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Complex inherited phenotypes, including those for many common medical and
psychiatric diseases, are most likely underpinned by multiple genes contributing to
interlocking molecular biological processes, along with environmental factors (Owen
et al., 2010). Despite this, genotyping strategies for complex, inherited, disease-related
phenotypes mostly employ univariate analyses, e.g., genome wide association. Such
procedures most often identify isolated risk-related SNPs or loci, not the underlying
biological pathways necessary to help guide the development of novel treatment
approaches. This article focuses on the multivariate analysis strategy of parallel
(i.e., simultaneous combination of SNP and neuroimage information) independent
component analysis (p-ICA), which typically yields large clusters of functionally related
SNPs statistically correlated with phenotype components, whose overall molecular
biologic relevance is inferred subsequently using annotation software suites. Because
this is a novel approach, whose details are relatively new to the field we summarize
its underlying principles and address conceptual questions regarding interpretation of
resulting data and provide practical illustrations of the method.
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Introduction

“. . .essentially all models are wrong, but some are useful”

George Box and Norman Draper in ‘Response Surface

Methodology’

(Box and Draper, 1987)

Just as we would not argue that complex traits at a brain
level were represented by a single region or cell type, but
rather by an interplay between multiple networks (Calhoun
et al., 2009a; Williamson and Allman, 2012), similarly complex
inherited phenotypes such as many common medical and
psychiatric diseases are unlikely to be underpinned by a
single gene, but rather by multiple genes contributing to
interlocking molecular biological processes in association with
environmental factors (Sullivan, 2012; Ridge et al, 2013).
However, despite general agreement on this context, current
strategies used to genotype complex, inherited disease-related
phenotypes are almost exclusively predicated on univariate
analyses. Such approaches include genome wide association
studies (GWAS) that most often identify single risk-related
SNPs or loci, rather than the underlying biological pathways
(Meda et al., 2014). While GWAS of very large samples have
usefully detected associations of common SNPs and of common
neuropsychiatric disorders, they are much less useful in revealing
those pathophysiological molecular mechanisms necessary to
guide development of novel treatment approaches. Strategies
employed in an attempt to move the field beyond this logjam
include at the phenotype level, classifiers that cross diagnostic
boundaries (such as psychosis) or putatively simpler markers
of biological disease predisposition such as endophenotypes
(Tamminga et al., 2014). At the genotype level, this article
explores the use of multivariate analysis strategies, in particular
parallel independent component analysis (i.e., simultaneous
combination of SNP and neuroimaging information). The output
of these analyses typically yield clusters of functionally related
SNPs that are statistically correlated with phenotype components
and whose overall molecular biologic relevance can be inferred
through using annotation software suites such as BioCarta'or
KEGG?. We believe that multivariate approaches like parallel
ICA (p-ICA) are promising, but they are not yet familiar to
many investigators. Thus this review attempts to summarize their
underlying principles and use, to address conceptual questions
that arise regarding their interpretation and to provide practical
illustrations.

In order to achieve this, we first recapitulate briefly arguments
regarding the genetic architecture of common complex medical
disorders, difficulties encountered in applying univariate models
to these illnesses and their appropriateness as targets of study
for multivariate genetic strategies. To expand the latter point,
we review the benefits of network-based approaches to study
complex inter-related patterns, and argue that in the case
of multi-model imaging and genetics data, it is significantly
more informative to analyze these domains jointly rather than
separately. We next provide a series of sections detailing an

Lwww.biocarta.com

2www.genome.jp/kegg

overview of p-ICA approaches, with examples and numerous,
detailed practical instances. Finally, we address the issue of
replication when employing these approaches, as well as ongoing
issues in need of solution and summarize some future directions
for p-ICA.

Common Disease Common Variant
(CDCV) Models and Their Validity

To date, p-ICA approaches have been applied most often
to neuropsychiatric disorders, although as we explain below,
common complex medical disorders in fact cover many disease
domains. As a general rule, major psychiatric disorders including
schizophrenia and autism display similar inheritance patterns to
common medical conditions, e.g., type-II diabetes, asthma, or
inflammatory bowel disease, characterized by both fairly high
heritability and genetic complexity (Pearlson and Folley, 2008).
This view is somewhat oversimplified, as more exact heritability
measurements can be given, see, for example, the paper from (Lee
et al., 2013). Despite high heritability, generally, most affected
individuals have negative family histories of the disorder, and
simple Mendelian genetic models are inapplicable (Risch, 1990).
Remaining genetic inheritance models subsume various possible
combinations of number, frequency, penetrance, and effect size
of genetic risk alleles (Wray and Visscher, 2010), including
numerous common genetic loci.

In these conditions, cumulative evidence suggests that a
common disease common variant model (CDCYV) still accounts
for many cases of these disorders. This model presumes multiple,
[likely hundreds or thousands (Wray and Visscher, 2010)] of
possible variants of low individual risk, that both evade the
threshold of detection and have sufficiently weak individual
effects to escape elimination by natural selection. Another
statement of this hypothesis is that some among the common
genetic variants in coding and regulatory portions of genes,
that are individually evolutionarily neutral or of low penetrance,
in combination (either additively or multiplicatively) lead to
susceptibility to complex polygenic disorders.

In addition, uncommon, non-SNP structural variants of
moderate effect size [mutations/duplications/deletions, including
copy number variations (CNVs)] account for a proportion of
cases of schizophrenia, autism, epilepsy, and intellectual disability
(O’Donovan et al., 2009), albeit rather non-specifically. Rare-
variant/large effect size and CDCV models are not mutually
exclusive; likely, both possess independent explanatory power
and can be combined in a “mixed economy, e.g., (Reich and
Lander, 2001; Schork et al., 2009; Xu et al., 2009; Owen et al,,
20105 Visscher et al., 2012). In future, it is likely that p-ICA will be
applied to additional non brain-based common complex diseases.

Univariate Models and Their Limitations

One reason that multivariate techniques such as p-ICA are
gaining traction as alternate analytic techniques is due to
limitations in univariate genetic models when applied to common
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complex disorders. Univariate approaches generally presume
large subject populations (typically for psychiatric disorders
in the tens of thousands) and comprehensive SNP sampling,
representing a significant proportion of common genomic
variation. If a major assumption of CDCV models is correct,
i.e., that genes individually conveying modest risk for a disorder
combine, (perhaps epistatically), then univariate GWAS-like
approaches likely detect only the “tip of the iceberg,” i.e., the very
small number of individual genetic loci conveying the greatest
detectable disease risk in that analysis. Multiple associated
genomic markers reported for particular phenotypes to date
that both transcend appropriate significance thresholds and
replicate in independent samples, generally explain only a small
proportion of the total genetic variability, are frequently scattered
across multiple genomic regions and have unclear biologic
functions. The remainder of the “iceberg” remains submerged,
[with the gap between phenotypic variation explained by all
associated variants and estimated total heritability, termed
“missing heritability” (Visscher et al., 2012)].

Because individual genes frequently participate in multiple
molecular biologic pathways and often contribute to risk for
several brain-based disorders, it is difficult to infer relevant
functional pathway(s) from the small number of genes typically
implicated in GWAS. Univariate approaches are unlikely to
detect epistasis (Frazer et al, 2009); none have done so to
date (Frazer et al, 2009; Ke, 2012). For both height (Visscher
et al,, 2012) and for schizophrenia (Purcell et al., 2009; Ripke
et al., 2011) evidence points to many variants with very small
effect sizes failing to reach statistical significance, even with
very large sample sizes, but where significant variation is
accounted for by all associated SNPs, e.g., 23% of variation in
schizophrenia liability is captured by SNPs (Lee et al., 2012),
mostly common causal variants, (although SNPs identified to
date explain a much smaller proportion of risk). Additionally,

gene-gene interactions are likely important, even for some
Mendelian disorders such as Marfan syndrome (Kaiser, 2012).
Investigators have used strategies including generalized additive
models for GWAS (Jia et al., 2012), for gene set enrichment
analysis of GWAS data, adjusting for gene length or SNP
number bias, in order to help determine the underlying
biological significance of multiple SNPs derived from GWAS.
Such models do not address interactions among the selected
SNPs (testing the lump sum significance), however. Currently,
neither individual genes identified in univariate analyses nor
the discovery of CNVs alone can provide details of the full
“diseasome” (Frazer et al., 2009) model, (that aims to provide
a comprehensive representation of the relationship between a
given disease and its interrelationship with genomic factors), or
provide a useful understanding of the remainder of the “iceberg,”
especially so for gene-gene interactions. These deficiencies
prompt a need for multivariate-based approaches, that we
describe below and amongst other features are sufficiently
statistically robust to be informative in smaller sample sizes
[typically in the hundreds or low thousands, that fit real-
world circumstances (Ripke et al, 2011; Visscher et al,
2012)].

Benefits of a Network based Approach
(Networks versus Points)

Multivariate approaches (Calhoun et al., 2009b; Hardoon et al.,
2009; Purcell et al.,, 2009; Vounou et al,, 2010; Le Floch et al,
2012; Liu and Calhoun, 2014) have a benefit over univariate
approaches as their focus is on inter-related patterns not
unrelated points (see Figure 1). This makes them ideally suited
for identifying complex, but potentially weak, effects buried
in a high-dimensional data set. Another way of describing a

Univariate

@ Linked data based on
correlation done
separately for each point

Multivariate

&% Related patterns
or linked data based on
Cross-correlation

Dataset 1 inspace

linked dat:

FIGURE 1 | Univariate approaches are focused on single points of relation whereas multivariate approaches like parallel ICA (p-ICA) focus on links
between patterns (e.g., weighted combinations of brain regions and weighed combinations of genetic variables.
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multivariate result (or an independent component) is to call it
a ‘network.” Some explanation is needed as the term network
is used widely and with varying definitions across different
scientific fields. For example, in the fMRI field, network is used to
designate variously (1) regions correlated with a common seed-
point (Biswal, 2012), (2) temporally coherent regions from an
ICA analysis (Calhoun and Adali, 2012), or (3) a graph-based
construct based on correlations among nodes and edges (which
may come from voxels, regions, or components; Yu et al., 2011,
2012a,b). The first two cases provide example of a univariate
approach and a multivariate approach. A simple illustrative
example in (Erhardt et al, 2011) showed that in the case of
a univariate approach, e.g., seed-based cross-correlation, one is
only guaranteed that a given voxel is correlated with the seed, but
no assurance that any of the network voxels are correlated to one
another.

ICA (Comon, 1994) is a model-free/data-driven computational
method, based on blind source separation, used in signal
processing for separating a multi signal into
additive subcomponents. A frequently cited example is the
“cocktail party problem,” where one “voice” needs to be
separated from the noisy background. ICA assumes that
sub-components are statistically independent and that all
but one are non-Gaussian. The non-Gaussian assumption
is convenient as it also has the effect of assuming a small
number of voxels and/or SNPs will have large contribution
to a given component. In contrast to principal components
analysis, which determines the maximal separation of
components using second order statistics, ICA determines
solutions that maximize independence, using higher-order
statistics.

In contrast to univariate analyses, because an approach
like ICA estimates all the variables jointly, by definition the
voxels in the ‘network’ are functioning coherently with one
another. This property of ICA methods (and in extension,
p-ICA) provides three major benefits. First, it helps with
interpretation, as one can accurately assume the region (or
genes) in a given component covary together. Secondly, it
provides robustness to noise. For example, again to draw
on the fMRI example, correlation-based approaches can be
‘tricked” by phenomena such as phase randomized noise
which can appear to represent real signal (Handwerker et al.,
2012). However, in the case of ICA, the assumptions are
stronger in that one is identifying patterns and thus the
same type of randomized noise will not resemble real signal.
This is not to say that ICA-based methods are impervious to
noise, but they do tend to be more robust than univariate
correlation as they are working with patterns rather than
just paired relationships. ICA-based methods are not the
only approaches that have this advantage, for example, other
multivariate approaches becoming widely used include sparse
reduced rank regression (Vounou et al, 2010) and sparse
canonical correlation analysis (Lin et al., 2014a,b). And finally,
because the statistical testing is done at the level of networks,
correction for multiple comparisons is appropriately based on the
number of network tested, rather than the number of SNPs or
voxels.

variant

Such approaches are able to capture multiple links among
genetic factors; this can include population effects but also weaker
effects of interest or links among patterns of genetic data and
patterns of phenotypic data. Finally, p-ICA enables analyses of
whole-brain imaging genetics, that PLINK does not (Purcell et al.,
2007). The sections immediately following lay out the theoretical
background and practical implementation of p-ICA approaches.

Why Parallel? The Benefits of Performing
Data Fusion

Why should we analyze multimodal imaging and genetics data
jointly, instead of just analyzing each domain separately? A
useful thought experiment is to consider identifying a single
relevant genetic factor and correlating it with all brain voxels
across subjects to identify a putative intermediate phenotype.
This is obviously informative differently than looking separately
at which brain regions show group-related activity changes
and which genetic factors show group-related differences.
Such an analysis is a type of data fusion, because both
data sets are used to estimate a result. Such approaches can
provide improved ability to distinguish patients versus controls,
for example, by capitalizing on the joint information (see
Figure 2).

Parallel ICA vs. ICA

ICA is an approach that takes one data set and identifies
components that are maximally independent of one another. In
contrast, p-ICA extends this by applying ICA to two datasets

Parallel ICA

' Histogram showing
joint information
improves sensitivity

Symptoms Q e
@ orDisease
Indicators

Selections of
related patterns
based on links
found in focus area

Gene Data

° Joint Distribution
@ Variate 1
@ Variate 2

Brain Data

FIGURE 2 | The benefit of a joint analysis is we can capitalize on the
joint distribution of (in this case) the imaging and genetic data,
something that can provide a better ability to discriminate health and
disease. \When we have two data sets, each with numerous variables, we
could compute huge numbers of cross-correlations (adjusting for requisite
multiple comparisons). Here, p-ICA displays a definite advantage, providing
both a means to identify relationships among two very large data sets, while
simultaneously identifying the most relevant variables representing this
information, (i.e., simultaneously performing data reduction).
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jointly, while also incorporating a term that tries to identify links
among the two datasets. In the context of p-ICA, the goal is
to identify maximally independent networks from two or more
data sets simultaneously, as well as identifying links among them.
This is done by jointly maximizing several ‘cost functions, one to
specify the independence among networks in each of the data sets
and a second that specifies the link among networks across data
sets (e.g., the correlation among pairs of networks across data
sets). These steps are accomplished together in a single algorithm
(see Figure 3: Block diagram showing the steps involved in p-ICA
including (1) identification of maximally independent patterns
within each modality, and (2) identification of the possible
links among the multimodal patterns. The ICA optimization for
genetics (mathematically described by F1, where Y1 is the genetic
data) and magnetic resonance imaging (MRI; mathematically
described by F2, where Y2 is the MRI data) are shown in the
blue and brown boxes, respectively. W1 refers to the unmixing
matrix for the genetic data and W2 refers to the unmixing matrix
for the MRI data. The link among these two ICAs is described
by equation F3, where Aij are the ICA loading parameters for
datatype i and subject j. F1-F3 are solved for simultaneously,
providing maximal independence within genetics data, MRI data,
as well as the link among the two, hence the name p-ICA).

One of the reasons for a joint optimization in this way is
it enable us to combine data types that have different ranges
and properties, reducing it down to a maximization of two
entropy terms (one for neuroimaging, one for SNPs) each of
which controls the independence among the components within
each data-type, and a cross-correlation among each data-type’s
component loadings, providing a normalized measure of the
strength of the relationship among each modality for each
component pair, (see Figure 4).

Parallel-ICA is designed for multimodal processing,
and extracts components using an entropy term based on
information theory to maximize independence and enhances
interconnections among components by maximizing the linkage
function in a joint estimation process. This technique can
identify and quantify associations between two sets of features
(e.g., functional MR], structural MRI, genes, behavior, etc.) and
determine significance, typically in a patient-versus-control
context embedded in the components.

Consider a specific case in which we have an fMRI contrast
image (consisting of the percent signal change in each voxel
associated with a given task) and a SNP array (where values can
be coded as —1, 0, or 1 to reflect homozygous or heterozygous
states [e.g., AA, (aA or Aa), and aa] (Calhoun and Adali, 2009).
In this case, in order to provide a more tractable model, the
fMRI data are reduced to a contrast map instead of including
the full space-by-time fMRI data. This is called a feature-based’
analysis, where a feature of interest is extracted from the original
data and then submitted to the data fusion algorithm (Calhoun
and Adali, 2009). Though it is also desirable to consider a model
that can capture the full fMRI data and the SNP data at once,
the feature-based approach makes the problem considerably
easier and provides a relatively parsimonious solution still
enables us to capture the joint information among multiple
high dimensional data sets. Feature-based solutions have been

shown to work well with multiple types of data (Calhoun and
Adali, 2009), and enable one to emphasize a particular, salient
aspect of the data while still capturing relevant information
such as the presence of major temporally coherent networks
in the fMRI data (Calhoun and Allen, 2013). In general, a
feature includes multiple variables (e.g., voxels or SNPs) for
each subject and is organized for a group of subjects as a
subject-by-feature matrix. The associations between the two
types of data are made based on inferring a correlation or link
across subjects (e.g., subjects with a certain linear combination
of SNPs also tend to show a certain linear combination of
voxels). Such an approach enables p-ICA to be used with
various types of modalities including fMRI (Liu et al., 2009b),
structural MRI (gray matter, white matter; Chen et al., 2013a),
electroencephalography (EEG; Liu and Calhoun, 2007), gene
expression, methylation (Liu et al., 2010, 2014), or metabolomics,
quite straightforwardly.

An Informative lllustration of Parallel ICA
and Common Preprocessing

Let us start with a simple case where we have 10 SNPs for
each of 100 subjects. The SNPs are represented by a matrix
X;,i where s indicated the SNP number (from 1 to 10) and
i indicates the subjects (from 1 to 100). Consider also an
fMRI contrast image with 10 voxels represented by a matrix
Y,i where v represents the voxel number (from 1 to 10)
and i represented the subjects (from 1 to 100). In the case
of p-ICA we want to find a representation of the data that
includes SNP components, each of which can be considered
a ‘pattern’ of SNPs and fMRI components, each of which can
be considered a pattern of fMRI voxels. Mathematically we
can write X = AS, Y = BT where A and B are called mixing
matrices that indicate the degree to which each subject’s SNP and
fMRI data are represented by the respective components. The
components are noted as S and T for SNPs and fMRI voxels,
respectively. The link, more precisely the correlation between
mixing matrices A and B, reflects whether or how strongly a SNP
component is associated with a fMRI component in a way that
how the SNP component is expressed in subjects is related to
how the fMRI component is expressed in subjects. The p-ICA
models suggest that analyses work most validly within certain
ratios of genotype-to-sample size, limited by detection power
for reasonable effect sizes (Liu et al., 2008). Currently more
than 5 million SNPs across the whole genome can be genotyped
simultaneously; sequencing can achieve about 3 billion genetic
markers. However, not all available markers are useful for
association analyses. Thus, several standard preprocessing steps
should be applied before implementing association tests, to
minimize low quality data and remove irrelevant variables, using
suggested guidelines for quality control of genetic data (Anderson
etal., 2010).

One recent illustrative example of an interesting, novel
result yielded by p-ICA derives from analysis of a functional
functional magnetic resonance imaging (MRI) data set in a
genotyped population of ~550 psychiatric probands suffering
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FIGURE 3 | Weighted combinations of brain regions are linked to weighted combinations of genetic variables which can then be tested for
associations with variables of interest (e.g., disease status, symptoms). Components extracted by p-ICA are a linear weighted combination of all
variables. Each variable’s weight indicates its contribution to the component, and helps to interpret it. For instance, the genetic component, perhaps formed
from thousands of SNP markers, is mainly contributed to by top-weighted markers. The remainder, with much lower weights do not markedly affect the
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from schizophrenia or psychotic bipolar illness, plus healthy
community controls who underwent resting state MRI scans
to identify imaging-genetic relationships (Meda et al., 2014).
It is known that the brain’s default mode network (DMN) is
highly heritable and shows abnormalities in many psychiatric
disorders including schizophrenia and bipolar illness. However,
genes underpinning DMN patterns in healthy and ill individuals
remain mostly unknown. In the above investigation, P-ICA
subdivided the DMN into five sub-networks, that were
significantly associated with five different SNP components.
Several of the highest-ranking SNPs across these networks
derived from genes that had previously been identified as
contributing risk to psychosis and/or mood disorders in
large-scale GWAS studies. More pertinently, global enrichment
of SNPs from the genetic components highlighted processes
implicating specific neurotransmitter, developmental and
other relevant central nervous system biologic pathways
including NMDA-related long-term potentiation, axon guidance,
synaptogenesis, immune-mediated neuronal response signaling
and protein kinase A. Highly enriched network processes
included cellular signaling, neurodevelopmental and transport
networks containing axonal guidance and cell adhesion
processes, consistent with pre-existing hypotheses implicating

membrane scaffolding and neuronal cell adhesion proteins as
important contributors to susceptibility for both schizophrenia
and bipolar illness. Thus, in addition to confirming several
known schizophrenia risk genes previously derived from
GWAS, the study also highlighted additional genes acting in
synchrony that acted as signposts to biologic processes that are
consistent with leading hypotheses in the etiology of psychotic
illnesses.

Common Practical Issues in
Implementing p-ICA

After initial preprocessing and quality control steps, hundreds of
thousands of SNPs can remain. Different dimension reduction
strategies can be applied, each with accompanying limitations.
Since adjacent SNPs are likely inherited coherently forming a
linkage disequilibrium (LD) block, SNPs within such blocks
present redundant information from an association viewpoint
and can be reduced by including one SNP within each LD
block. However, we do not know which SNP is more likely
to be causal, thus, one must check the removed SNPs when
interpreting findings from reduced data. Otherwise, grouping
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and/or selection of SNPs can be based on functional locations
such as exomes or promoter regions, assuming known functional
active regions are a specific focus of the study. Second, based
on hypotheses and known gene/pathway functions we can
limit analyses to SNPs within specified pathways or genes,
e.g., KEGG pathways/annotations, or restrict SNPs to those
deriving from genes with known annotations/functions. Then,
association analyses become partially hypothesis-driven and
partially data-driven, (located along the spectrum between
completely data-blind ICA-based models versus more-informed
hypothesis-driven approaches). Limiting SNP input to biological
pathways does not exclude finding new disease-related genes,
but lowers the odds of discovering a true positive located
in a previously unknown biological pathway. The penultimate
approach selects data available from large, publicly available
genetic consortia, such as the Psychiatric Genomics Consortium
(PGC)’, limited to SNPs with potential impact on phenotypes
of interest. For instance, after conducting univariate tests
on individual SNPs associated with particular diagnoses in a
large population sample, we select SNPs with relatively liberal
association levels with diagnoses (e.g., p < 0.05 uncorrected)
and perform multivariate analyses with another intermediate
phenotype like brain imaging, in a different, smaller sample.
Though still pre-filtering, this involves relatively less bias and
less weight on prior predictions. Finally, p-ICA restricted to
genes previously discovered or linked to particular diseases
(e.g., the Broad Institute’s Psych Chip*), could discover new
multivariate relationships between genes and traits without
facilitating new gene discovery. The Psych Chip is an inexpensive
genotyping chip manufactured by Illumina covering ~240 K tag
SNP markers and equal number of exome-focused markers, in
order to augment coverage of common SNPs in psychiatrically
relevant regions while simultaneously augmenting coverage
across rare CNVs to focus on psychiatrically relevant very
rare variants not present on the Exome chip. It contains
~50 K common variants (GWAS) relevant to multiple common

3www.med.unc.edu/pgc

“www.med.unc.edu/pgc/psychchip

psychiatric disorders, based on information from the Psychiatric
Genetics Consortium (PGC®), whose purpose is to conduct
mega-analyses of genome-wide genetic data for psychiatric
disorders.

The next sections reviews series of other important steps in
conducting a successful p-ICA.

Selecting the Optimal Number of Components

In practice, the number of components embedded in genetic or
phenotypic data is usually estimated beforehand, and associations
between components then evaluated through p-ICA. Different
strategies are applied to optimal estimation of component
number within any observations. The information theory-based
Akaike information criterion (AIC), model -selection approach
(Akaike, 1974) is used to improve estimation of the number
of independent components. Similarly, minimum description
length (MDL) measures constitute another information theoretic
approach for model selection which determines the model
order by compressing the data-based on regularities while
avoiding overfitting. MDL approaches are designed to strike
a balance between variance explained by components and
degree of freedom imposed by adding more components.
Stability of extracted components also helps to decide how
many components should be studied. Specifically designed for
neuroimaging data, ICASSO (somewhat confusingly, not an
acronym), software investigates the reliability of ICA estimates by
clustering and visualization, to visually and quantitatively select
components with tight clusters, indicating good stability under
different conditions (Himberg et al., 2004), to help improve the
reliability of the estimated independent components.

For SNP data, an analogous method has been used (Chen
et al., 2012), which runs ICA deposition with a large range of
component numbers, and derives a peak indicating the most
reliable results. In addition, N-fold cross-evaluation or sub-
sampling can select the number of components with highly
verified (repeated) results (Chen et al., 2012; i.e., components
and correlations derived from p-ICA runs on subsamples are

>www.med.unc.edu/pgc
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consistent with the best estimation of component number).
Overall, there is no ground truth, although different estimation
methods from those above can be combined and contrasted to
make the final call, aiming at reliably and maximally extracting
the information embedded in the data.

Strategies for Dealing with Ethnicity

Large sample-size is desired for genetic and imaging studies,
and researchers are loath to remove samples from analyses.
However, another challenge derives from using heterogeneous,
multi-racial/ethnic sample pools. Self-reported race/ethnicity
is collected for genetic studies and confirmed/updated from
genomic data or ancestry-informative markers. Through
principal component analyses (PCA; Pearson, 1901; Price et al,,
2006) or multidimensional-scaling (MDS), factors representing
population structure can be identified and referenced to known
population background from HapMap3 (Duan et al, 2008)
or the 1000-genome project (Kuehn, 2008) using software
applications, e.g., EIGENSTRAT and PLINK MDS function
(Price et al, 2006; Purcell et al, 2007). These factors are
continuous variables, not categorical races, reflecting genetic
admixture in samples (Maand Amos, 2012). Population
structure should be controlled for in association studies of
heterogeneous samples. One approach is to reconstruct genetic
data after removing principal components associated with
race (Price et al, 2006; Liu et al., 2010). p-ICA is applied to
reconstructed genetic data and imaging phenotypes. Another
approach is to covary out race factors when correlating
component loadings derived from p-ICA (Chen et al,
2012). Finally, one should conduct separate analyses for
homogenous subgroups (a single-race cohort), if sample size
allows, as this serves as verification for heterogeneous large
samples.

Correcting Statistically for the Fact that
Larger-Sized Genes Possess more SNPs
Unbalanced gene size has raised concerns in multivariate genetic
studies based on gene-set or pathway enrichment tests (Mirina
etal., 2012). Large genes generally possess more SNPs, even after
SNP pruning in LD. When a test is based on the frequency
of genetic variants of interest (i.e., count the total number of
SNPs in a gene to be associated with a phenotype) against a
null hypothesis, gene size may bias test significance, requiring
adjustment. However, this affects factor-based analyses like
p-ICA differently. Components/factors are extracted based on
variances carried, and usually SNPs in LD (sometimes in a gene,
but sharing a similar variation pattern), are grouped into one
component. Association tests between genes and phenotypes are
based on components, thus significance level is not inherently
biased toward large genes. However, a large gene, possessing more
SNPs, may carry a large variance across the sample, leading to
a higher probability of it being extracted as a block, potentially
missing smaller variance associations related to the phenotype.
This is the same limitation facing p-ICA when dealing with very
large-dimensional SNP data in a relatively small sample size (e.g.,
>100 K loci with 200 samples; Liu et al., 2008). Solutions (in
addition to dimensionality reduction discussed above), include

integrating prior knowledge as a reference, to guide ICA to search
for components close to a provided reference function. This
method, “p-ICA with reference,” was applied to a schizophrenia
study (Chen et al, 2013a). p-ICA with reference is a hybrid
data and hypothesis-driven approach; the selection of reference
may derive from a gene of known relevant function or GWAS
results.

Understanding the Output of Parallel ICA,
Including Significance Values

Parallel ICA extracts components for each data modality
and finds the correlated pairs of components between the
two modalities. P-values can be computed using standard
general linear model approaches or bootstrapping for testing
the phenotypes against the subject loading parameters output
from p-ICA. The significance of correlation value should
be corrected for all possible combination of pairs between
the two modalities, e.g., if 5 components are extracted for
phenotypic data, and 10 components for genetic data, then the
significance should be corrected for 5 x 10 tests. Permutation
test also can verify the significance of observed correlation
in the data. Through permuting the sample, breaking down
the coordinate between genetic and phenotypic data, random
associations between genotype and phenotypes will produce
a null distribution, based on which an empirical significance
can be obtained for the observed correlation (Chen et al,
2012; Liu et al., 2012). The brain imaging and genetic patterns
are weighted, thus even for identified linked patterns, certain
highly weighted SNPs or brain regions may contribute more
or less. They can also have negative or positive values, thus a
brain region may be negatively associated with (or subtracting
from) the overall pattern. Likewise, a given SNP may make
a positive or negative contribution to the overall pattern.
The sign in the case of the SNP data, taking into account
how the SNP was originally coded (e.g., if AA, aa and aa
are coded as —1, 0, and 1, then a positive weight indicates
that allele A contributes negatively to the overall pattern),
explains whether minor (A) or major (a) allele positively or
negatively relates to the overall pattern, in other words leads
to an increases or decrease of the pattern. Thus, once the
set of weights is identified, it is straightforward to query any
individual SNP for its positive or negative contribution to
the overall pattern, which is helpful for the interpretation of
any significant effects. Likewise, the subject loading parameters
indicate the degree to which an individual subject contributes
to the overall pattern of weighted brain regions or SNPs.
This enables us to directly test for, e.g., group differences in
the loading parameters using standard statistical tools (e.g.,
regression, ANOVA). A key difference between the massive
univariate approach and p-ICA, is the testing is done at the
network level, and thus significance values are corrected for
the number of networks rather than the number of SNPs or
voxels. Regarding component ordering, in p-ICA components
are typically ordered by their inter-modal correlation. Other
choices are possible as well such as their correlation with a
variable of interest (e.g., diagnosis, symptoms, age). Sorting
by eigenvalue is not particularly useful for ICA as ICA
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does not maximize the eigenvalues in an ordered way like
in PCA.

Is ICA Modeling Linkage

Disequilibrium?-Limiting LD Structure and
Detecting Epistasis

Linkage disequilibrium patterns describe population genetic
structures, a haplotype distribution, primarily modeled as a
pair-wise association for nearby SNPs. p-ICA is ultimately
interested in SNP patterns correlating with phenotypes, e.g.,
brain data. These are driven both by correlation between
SNPs (correlated SNPs are grouped into one pattern) and by
allele distribution or portions thereof. Gene-gene interaction,
epistasis, and unclear inter-genic regulatory mechanisms all can
contribute to such patterns. LD structure can be limited by
selecting one SNP per LD block, ICA can also extract SNP
patterns related to phenotypic variation or disease. Regarding
epistatic (non-linear) effects, though p-ICA is a linear mixing
model, it is also a data-driven approach, thus it can still
pick up the impact of epistatic effects within the estimated
component patterns. For example, there is no requirement
that loading parameters vary linearly among subjects, thus if a
set of SNPs exhibit synergistic epistatic effects we should see
a superlinear relationship of the loading parameters. Future
work can more explicitly (and presumably more optimally)
attempt to capture non-linear relationships, for example a
non-linear ICA algorithm can be incorporated within p-ICA
(Castro et al,, 2015) or we could code the SNPs differently (for
example two variables can be entered for each SNPs (coding
for dominant/recessive models) to enable p-ICA to pick up
dominant/recessive epistasis).

Interpreting Rank Order of SNPs within a
Component

Selecting top-weighted SNPs for interpretation of the genetic
component involves: (1) z transformation of weights, and (2)
thresholding top weighted markers. This threshold can reflect
the most significant, for instance, 1%, | Z| > 3, or an
inflection point of weight distribution (which decision depends
on context as to whether this is sensible for a particular
study). The thresholding decision is critical, especially for further
pathway enrichment, because the lower the z-threshold defined,
the greater the number of genes carried forward for pathway
enrichment, raising the possibility of finding false positives. One
exploratory strategy is to analyze pathways at different thresholds
and report/emphasize those commonly significant. Various
software suites use slightly different criteria for annotating
genes.

Genetic annotation analyses can be used to aid interpretation
of genetic findings. Testing for over-represented canonical
pathways provides evidence about their known molecular
function. Grouping top markers into clusters based on
their known direct or indirect interactions helps identify
associated genetic networks. Such tools include commercial
software suites, e.g., Ingenuity Pathways Analysis (IPA)S,

www.ingenuity.com

Pathway Studio’, and Metacore (formerly GeneGo®), and
freely available programs, e.g., DAVID®’, ConsensusPathDB-
human', and PANTHER!. The widely used IPA is built
on its own knowledge base, a repository of expertly curated
biological interactions and functional annotations created
from millions of individually modeled relationships between
proteins, genes, complexes, cells, tissues, drugs, and diseases.
It presents enrichment tests from different aspects and
biological levels, including molecular/cellular function,
system development, canonical pathway, network, and
diseases/disorders. DAVID is freely available and widely used;
providing flexible tests, including enrichment and classification,
using combined databases, e.g., Kyoto Encyclopedia of Genes
and Genomes (KEGG), GOterm, BioCarta (Huang da et al,
2009).

In brief, functional annotation is a means of identifying
functional over-representation of genes associated with particular
biological classifications to identify underlying biological themes.
Software suites allowing such classifications have to account
for the fact that genes/gene products often contribute to
multiple biological pathways/systems and that hundreds or
thousands of genes can act in parallel in a particular process.
Gene ontologies are structured, controlled vocabularies that
describe biological processes, molecular functions and cellular
components associated with gene(s), i.e., the roles of genes. Such
functional annotation/gene ontology pathways are relatively early
“works in progress,” particular genes may participate in multiple
biologic pathways, many remaining to be fully elucidated.
Pathway analyses rely heavily on collected knowledge bases which
have more or less complete up-to-date information on gene
annotation, gene function, pathways, protein interaction, diseases
association etc. Yet, knowledge we have is incomplete and rapidly
changing (Khatri et al., 2012). Different software versions may
produce different results, depending on available information
(Henderson-Maclennan et al., 2010); reporting software versions
used and analyzing data with two or more releases of the same
software are strongly recommended.

Data-driven multivariate methods such as p-ICA have been
usefully employed to assess mutual information between MRI
and genetic data (Nymberg et al, 2013). Examples include
(Liu et al., 2009a; Decoster et al.,, 2012; Meda et al., 2012,
2014). For example, in the Alzheimer’s disease Neuroimaging
Initiative (ADNI) data set, structural imaging and genetic
data from late-onset Alzheimer’s disease (LOAD) and healthy
control subjects identified SNP components whose pathway
analysis included genes already known to contribute to LOAD
risk (e.g., APOE4) or involved in LOAD-related pathologic
processes, including inflammation, type-2 diabetes, obesity and
cardiovascular disease, plus significant novel genes. Analogously,
p-ICA investigations of P300 amplitude identified SNPs from

7www.ariadnegenomics.com/products/pathway-studio

8http://thomsonreuters.com/en/products-services/pharma-life-sciences/systems-
biology.html

®david.abcc.ncifcrf.gov
10¢pdb.molgen.mpg.de
"'www.pantherdb.org/
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noradrenergic and dopaminergic genes in accord with prior
models (Liu et al., 2009a), as well as SNP’s subsequently replicated
by others (Decoster et al., 2012). Previous studies report that
7-25% of variance may be captured by a given SNP-fMRI pair,
though this number is data-dependent.

What Constitutes Replication in p-ICA?

This issue is important because of frequent non-replications in
univariate genetic studies. Showing reproducibility is important
especially when dealing with datasets containing multiple
variables, also with independent data and in different labs.
Approaches include formal cross-validation (e.g., leave-N-out)
or split-half analysis. Characterizing robustness of findings
to different software settings, data and preprocessing steps
is important, and is one motivation for providing p-ICA
tools via a freely downloadable software package, FIT'">. One
straightforward replication metric is examining results from
either leave-N-out or split-sample replications, to assess derived
gene components for either rank correlations or percent overlap
from the most complex to the simplest level, i.e., molecular
pathways, biological categories, genes and SNPs, respectively.
Note, the components are data driven, so will not be identical,
but quite often there are similar components, which are identified
as mentioned above. If one has a need to use a component or
components from one data set as a reference, that is a more
formal constraint that the components should match, then one
can estimate the same component from a new data set using a
constrained ICA approach such as p-ICA with reference, except
using the entire component as a reference instead of a smaller
number of SNPs (Chen et al., 2013a).

Outstanding Questions and Future
Directions

Though we have attempted to address many typical questions that
arise when employing a multivariate imaging genetics approach,
there are some ongoing issues and emerging issues that we
summarize briefly below:

Future research needs to confirm how best to utilize hybrid
approaches (neither purely model-based nor data-driven), like
p-ICA with reference (Chen et al., 2013a,b) and to incorporate
>2 modalities (e.g., sSMRI, fMRI, genetics; Vergara et al., 2014).

Another important area in need of clarification, is to address
what can be gained by incorporating statistical properties such
as sparsity (Cao et al., 2014; Lin et al, 2014a) or by linking
genetics to newer fMRI approaches estimating dynamic changing
connectivity patterns or states (Hutchison et al., 2013; Allen et al,,
2014; Damaraju et al,, 2014; Ma et al,, 2014) that more cleanly
characterize individuals or the impact of diseases (Rashid et al.,
2013). In addition, current p-ICA software versions have not yet
explicitly incorporated sparse regularization (Kohannim et al.,
2012), but this is one direction for future development.

http://mialab.mrn.org/software/fit

An area of considerable interest is whether stem cell models
can incorporate p-ICA-derived pathways, and more broadly,
how genome biology can move more effectively toward systems
biology. Additionally, p-ICA can straightforwardly accommodate
omics data sets of various types, although publications exploiting
this approach in those venues lie in the future.

Attention needs to be directed as to how best to utilize new
databases to illuminate in what sequences genes are expressed in
development and spatially localized genomic information (e.g.,
the Allen human brain atlas”, or the NIH postmortem gene
expression database/BrainSpan').

Finally, in clarifying underlying genetic risk for
neuropsychiatric disorders, researchers need to consider how can
we best move toward a Research Domain Criteria (RDoC)-type
model (Cuthbert and Insel, 2010), informed by biologic data
across conventional psychiatric disorders, rather than models
based on the American Psychiatric Association’s Diagnostic and
Statistical Manual of Mental Disorders (American Psychiatric
and Force, 2013; DSM) predicated on descriptive syndromes.
The DSM comprises descriptions of diagnostic categories of
major mental illnesses and their associated diagnostic criteria,
classified primarily on symptoms and their associated clinical
outcomes (e.g., functional impairment). This type of approach is
reliable, but increasingly criticized for not being based on a valid
biological foundation. In contrast, RDoC is a National Institute
of Mental Health (NIMH)-based initiative for development of
new means to classify psychopathology for research purposes,
based on dimensions of observable behavior (e.g., working
memory, fear circuitry) and their neurobiological underpinnings
across multiple units of analysis (e.g., brain circuits, genes,
behaviors). It is construed as cutting across psychiatric disorders
conceived as traditional, symptom-defined syndromes (e.g., as
operationalized in DSM), which are likely highly heterogeneous,
and moving more toward a bottom-up redefinition based on
underlying biology

Concluding Summary

Despite general agreement that many complex medical and
psychiatric diseases and complex quantitative traits are
underpinned by multiple genes of individually small effect,
the preponderance of genetic analyses are driven by univariate
strategies that fail to capture a significant percentage of the
relevant genetic variants or their interactions. Such univariate
approaches have led to major advances, but are limited by
the need for very large sample sizes and have limitations in
their ability to illuminate the underlying molecular biological
pathways needed to understand etiopathology, and hence to
suggest novel treatments for disorders. Multi-variate approaches
such as p-ICA offer promise in addressing some the above
problems, but are a “work in progress” with some practical details
still being fine-tuned and where true replication ability remains
to be demonstrated. Particular advantages of multi-variate

Bhttp://human.brain-map.org/
www.brainspan.org
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approaches include statistical efficiency, (dealing well with
samples in the hundreds to low thousands), and an ability to deal
with numerous and complex phenotypes in a flexible manner.
Existing models range from fully data-driven approaches to
“informed” hybrid models able, for example, to leverage results
from GWAS. Multivariate approaches are especially at useful in
identifying relationships among large, complex data sets while
simultaneously performing data reduction procedures.
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