sinks over space and time (Consentino et al., 2012). If annual
variability in precipitation (i.e., snowpack) has significant control
over habitat availability, then asynchronous dynamics among
subpopulations may be required to consistently recolonize
wetlands. We expect this effect because improved connectivity
among wetlands increases the ability of individuals to disperse
and promotes genetic diversity within the metapopulation.

The effects of environmental controls on metapopulation
dynamics are not limited to amphibians (Johst et al., 2002).
For example, many turtle species are dispersal-limited and
exhibit metapopulation structure (Souza et al., 2002), thus,
environmental circumstances may be influencing their genetics.
Similarly, fragmented forests affect patch colonization and
metapopulation dynamics differently for three mammalian
species depending on the species dispersal ability (Lawes
et al., 2000), likely influencing genetic connectivity among
subpopulations. Finally, African butterflies of the genus Bicyclus
expressed coupled genetic and physiological plasticity in
seasonally-fluctuating environments (Brakefield, 1997). In
general, organismal dispersal capability seems to have an
important role in population persistence and gene flow within
fluctuating, dynamic landscapes and merits future research in
landscape genetics.

Conclusions

Our study used landscape genetic and graph-theoretic
connectivity methods to examine how interactions between
habitat spatial heterogeneity and climatic variability can
influence metapopulation dynamics. The inclusion of fluctuating
habitat conditions on species dispersal, colonization, and
genetic rescue effects is an essential contribution to advance
our understanding of metapopulation ecology. Our work
emphasizes the importance in expanding investigations of
genetic signatures of populations in dynamic landscapes for
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multiple species, metapopulations, and metacommunities.
Specifically, in a conservation context, these results hold
considerable importance in predicting species future responses
to human driven land-use and climate change. Considering the
likelihood of future climate-driven shifts in precipitation, we
expect that fluctuations in habitat availability will continue to
affect the metapopulation capacity of P. maculata and other
dispersal-limited pond-breeding species. We also expect that
similar fluctuations may be observed in different landscapes.
Empirical investigations of agricultural or urban environments
where land use and climate changes may co-occur, such as other
montane (Koscinski et al., 2009), agricultural (Youngquist and
Boone, 2014), or urban (Hamer and Parris, 2011) landscapes,
could be instructional in understanding how metapopulation
dynamics are influenced in the face of modified habitat
conditions. Reserve design strategies intended to maintain
metapopulation persistence should consider underlying habitat
spatial heterogeneity together with environmental conditions
that influence the dispersal and genetic rescue of dispersal-
limited species. Further, temporal data is an essential counterpart
to addressing asynchronous metapopulation dynamics and may
be the key driver to evaluating species persistence in future
ephemeral landscapes. Thus, combined landscape genetic and
graph-theoretic approaches to metapopulation ecology will help
achieve a more holistic understanding of the complex landscape-
climate interactions and species population persistence under
dramatic environmental change.
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