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Long non-coding RNAs (IncRNAs) evolve rapidly and are functionally diverse. The
emergence of new INCRNAs is driven by genome disturbance events, including whole
genome duplication, and transposition. One of the few INcCRNAs with a conserved role
throughout eukaryotes is the telomerase RNA, TER. TER works in concert with the
telomerase reverse transcriptase (TERT) to maintain telomeres. Here we discuss recent
findings from Arabidopsis thaliana and its relatives illustrating the remarkable evolutionary
flexibility within TER and the potential for non-canonical TERT-INncCRNA interactions. We
highlight the two TERs in A. thaliana. One is a conventional telomerase template. The
other INCRNA negatively regulates telomerase activity in response to DNA damage, a
function mediated by co-option of a transposable element. In addition, we discuss
evidence for multiple independent TER loci throughout the plant family Brassicaceae,
and how these loci not only reflect rapid convergent evolution, but also the flexibility of
having a INcRNA at the core of telomerase. Lastly, we discuss the propensity for TERT to
bind a suite of non-templating INCRNAs, and how such RNAs may facilitate telomerase
regulation and off-telomere functions.
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Introduction

A major breakthrough in biology was the discovery that much of eukaryotic genomes are transcribed,
yet only a small fraction of the transcripts derive from protein-coding genes. Most transcripts are long
non-coding RNAs (IncRNAs). Generated from what were originally believed to be “dark” regions of
the genome, IncRNAs number in the thousands to tens of thousands. Although only a few IncRNAs
have been assigned a biological function, these molecules play essential roles in epigenetic regulation,
stem cell biology and signal transduction and are emerging as important targets in human disease
(Lee et al., 1996; Guttman et al., 2011; Wapinski and Chang, 2011; Scheuermann and Boyer, 2013).
The molecular mechanisms of IncRNAs are varied, but appear to fall into four major categories: (1)
molecular signals, (2) molecular decoys, (3) guides, and (4) scaffolds (Wang and Chang, 2011).
One of the best-studied IncRNAs is TER, the telomerase RNA. TER can be defined as a scaffolding
IncRNA as it assembles into a ribonucleoprotein complex with several proteins including the
reverse transcriptase TERT. TERT reiteratively copies a templating sequence embedded in TER
to establish and maintain telomere repeats on chromosome ends. In stem and germline cells
telomerase must continually replenish telomeric DNA to avoid cellular senescence, but in cells with
limited proliferation programs the enzyme is repressed to avert tumorigenesis (Bernardes de Jesus
and Blasco, 2013; Giines and Rudolph, 2013). Telomerase must also be precluded from acting at
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double-strand breaks (DSBs) to promote faithful DNA repair.
Consequently, telomerase is subjected to multiple levels of
regulation that target both TERT and TER (Cifuentes-Rojas and
Shippen, 2012; Egan and Collins, 2012).

TER is highly variable in nucleotide sequence and size,
ranging from ~150 nucleotides in some ciliates to more than
1.2 kb in budding yeast (Egan and Collins, 2012). Despite
its sequence variability, TER harbors conserved secondary and
tertiary structures that are critical for TERT interaction and
telomerase catalysis. These elements include a single-stranded
region bearing the telomere template and a template boundary
element that demarcates the 5’ end of the template. TERT binding
is mediated by a pseudoknot adjacent to the telomere template
(Zhang et al., 2011; Egan and Collins, 2012) and a stem terminus
element (STE; Blackburn and Collins, 2011). Notably, the TER-
TERT interaction does not require an intact telomere template,
leaving open the opportunity for alternative IncRNAs to assemble
into an RNP complex with TERT.

Although TERT and TER are sufficient to reconstitute
telomerase enzyme activity in vitro, the essential domains of TER
can be whittled down to a “Mini T” consisting of only ~150 nts
(Chen and Greider, 2003; Zappulla et al., 2005; Cifuentes-Rojas
et al,, 2011). Because most of the structural similarity within
eukaryotic TERs lies within these 150 nts, conforming to TERT’s
catalytic needs is a primary driver of TER conservation. TER
assembles with suite of telomerase accessory proteins besides
TERT that promote RNP maturation, modulate enzyme activity
and facilitate telomerase recruitment to chromosome ends. More
divergent than TERT, the accessory proteins typically are not
shared between the major eukaryotic lineages (Collins, 2006). The
ability of TER to accommodate a dynamic array of protein binding
partners and yet retain its templating capacity demonstrates the
advantage of having a IncRNA at the heart of the telomerase
enzyme.

The Impact of Genome Dynamics on
IncRNA Evolution

TER, like other IncRNAs, does not harbor an open reading frame
and thus can readily absorb nucleotide changes without a cost to
fitness (Ponting et al., 2009; Kutter et al., 2012). Indeed, IncRNAs
evolve rapidly and their evolution is influenced by factors besides
the accumulation of nucleotide changes. Referred to here as
genome disturbance events, whole genome duplication (WGD),
genome rearrangement, and transposition all contribute to the
volatility of IncRNA repertoires in eukaryotes (Freeling et al.,
2012; Kapusta et al., 2013). Studies in vertebrates suggest that
as genomes evolve, the IncRNA population slowly changes due
to accumulation of nucleotide changes and local rearrangements
(Figure 1A). In contrast, a genome disturbance event can trigger
a dramatic spike in the emergence of novel IncRNAs and decay
of more ancient ones. Following WGD duplicated chromosomes
undergo a process called fractionation, whereby genes and whole
genomic regions accumulate mutations and decay at a rapid rate
(Freeling et al., 2012). While this process often leads to gene
loss, pseudogenization or promoter acquisition can give rise to
novel IncRNAs (Ponting et al., 2009). Genome disturbances are
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FIGURE 1 | Impact of genome dynamics on IncRNA evolution and TIR
populations. (A) Model for IncRNA evolution. Normally, INncRNAs evolve
gradually due to accumulation of nucleotide changes and localized genome
rearrangement events. However, genome disturbance events (red dashed
line) accelerate INcRNA evolution leading to decay or loss of conserved
INcRNAs and birth of new IncRNAs. (B) Impact of genome disturbance on
TERT interacting RNA populations. Within the pool of INncRNAs that bind
TERT, TER likely remains stable (as seen in vertebrates). Non-canonical
TERT-interacting RNAs (TIRs) are likely to be more dynamic, moving into and
out of the pool over time (decaying TIRs). The canonical TER remains stable
until a genome disturbance event occurs (red dashed line), where the
possibility of TER loss is high. If the ancient TER locus is lost (red X), another
INcRNA, presumably a TIR, will replace it as the templating telomerase RNA. A
genome disturbance event can also lead to novel INcRNA emergence (A),
whereby some of these RNAs may become TIRs.

associated with rapid changes in IncRNA populations. Vertebrate
genomes have remained relatively stable, and sequence orthologs
for 20% of human IncRNAs are found in mice, including TER
(Chen et al.,, 2000; Ponting, 2008; Necsulea et al., 2014). In
contrast, less than 1% of Arabidopsis thaliana IncRNAs are evident
in grape and poplar, two species with similar divergence times
as that of human and mouse (Liu et al., 2012). The dramatic
difference in identifiable IncRNA orthologs highlights the WGD
and genome rearrangements that separate these plant species, and
are consistent with the dynamic nature of plant genomes in general
(Koenig and Weigel, 2015).

Transposable elements (TE) represent another means by which
IncRNAs originate and diversify in vertebrates (Kapusta et al.,
2013; Hoen and Bureau, 2015). Transposition can activate
transcription adjacent loci, resulting in the birth of novel
IncRNAs. TEs can also become incorporated into exons of
IncRNAs in a process termed exaptation (Hoen and Bureau,
2015). TEs account for more than 30% of total IncRNA sequence.
Moreover, roughly 70% of vertebrate IncRNAs contain at least
some trace of repetitive elements. Unlike typical TEs that are
silenced by cellular machinery, exapted elements may impart
novel functions as well as contribute to integral facets of
IncRNA maturation, such as transcription initiation, splicing,
and polyadenylation (Keren et al., 2010; Kapusta and Feschotte,
2014). Additionally, exapted TEs are a common source of lineage-
specific differential gene regulation (Lowe and Haussler, 2012).
Johnson and Guigé (2014) argue that TEs have the potential to
act as pre-formed functional RNA domains, endowing binding
sites for novel interaction partners. For instance, TEs within XIST
stimulate interactions with PRC2 and splicing factor ASF2 (Wutz
etal.,2002; Jeonand Lee, 2011). As discussed below, TE exaptation
into TER has dramatically influenced telomerase regulation in
A. thaliana.
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Given the volatile environment in which IncRNAs evolve, it is
not surprising that TERs from different eukaryotic lineages bear
little similarity to one another in both sequence and synteny (Chen
etal., 2000; Cifuentes-Rojas etal., 2011; Qi et al., 2013). TERs from
the major lineages likely represent convergent evolution, where
unique and unrelated TERT-interacting RNA (TIR) molecules
were adapted for use by the much more conserved TERT protein
(Figure 1B). Despite their unique origins and disparate sequences,
TERs from across much of eukarya have adapted similar core
structural motifs and all require the templating domain in order
to perform a very basic and conserved function: chromosome end
maintenance (Chen et al., 2000; Qi et al., 2013).

Brassicaceae as a System for Comparative
IncRNA and Telomere Analyses

Recent data from the plant kingdom is providing unanticipated
new insights into TER evolution. Beginning with Barbara
McClintocK’s pioneering work on maize telomeres in the 1930s
(McKnight et al., 2002), plants have served as important models
for chromosome biology. Their remarkable tolerance to genome
instability and frequent WGD makes plants an important
counterpoint to mammalian systems for analysis of genome
dynamics and evolution. Brassicaceae is the most tractable of
plant families and consequently the most valuable resource for
comparative genomics. A large and diverse cadre of ~3600
species, Brassicaceae grows throughout the world’s temperate
zones and is believed to have arisen ~65 mya (Koenig and Weigel,
2015). Brassicaceae is home to many agriculturally important
plants species, but the most well-known member is A. thaliana.
Due to its powerful genetics, A. thaliana has become the reference
species for all plant biology (Jones et al., 2008), and has served as
a model for telomere analysis for over 15 years (Watson and Riha,
2010).

The A. thaliana genome is compact (130 mb), yet is
characterized by three rounds of WGD. The most recent occurred
at the base of the family (Koenig and Weigel, 2015). The speciation
event that gave rise to A. thaliana was followed by genome
rearrangement and a reduction in chromosome number. Several
other lineages within Brassicaceae have undergone WGD, and
chromosome painting reveals a litany of large-scale chromosomal
rearrangements (Mandakova and Lysak, 2008; Kagale et al,
2014). Thus, Brassicaceae and A. thaliana in particular serve
as excellent systems for understanding how telomeres and
telomerase components evolve in an ever-changing genomic
environment.

Despite the dynamic nature of plant genomes, telomeric DNA
has remained remarkably resistant to change. The telomere repeat
sequence (TTTAGGG), is highly conserved throughout the plant
kingdom, with a few interesting exceptions such as the order
Asparagales (Sykorova et al., 2003). Analysis of telomere length
for twelve Brassicaceae species reveals some length variation,
ranging from 850 bp to ~9 kb (Nelson et al., 2014). However, this
same degree of variation is observed among different ecotypes of
A. thaliana, suggesting that factors modulating telomere length
are conserved (Shakirov and Shippen, 2004). This conclusion is
supported by the high degree of conservation associated with

many telomere components [e.g., Cdc13/Stnl/Tenl (CST) and
TRF-like proteins; Karamysheva et al., 2004; Song et al., 2008;
Surovtseva et al., 2009; Leehy et al., 2013; Nelson et al., 2014].

Duplication of TER: Adding to Nature’s
Toolbox of Telomerase Regulatory
Mechanisms

The identification of telomerase protein components in A.
thaliana has been driven largely by the conservation of subunits
such as TERT, dyskerin and POT1 (Fitzgerald et al, 1999;
Shakirov et al., 2005; Surovtseva et al., 2007; Kannan et al,
2008). TER, however, remained elusive until only a few years ago
when telomerase-associated RNAs were identified by brute-force
enzyme purification. These experiments unexpectedly uncovered
more than one TER (Cifuentes-Rojas et al., 2011). TER1 (748 nt)
and TER?2 (784 nt) each contain 1.5 copies of the plant telomeric
repeat sequence embedded in a 220 nt segment of ~90% identity.
In TER2 the conserved region is interrupted by a 529 nt unique
sequence, subsequently shown to be a small transposon (see
below). The transposon and the 3’ terminus are removed from
TER2 to generate a smaller isoform termed TER2s (Cifuentes-
Rojas et al., 2012). All three TER isoforms (TER1, TER2, and
TER2s) assemble with TERT to reconstitute telomerase activity
in vitro, indicating that the core elements required for catalysis
are located in the conserved regions.

Whereas the discovery of multiple TERs in A. thaliana was
unusual, there is precedent for alternative telomerase subunits.
Moreover, subpopulations of unassembled TERT and TER can be
found in human cells (Xi and Cech, 2014), making the exchange
and/or incorporation of non-canonical telomerase subunits
feasible (Figure 2). The ciliated protozoan Euplotes crassus
encodes three TERT proteins, which presumably assemble with a
single TER, and act in different developmental stages to facilitate
telomere maintenance during vegetative growth or de novo
telomere formation during sexual development (Karamysheva
et al., 2003). There are also variant TERT isoforms in humans,
produced by alternative splicing (Ulaner et al., 2000, 1998; Saebge-
Larssen et al., 2006). A major splice variant (5-deletion) that is
abundantly expressed in cancer and stem cells lacks the conserved
reverse transcriptase domains, and yet retains TER binding. This
variant behaves as a dominant negative inhibitor of telomerase
(Figure 2). It can also protect against apoptosis in cancer cells,
likely through a telomerase-independent mechanism (Listerman
etal, 2013). A growing list of non-telomeric functions have been
ascribed to TERT (Ale-Aghaetal.,, 2014). The influence of IncRNA
binding partners on such activities is unclear.

Variant TER isoforms have also been reported. Some appear
to be processing intermediates (Chapon et al., 1997; Box et al,,
2008). Others including the non-canonical TERs in pig and
cow were proposed to be pseudogenes based on the presence
of a mutation in the templating domain and deletions in other
conserved domains (Chen et al., 2000). However, like hTERT
splice variants, these alternative TERs have the potential to serve
as dominant negative regulators or to play non-canonical roles in
telomere biology (Figure 2).
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FIGURE 2 | Non-canonical telomerase subunits: alternative modes of
enzyme regulation. The conventional telomerase enzyme contains the core
subunits TERT and TER (middle), which cooperate in telomere maintenance.
TERT can also assemble with non-canonical TERT-interacting INcRNAs (TIRs)
(top). Such RNAs may hijack the function of TERT, and in the case of A.
thaliana TER2, inhibit telomerase activity by sequestering TERT in a
non-productive RNP complex. Alternative TERT isoforms (bottom) have also
been described. In humans, a major TERT splice variant has lost its catalytic
activity, but retains TER binding. Like TER2, this non-canonical TERT is
proposed to inhibit telomerase by sequestering TER. Non-canonical
telomerase RNP complexes may also have alternative functions off the
telomere.

A particularly interesting example of alternative TERs is found
in A. thaliana, where TER gene duplication provided a fertile
breeding ground for the appearance of a novel mode of telomerase
regulation. TER1 is the canonical telomere template required
for telomere maintenance in A. thaliana (Cifuentes-Rojas et al.,
2011). TER2, by contrast, negatively regulates the TER1 RNP
(Cifuentes-Rojas et al.,, 2012). Telomerase activity is elevated
in ter2 mutants, while TER2 over-expression reduces the TER1
templating function leading to telomere shortening. Conversely,
mutation of the templating domain of TER2 does not cause
incorporation of mutant telomere repeats on chromosome ends,
indicating that TER2, despite its capacity to direct telomere repeat
addition in vitro, does not productively engage chromosome ends
in vivo. Notably, TER2 serves as a IncRNA scaffold for a different
set of accessory proteins than TERI, which may contribute to
its distinct function in vivo (Cifuentes-Rojas et al., 2011, 2012).
Furthermore, TERT has a higher affinity for TER2 than for TER1.
Thus, TER2 has the ability to serve as a molecular decoy or
sponge that sequesters the telomerase catalytic subunit in a non-
functional complex.

Telomerase Regulation by Exaptation of a
TE in TER

TER2 exhibits another of the IncRNA molecular paradigms:
biological signal. Under standard growth conditions TER2 is

a low abundance RNA, more poorly expressed than TER1 or
TER2s (Cifuentes-Rojas et al.,, 2012). However, in response to
DSBs, TER2 is rapidly induced and becomes the predominant
TER isoform. Telomerase activity is repressed as TER2 levels
rise. Remarkably, TER2 induction is not mediated by increased
transcription, but rather by increased RNA stability (Xu et al,,
2015). Thus, TER2 serves as a rapid regulatory switch linking
the DNA damage response directly to telomerase enzyme
activity.

Clues for how TER2 might function as a DNA damage sensor
came from inspection of another unique feature of this molecule:
its 529 nt intervening sequence (removed during the formation
of TER2s). The intervening sequence contains no obvious branch
point site, and the 5" and 3’ splice sites do not match mRNA
splicing consensus sequences. Instead the boundaries of this
element consist of short inverted repeats flanked by two 5 nt
direct repeats. Further analysis of similar sequences throughout
Brassicaceae indicated that the intervening sequence within TER2
is in fact a small TE, a solo long terminal repeat from a gypsy class
of retrotransposons (Xu et al., 2015).

A TE is associated with the majority of TER2 loci in A. thaliana
ecotypes but not all, providing an opportunity to assess if and how
this element modulates telomerase behavior. The unique behavior
of TER2 appears to be largely, if not entirely dependent on its TE
(Xu et al,, 2015). Without the TE, TER2 is a highly stable IncRNA
that binds TERT with a lower affinity than TER1. Moreover, in
A. thaliana ecotypes lacking the TER2 TE, telomerase regulation
by DSBs is lost. Thus, exaptation of a TE into the TER2 locus
profoundly influenced the regulation and behavior of this IncRNA
by endowing it with a DNA damage sensor and the capacity
to sequester TERT in a non-productive complex. This mode of
telomerase regulation is expected to promote genome stability and
may be especially beneficial during meiosis when genome-wide
DSBs abound.

Evolution of TER as a TERT-associated
IncRNA

Phylogenetic analysis, and particularly gene synteny, has
revealed numerous IncRNAs orthologs, including TER, in several
eukaryotic lineages (Chen et al., 2000; Qi et al., 2013). Beilstein
etal. (2012) employed this strategy to identify an A. thaliana TER-
like locus from 14 species sampling the breadth of Brassicaceae.
However, three unanticipated findings were uncovered. First,
AtTER] and AtTER2 loci represent an A. thaliana-specific
duplication event. In A. lyrata, the closest relative of A. thaliana,
only a single TER-like locus was detected. Further analysis
showed that the A. thaliana TER1/TER2 duplication occurred
as part of a large-scale genome rearrangement coinciding
with A. thaliana speciation (Beilstein et al., 2012). Second,
contrary to findings from yeast and mammals, there is no
clear phylogenetic signature of conservation at the TER-like
loci in Brassicaceae to infer critical structural and functional
elements. The evolutionary pressures placed on each of these
loci must be distinct. Third, and most surprisingly, the telomere
templating domains of TER-like loci in multiple Brassicaceae
species including A. lyrata carry point mutations that would
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preclude synthesis of TTTAGGG repeats. Hence, an alternative
locus must encode the canonical TER in many Brassicaceae
species.

The Brassicaceae TERs and TIRs provide a fascinating window
into both the molecular mechanisms and evolution of IncRNAs.
Indeed TER2’s emergence by TE exaptation may be only one
example of how IncRNAs evolved to regulate TERT. We postulate
that transformation of TER2 into a TERT decoy reflects TERT
promiscuity for RNA. The ancient origin of TERT from a viral
reverse transcriptase supports the notion that TERT evolved
RNA specificity over time (Curcio and Belfort, 2007). Even
now, sequencing of TIRs in human cells revealed >30 unique
RNA species (Maida et al, 2009). In the event that a species’
canonical TER locus is lost, a replacement is likely adapted from
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