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During the past decade, findings of genome-wide association studies (GWAS) improved

our knowledge and understanding of disease genetics. To date, thousands of SNPs have

been associatedwith diseases and other complex traits. Statistical analysis typically looks

for association between a phenotype and a SNP taken individually via single-locus tests.

However, geneticists admit this is an oversimplified approach to tackle the complexity

of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must

be considered. Unfortunately, epistasis detection gives rise to analytic challenges since

analyzing every SNP combination is at present impractical at a genome-wide scale. In

this review, we will present the main strategies recently proposed to detect epistatic

interactions, along with their operating principle. Some of these methods are exhaustive,

such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver

operating characteristic curve analysis; some are non-exhaustive, such as machine

learning techniques (random forests, Bayesian networks) or combinatorial optimization

approaches (ant colony optimization, computational evolution system).

Keywords: epistasis detection, genome-wide association study, complex disease, biological data mining, feature

selection

Introduction

Genome-wide association studies (GWAS) have generated huge datasets in the past 8 years in order
to find association between genetic polymorphisms and phenotypes. Individual risk prediction
based on those discoveries was promising. Nevertheless, genetic architecture of complex diseases,
such as type II diabetes, is still largely misunderstood (Vassy et al., 2014). Indeed, gene-environment
and gene-gene interactions must be considered to better understand etiology of such phenotypes.
In other words, various joint effects of genetic variations, namely epistasis, are likely to partly
determine the disease state (Mackay and Moore, 2014). While common genome-wide association
analysis checks for potential SNP-disease associations in a one-SNP-at-a-time fashion, looking for
all potential epistatic interactions in such datasets will quickly result in combinatorial overload.
This is why classical GWAS often left behind the daunting task of epistasis detection.

Several strategies came up to overcome the epistasis intricacy. After a first section dealing with
epistasis generalities, we will present in this review the main categories of methods dedicated
to epistasis detection. These methods are classified as follows. First, some exhaustive approaches
for searching significant genetic marker combinations will be introduced. As some of these, like
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Multi-Dimensional Reduction (MDR), are not manageable at a
genome-wide scale, we will next turn our attention to filtering
strategies which aim at reducing the size of the dataset, thereby
decreasing the size of the search space. A final section will deal
with machine learning and data mining techniques. This review
does not intend to provide an exhaustive list of all software
programs designed to find epistatic interactions, but rather to
give an overview of the main categories of strategies put forward
in the last 5 years.

Background—Epistasis

During the past decade GWAS have played a central role in
the discovery of genotype-phenotype associations. In GWAS
analyses, geneticists rely on DNA polymorphism markers to
detect these associations. One of the most popular classes of
genetic markers, Single Nucleotide Polymorphism (SNP), allows
comparison of allelic frequencies between a sample of cases
ascertained for a disease and a sample of controls. In the
standard approach, SNPs are tested one by one for statistical
association with the disease (Hirschhorn, 2009). Genetic variants
are considered to have independent effects on the phenotype. As
a result, only additive effects are considered under this approach.
This kind of analysis has been widely used for years, but results
are often not as appealing as expected. Indeed, with the “one
locus at a time” strategy, only a little part of the genetic variance
explains the phenotype, the remaining part being referred to
“missing heritability” (Maher, 2008; Manolio et al., 2009).

It has been commonly admitted that missing heritability
is partly due to genetic variants showing effects when they
interact with one or more other variants (Eichler et al., 2010).
Epistasis refers to the combinatorial effect of one or more
genetic variants (Figure 1). These effects might interactively
contribute besides existing marginal effects or they can also
exist in absence of any marginal effect. In the last case,
traditional statistical parametric methods will likely miss those
interactions owing to the inflexibility of parametric models
(Culverhouse et al., 2002; McKinney et al., 2006). For instance,
in complex diseases like asthma (Howard et al., 2002), diabetes
(Cho et al., 2004) or hypertension, additive genetic variation
involves many SNPs, among which a vast majority have
very small effect sizes (odds ratio less than 1.2, see Box 1)
(Ritchie, 2015). As complex traits are poorly explained by
additive models, one expects gene-environment or gene-gene
interactions to substantially contribute to the genetics of these
diseases.

Thus, epistasis detection has become an important field of
research in human genetics: more complex models are studied
nowadays, where combinations of genetic variants are examined
for association with a trait. From a biological point of view, it
seems unlikely that some phenotypes are only driven by genetic
variants acting independently. For instance, large and complex
networks of gene-gene and protein-protein interactions are well
known in systems biology for their high connectivity, density
and resistance to variation (Boone et al., 2007). Moreover, it
has been observed that consequences of induced mutations are
greatly variable in different genetic backgrounds (Mackay, 2014).

Once aware of all this, it seems inconsistent to see gene-gene
interactions as rare events.

Biological Epistasis and Statistical Epistasis
First, it is essential to distinguish biological epistasis (also called
functional epistasis) from statistical epistasis (Cordell, 2002). The
term biological epistasis was coined by Bateson (1909). In its
original definition, it only involved allele effect at one locus
concealed by the effect of another allele at a second locus. This can
be seen as a broadening of the dominance concept at an inter-loci
level. A more recent definition also allows genetic variant effects
to be enhanced by effects of other genetic variants (Siemiatycki
and Thomas, 1981). Generally, speaking, an epistatic effect exists
when the effect of an allele at a genetic variant depends either on
the presence or absence of another genetic variant.

On the other hand, statistical epistasis refers to the departure
from additive effects of genetic variants at different loci with
regard to their global contribution to the phenotype (Wang et al.,
2010a). This definition was proposed by Fisher (1918). One relies
on this definition when one wants to detect epistatic interactions
with computational methods. Ultimately, the goal consists in
interpreting interactions found to be statistically relevant in order
to get closer to their biological definition and to apprehend the
underlying functional mechanisms. This last step is undoubtedly
the more difficult one (Moore and Williams, 2005) and is often
disregarded.

A recent concrete example of epistasis has been described by
Gertz et al. (2010), where three SNPs were shown to be involved
in an epistatic interaction in yeast Saccharomyces cerevisiae
(Figure 2). In the following, italic characters refer to the gene
while normal characters refer to the corresponding protein. One
SNP is located in the promoter region of RME1 which encodes a
transcription factor repressing the transcription of IME1, a gene
coding for a transcription factor which promotes sporulation.
State of this SNP influences the production rate of RME1. The
second SNP is located in the promoter region of IME1. Its state
affects the binding specificity of RME1-IME1. The third SNP lies
in the coding region of IME1 and its state conditions the binding
specificity of IME1-kinase, which is the active form of IME1.
Gertz and coworkers showed that the allele combination of these
SNPs have a non-additive effect on the RME1-IME1 binding
and on the sporulation efficiency. Consequently, sporulation
efficiency is partly ruled by epistasis. Many other cases of epistasis
have been evidenced recently (Smith et al., 2014; Ellis et al., 2015;
Huang et al., 2015; Liu et al., 2015; Matsubara et al., 2015).

Origin of Epistasis: an Evolutionary Point of View
Canalization is a theory proposed by Waddington (1942). It
is based on a generally admitted assumption: natural selection
maintains the majority of a population into a healthy condition.
Thus, in response to genetic and environmental variations,
phenotypic modifications are buffered. This is especially true for
vital physiological levels, such as blood glucose or blood pressure.
To this end, evolution has favored complex robust systems
resistant to variations (Moore andWilliams, 2009). A compelling
argument in favor of this hypothesis is the redundancy rate in
biological networks. This feature is well known in systems biology
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FIGURE 1 | Toy example of epistasis. (A) Neither SNP 1 nor SNP 2 presents a marginal effect. (B) In gray cells, allele combinations between SNP 1 and SNP 2

induce statistically significant epistatic effect on the phenotype distribution.

BOX 1 | Logistic regression and odds ratios.

A logistic regression model is a statistical model that depicts the relationship between a linear combination of variables (e.g., SNPs in a GWAS) and a binary trait, the

disease phenotype (i.e., affected/unaffected status). The probability p of being affected is expressed in the log scale as:

log

(

p

1−p

)

= α + β1x1 + β2x2 + β3x1x2

where x1 and x2 each correspond to the at-risk genetic variants, x1x2 accounts for the interaction between them, and βi are parameters being estimated from the data.

Odds ratios are highly related to logistic regression models. Indeed, exp (βx) is an estimate of the odds ratio between the outcome and predictor variable x when values

of other predictor variables are fixed. This is interesting because interpretation of odds ratios is intuitive. An odds is a measure related to probabilities. If an event has

some non-null probability to occur in a particular experiment, odds for this event can be viewed has the ratio of the number of events to the number of non-events if

the experiment were repeated multiple times. Thus, high odds correspond to high probability for this event, and vice versa. Given a probability p of occurrence for this

event, an odds is defined as follows: Odds =
proportion of success
proportion of failure

=
p

1 − p .

An odds ratio (OR) is then simply the ratio of two odds. It evaluates association between disease occurrence and predictor variables. As such, this measure is closely

related to statistical independence: if two variables (in the example below, SNP genotype and disease status) are statistically independent, their OR reduces to 1. Note

that an OR not equal to 1 does not necessarily imply a statistically significant association.

Table 1 | Example of 2 × 3 frequency table to compute an allelic odds ratio.

SNP genotype

AA Aa aa

Disease status Affected a b c

Unaffected d e f

Based on Table 1 above, the odds ratio might be calculated using OR =
(2 ∗ a + b)/(2 ∗ d + e)
(2 ∗ c + b)/(2 ∗ f + e) , assuming allele A is the at-risk allele. This OR is also called the allelic

odds ratio (Sasieni, 1997).

where protein-protein interaction and gene-gene interaction
networks exhibit redundant pathways making them resistant to
variations (e.g., to deletion of a network node). A disease state
would then be due to accumulation of mutations in the genetic
network such that its robustness is outstripped. Therefore,
all these network interactions are likely to involve epistatic
effects. Canalization theory thus explains why so many variants

only provide small contributions to the phenotype (Moore,
2003).

Challenges in Epistasis Detection
Challenges in epistasis detection are threefold. The first one
is statistical. Statistical methods traditionally used in univariate
SNP-phenotype associations are not adequate to find epistasis.
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FIGURE 2 | Real example of epistasis: S. cerevisiae sporulation is regulated by epistatic effects among three SNPs. State of SNP 1 modulates the

production rate of RME1. State of SNP 2 influences the binding specificity of RME1. State of SNP 3 conditions the binding specificity of IME1-kinase.

Finding epistatic interactions is a typical case of the large
p, small n problem (Johnstone and Titterington, 2009). In
practice, the aim is to balance the false-positive rate—produced
by the astronomic number of tests performed—and the false-
negative rate—a consequence of applying too much stringent
significance thresholds. Moreover, SNPs involved in epistatic
interactions may have very low minor allele frequencies (MAFs)
whereas the number of variants to be tested might be huge.
As a result, data is often sparse, leading to the so-called
curse of dimensionality. The second challenge is computational.
Though the overall complexity is linear with the number of
individuals in the studied population, it becomes exponential
when the interaction order increases. In 2-way interactions, this
complexity corresponds to quadratic complexity. The number of
combinations to be tested within a dataset containing 1 million
SNPs is tremendous: 5 × 1011 pairwise interactions, 1.7 × 1017

3-way interactions, 4.2 × 1022 4-way interactions, 8.3 × 1027 5-
way interactions, and so on (Ritchie, 2015). Hence, an exhaustive
search of epistatic interactions of order 3 or more would lead
to a computational burden too prohibitive. Finally, the third
challenge is the interpretation of the analytical results. To
interpret statistical results biologically is not straightforward, for
statistical interaction does not automatically entails interaction at
the biological or mechanistic level (Cordell, 2002).

Exhaustive Search for Epistasis

In this section, we will discuss strategies of detection that
exhaustively test all combinations of variants. Exhaustive search
has been proposed to circumvent the local optimality problem, a
drawback of heuristic techniques. Most exhaustive methods are
designed to detect only pairwise interactions and those directed
at higher order detection are simply not scalable. Despite their
shortcomings, traditional parametric regression methods serve

as a foundation in the field, as emphasized in the following
subsection. Then, we will present a strategy derived from such
regression methods and designed to be faster than traditional
methods. Finally, we will discuss two model-free approaches.

Parametric Regression Methods
Traditionally, themost common framework for exploring GWAS
data is parametric regression models. A parametric algorithm
has a fixed number of parameters that has to be estimated from
the data, and relies on strong assumptions about the probability
distribution generating the data. This class of algorithms makes
accurate predictions when those assumptions are sufficiently
close to reality, but performs badly when proved incorrect.
Logistic regression (see Box 1) has been widely used as a
parametric method for exhaustive search of interactions in
association analysis. For example, software PLINK (Purcell et al.,
2007) has implemented logistic regression models to detect
epistasis. But, in high dimensional data, parameter estimation
is a costly and non-accurate procedure that introduces large
standard errors because sample sizes are too small compared to
genome-wide data size. As a consequence, many false positives
are generated when dealing with such data. To overcome
this problem, p-values are usually corrected with Bonferroni
multiple-test correction (see Box 2). This correction being overly
conservative, only interactions with very strong effects will be
detected and many other interactions will be missed. Hence,
the logistic regression strategy has been widely portrayed as
unsuitable for handling genome-wide datasets (Cordell, 2009;
Moore and Williams, 2009; Steen, 2012). Highly related to
standard regression methods, penalized regression techniques,
such as the LASSO (least absolute shrinkage and selection
operator) or SCAD (smoothly clipped absolute deviation) gained
some popularity to detect SNP-SNP interactions. However, those
techniques are restricted to two-way interactions and are still
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BOX 2 | Bonferroni correction.

Problem - Hypothesis-based statistical tests (e.g., t-test) are subject to false positive inflation when multiple tests are performed. For example, at a traditional 5%

threshold set for statistical significance, there is a 5% chance to falsely reject the null hypothesis. Hence, if this test is performed 100 times when the null hypothesis is

in fact true, and 5 tests are found to be statistically significant, then all 5 represent false positive associations. In this case, it is said that the risk is high and uncontrolled.

This issue is known as the problem of multiple tests.

Answer - Bonferroni correction is applied to properly adjust the type I error rate. It consists in dividing the significance threshold by the total number of tests performed.

For instance, if a study involves testing for 100 000 hypotheses at a desired global 5%significance level, the corrected significance level for each test is set at
0.05

100 000 = 5× 10−7.

Shortcoming - This method tends to reject non-null hypotheses due to its conservativeness. This conservative feature is also a shortcoming. It becomes inaccurate

because it only favors strongly significant associations. As a result, many true positive associations will be missed (i.e., creating false negatives), thereby leading to a

loss in statistical power.

prone to inflated false positive rate. Moreover, they are too
computationally intensive to exhaustively search through all the
pairwise interaction search space. In that case, feature selection
techniques are required (further discussed in Section Two-
stage Approach: Filters to Obtain Reduced Search Space). The
interested reader is referred to Gou et al. (2014) for a recent
detailed application of penalized regression-based approach for
epistasis detection.

Bitwise Representation of Data and Likelihood
Ratio-based Testing
We will introduce the Boolean operation-based testing and
screening (BOOST) software program to exemplify this section.
Designed to be fast, BOOST runs an exhaustive analysis of
all potential pairwise SNP-SNP interactions (Wan et al., 2010).
The main feature of BOOST is to build contingency tables
and use them to calculate log-likelihood ratios for evaluating
interaction effects. For two SNPs, a contingency table is a
3 × 3 matrix displaying the frequency distribution of all
nine possible genotypes (Figure 1B). However, computing all
potential contingency tables at a genome-wide scale is a time-
consuming process. In fact, there are as many contingency tables
as there are pairwise interactions to test (see Section Challenges
in Epistasis Detection). In order to boost the procedure in terms
of time and space efficiency, GWAS data is first transformed in
a binary way. In usual data representation, each row symbolizes
a SNP and each column symbolizes a subject (Figure 3A). In
binary representation, each SNP is depicted by three rows, each
of them describing the genotype status (i.e., 0, 1, or 2), and
two columns depict cases and controls subjects respectively
(Figure 3B). Each table cell contains a bit string where each bit
represents one subject and its genotype: 1 if it corresponds to the
genotype status encoded by the current row, 0 otherwise. Even
if the binary matrix seems three times larger than the usual one,
its space usage is smaller because one bit is an eighth of a byte,
and bytes are the usual units (i.e., non binary) used for storing
information. That representation also sticks closer to machine-
language, which means that building a contingency table from it
only involves fast bitwise (i.e., Boolean) operations.

Once contingency tables are constructed, the program is
ready to test for pairwise interactions. The way to detect
epistasis complies with Fisher’s epistasis definition (see Section
Biological Epistasis and Statistical Epistasis) since authors look
for a difference between the independent effect model (i.e.,
marginal effects) and the model which includes both marginal

and interaction effects. In other words, for each SNP pair, BOOST
tests for a departure from the linear additive model. Under the
assumption of equivalence between a logistic regression model
and its corresponding log-linear model (Agresti, 2002), this
departure is expressed in terms of log-likelihoods. However, the
traditional log-likelihood of marginal effect model is constructed
via computationally costly iterations that are not tractable
at a genome-wide scale. Hence, authors use a non-iterative
approximation of the log-likelihood ratio called Kirkwood
superposition approximation (KSA) (Matsuda, 2000). On the
basis of contingency tables, all pairwise interactions are tested
with this indulgent KSA. As it is an approximation, too many
false positives are deemed significant with respect to a threshold
specified by the user. Therefore, after this first quick screening
phase, interaction effects of the selected SNP pairs are again
evaluated in a second phase. The number of SNP pairs is
supposed to be reduced enough during the first phase in such
a way that evaluation of interaction effects via a classical log-
likelihood ratio on the remaining pairs is now affordable. Finally,
significance of evaluated effects is assessed with a χ2 test. One
could say that the use of the χ2 statistic discredits the method
with the following argument: testing interaction effects of a SNP
that shows high marginal effect with a χ2 statistics may lead to
evidence of a statistically significant epistatic effect while that
perceived signal could solely be due to noise induced by high
marginal effect. For instance, the latter issue has been reported in
2013 by Goudey and coworkers in their result section (Goudey
et al., 2013). As a consequence, this phenomenon could favor
the selection of many false positive interactions that have little
to no epistatic effect. However, even if BOOST uses the χ2

statistics to ultimately assess significance of epistatic interactions,
tested SNP pairs already show significant association with a log-
likelihood difference between the model which does not consider
interactions (reduced model) and the model that does consider
them (full model).

This approach is faster than its contemporary Bayesian
method BEAM (see Section Bayesian Networks) and shows
comparative power of detection. A year later, an even faster
version that relies on graphic processing units (GPU) instead
of central processing units (CPU) was developed. However, an
important shortcoming arises because BOOST heavily relies on
contingency table construction: low minor allele frequencies
(MAF) generate sparse contingency tables, which hampers
the detection power of BOOST. Indeed, in each cell of the
contingency table, aminimal number of individuals is required so
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FIGURE 3 | Representations of GWAS data. (A) Classical representation: cell (i, j) corresponds to status of SNP i for individual j. (B) Binary representation: cell (i, j)

corresponds to the true (1) or false (0) assertion that a SNP i has a specific value (0, 1, or 2) for individual j. For ease of comprehension, the link between these two

representions is highlighted in gray.

that the χ2 test is statistically valid. But when contingency tables
are sparse, this requirement is not met, thus leading to failure
of epistatic interactions detection. Despite the fact that nearly
all true positives are detected (i.e., the detection power is high),
BOOST is sensitive to type I errors (Yoshida and Koike, 2011).
Finally, a notable shortcoming is that the method only analyzes
pairwise interactions and no higher order interactions.

ROC Curve Analysis
Goudey et al. introduced the genome-wide interaction search
(GWIS) model-free approach in 2013 with the purpose of
pairwise epistasis detection (Goudey et al., 2013). While BOOST
compares a difference in segregation between two regression
models, GWIS tests the difference in segregation power between a
SNP pair and the corresponding SNPs taken individually. GWIS
is not based on regression analysis, but exploits receiver operating
characteristic (ROC) curves to test the discrimination power
of SNP pairs. A ROC curve plots the true positive rate (i.e.,
sensitivity) against the false positive rate (i.e., 1 – specificity)
of a classification model. In the context of GWAS, a ROC
curve represents the performance of some model designed in
classifying individuals according to their affected or unaffected
status. For each pair of SNPs, GWIS considers three classification
models and builds the respective ROC curves: two for each
SNP taken individually, and one for the SNP pair. When the
ROC curve corresponding to a SNP pair lies over the other two
curves corresponding to individual SNPs, the SNP pair is said to
have better prediction power than SNPs taken individually. The
next question is to assess if the departure in prediction power
between these classification models is significant. To answer this
question, Goudey et al. proposed a model-free hypothesis test
called difference in sensitivity and specificity (DSS). The goal is
to quantify the gain in sensitivity and specificity of a ROC curve
over another one (Goudey et al., 2013). It seems important to

the authors to perform exhaustive search rather than heuristics,
in order to avoid being trapped in local optima, then missing
significant pairs. GWIS is also designed to be fast (e.g., faster than
BOOST) and to scale up to datasets containing millions of SNPs.

The BOOST and GWIS strategies are designed to run
exhaustive genome-wide fast scans of epistatic interactions.
However, they are restricted to the detection of interacting SNP
pairs, which is a substantial limitation. All epistatic models
assuming interaction with order greater than two will be missed
by these two methods. In the next section, we present a technique
that overcomes this problem and exhaustively looks for higher
order epistasis.

A Full Combinatorial Approach
Multifactor Dimensionality Reduction (MDR) is now a reference
in the epistasis detection field. No parameters are estimated (i.e.,
nonparametric) and no assumptions are made on the genetic
model (i.e., model-free) under this supervised classification
approach. This strategy could detect interactions even when
independent main effects are inexistent (Ritchie et al., 2001,
2003; Hahn et al., 2003). It is not constrained to identification
of pairwise interactions but also searches for higher order
interactions (Moore et al., 2006).

First, MDR partitions the dataset for cross-validation. By
default, nine tenths of the dataset (training set) is used to
build the model and the remaining tenth (testing set) is
used to evaluate this model. The model is built following the
steps presented in Figure 4. For an interaction order specified
by the user, the corresponding number of SNPs is drawn
(Figure 4A). Genotype combination counts are then distributed
into a contingency table (Figure 4B). For instance, in a two-SNP
biallelic interaction model, the nine possible two-locus genotype
combinations are allotted into their respective table cells. For
a three-SNP interaction model, twenty-seven table cells would
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FIGURE 4 | Steps of multifactor dimensionality reduction (MDR) algorithm: example of 2-way interaction model. Description of one iteration of the

cross-validation process. In (A), a SNP combination is drawn among all potential SNP combinations. In (B), numbers in red denote counts for cases whereas

numbers in black denote counts for controls. In (C), each cell displays the ratio of cases over controls. In (D), the prediction error is estimated over the 10 iterations.

be needed. Then, the count of cases and controls is reported
for each genotype combination and each cell is evaluated with

the following ratio: number of cases sharing this genotype combination
number of controls sharing this genotype combination

(Figure 4C). This way, each genotype combination is classified
either as high-risk if the above ratio lies beyond a specified
threshold (e.g., 1.0), or as low-risk if it lies below that threshold
(De et al., 2014). The classification model is then formed by
merging cells marked high-risk in one group and all cells marked
low-risk in another group. This explains why that method refers
to “Dimensionality Reduction”: starting with a problem where
dimensionality equals the chosen interaction order, only one
dimension remains in the end with high-risk and low-risk values.
These steps are repeated for every possible combination of SNPs
at a given interaction order, and each combination results in one
prediction model. A 10-fold cross-validation process allows to
assess the quality of such models. In other words, for each of
the 10 iterations of the cross-validation, the models are trained to
discriminate between low-risk and high-risk groups through the
learning step (on nine tenths of the data). The proportion of ill-
classified affected and unaffected individuals is evaluated on the
testing set (one tenth of the data). Finally, the prediction error
of each model is estimated over the 10 iterations (Figure 4D).
The top best models over the 10-fold cross-validation are
retained.

As themain feature ofMDR is to reduce the data dimension, it
can easily be combined with other classification methods (Moore

and Andrews, 2015). This flexibility is also a good point to
emphasize because since 2006, many extensions of MDR have
been proposed so that it is applicable to quantitative traits (Gui
et al., 2013). Besides, other variants of the MDR algorithm
have been proposed that rely on parallel implementations
to boost MDR computing time performance (Bush et al.,
2006), to handle missing data (Namkung et al., 2009), or to
implement permutation tests (Greene et al., 2009a). However,
MDR remains a brute-force search algorithm that induces a
prohibitive computational burden when the number of SNPs to
analyze exceeds several hundreds. This lack of scalability is its
most critical shortcoming in a genome-wide analysis context.

Most exhaustive strategies cannot afford screens of higher
order interaction space search since they are not designed to
scale up (Taylor and Ehrenreich, 2015). Even the aforementioned
GWIS method is restricted to pairwise interaction detection.
Exhaustive methods allowing exploration of higher order
interactions, like MDR, cannot handle a genome-wide analysis
and are constrained to several hundreds of SNPs. To overcome
this shortcoming, a common technique is to preprocess
data, reducing the entire SNP set to a smaller subgroup
that has a tractable size for exhaustive higher order genetic
interaction analysis. However, the type of filter is also important.
Choosing a marginal-effect dependent filter would be indeed
counterproductive with a method like MDR which is most
effective in detecting interactions showing pure epistatic
effects.
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Two-stage Approach: Filters to Obtain
Reduced Search Space

To address the computational burden issue, the overarching goal
of some methods is to restrict the analysis to a small subset
of candidate markers so that the exhaustive investigation of
the remaining combinations is computationally tractable, even
for higher order interactions. One approach is to conduct a
single SNP-SNP analysis to keep only SNPs with significant
marginal effects. SNP combinations are then tested among
the remaining marker subset. For example, this strategy has
been used in combination with stepwise logistic regression to
pre-select a small fraction of SNPs (e.g., pre-determined 10%)
based on single-SNP associations significance, before testing
for interactions between the selected markers (Marchini et al.,
2005). But such filtering leads to an obvious bias where epistatic
interactions exclusively induced by combinatorial effects (i.e.,
with nomarginal effect) are not picked up. Nevertheless, there are
other ways to reduce the number of SNP combinations down to
an informative subgroup. There also exists data mining and data
integration techniques dedicated to filter and score downsized
genetic variant sets, where null marginal effect is not a rejection
condition. We will illustrate each technique in the next two
subsections.

Filtering Based on Data Mining Techniques
We will illustrate this category with the ReliefF method.
ReliefF approach consists in learning informative features from
the dataset without any a priori knowledge (Robnik-Šikonja
and Kononenko, 2003). The algorithm computes a proximity
measure between individuals on the basis of genome-wide
genetic similarity. The goal is to evaluate the quality of
genetic variants according to how well their values distinguish
individuals near to each other.

The algorithm is quite simple (Figure 5). For each individual
(noted I), the procedure determines the nearest individuals (i.e.,
neighbors) sharing the same phenotype (set noted S for same),
and also the nearest individuals that show up the opposite
phenotype (set noted O for opposite). If I and S show different
values for a marker, then this variant discriminates individuals
having the same phenotype, thus decreasing its importance. On
the contrary, if I and O show different values for a marker, this
variant discriminates individuals having different phenotypes,
thereby its importance is increased. These steps are then repeated
over a predefined number of individuals. Moore and coworkers
showed in 2007 that ReliefF algorithm is scalable (Moore and
White, 2007).

The popularity of ReliefF gave rise to several variations
(Kononenko, 1994) that we will quickly present below. RReliefF
(Regressional ReliefF) was designed to study quantitative traits
like eQTL epistasis (Huang et al., 2013). When applied to a
genome-wide dataset, noisy genetic markers may be attributed
too much weight, hence inflating their importance estimates.
To alleviate this problem, TuRF (Tuned ReliefF) proposed to
eliminate from the SNPs set considered for epistasis detection,
SNPs with no or very low importance. These SNPs rarely
discriminate individuals from their neighbors having a different

phenotype (Moore and White, 2007). Importance of remaining
SNPs is then re-estimated, without considering these noisy
SNPs. Results are encouraging since TuRF power of detection
is identical to or better than ReliefF. ECRF (Evaporate Cooling
ReliefF) also attempts to solve the noisy variable problem
(McKinney et al, 2007). It significantly outperforms ReliefF for
detecting epistasis. Its algorithm combines information theory
and ReliefF. In ReliefF and its above extensions, the user-defined
number of nearest individuals to consider (i.e., S andO) is usually
fixed at 10. Using such a predefined number may be considered
as a selection bias since the information coded in the data is
not fully exploited. To tackle this issue, SURF (Spatially Uniform
ReliefF) proposes to take into account all neighbors within a
given distance rather than a fixed number of neighbors (Greene
et al., 2009b). SURF generally takes into consideration much
more neighbors than ReliefF, labeling 25–50% of all individuals
as neighbors. So when applied to a GWAS dataset, SURF has
higher power of detection than ReliefF, albeit this may become
a cumbersome procedure. A latest variation, SURF∗ (Greene
et al., 2010), also considers information of farthest individuals to
build importance scores. In terms of detection power of epistatic
interactions, the performance of TuRF and ReliefF has been
compared in Moore and White (2007). ECRF has also been
compared to ReliefF in McKinney et al (2007). Finally, SURF
has been compared to both ReliefF and TuRF in Greene et al.
(2009b). However, ECRF and SURF have not been compared to
each other, as well as ECRF and TuRF. ECRF and TuRF show
improved performance over ReliefF, whereas SURF and SURF*
show improved performance over both ReliefF and TuRF.

Filtering Based on Data-integration Techniques
Another research area advocates the use of knowledge from
external databases, in order to select SNP groups that are relevant
to the phenotype of interest (Grady et al., 2011). Even if this
approach is hindered by a lack of epistasis understanding in
complex organisms, it avoids the black box effect of data mining
techniques that may hamper the interpretation of underlying
biological mechanisms.

One way to do that is to query information in online
public protein-protein interaction databases like IntAct (Kerrien
et al., 2012), BioGRID (Chatr-Aryamontri et al., 2015), STRING
(Franceschini et al., 2013) or ChEMBL (Willighagen et al.,
2013). It is then possible to narrow all SNPs down to a
reduced list of markers located in genes that encode for proteins
involved in relevant interactions. When markers are mapped
to an interacting gene pair, tests are exhaustively conducted on
interactions between each SNP of the first gene against each
SNP of the second gene. Unfortunately, one would probably
fail at discovering new biological models by selecting SNPs in
such a direct way. A more promising strategy is to come up
with a score for each SNP (Ritchie, 2015), based on assessed
relative importance of the proteins encoded by the genomic
region encompassing the SNP. Novel findings are within reach
by running a prioritization scheme rather than a strict removal
(Pattin and Moore, 2008).

Resorting to pathways is also interesting. For instance, this
approach has already been applied with information drawn
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FIGURE 5 | ReliefF algorithm.

from pathways involved in lipid synthesis (Ma et al., 2015), by
including evidence from public databases like KEGG Pathway
(Kanehisa et al., 2012), Reactome (Croft et al., 2014) or BioCarta
(Nishimura, 2001). For a pathway of interest, one first looks
at the involved genes, and then maps SNPs to these genes.
The technique is similar to the above protein interaction-guided
analysis. But there is a bias as certain pathways are more deeply
studied than others: genes (and SNPs therein) involved in a
very well-known pathway may be given more weight than those
involved in a less studied one. Instead of relying on guidance
restricted to pathways or to protein-protein interactions, the
comprehensive knowledge approach (Pendergrass et al., 2013a)
is more global as it exploits pathways, protein interactions, gene
expression, gene ontology, etc. As appealing as this approach
might be, it is not currently possible to accurately evaluate
results found by this strategy because implementing pathway
simulations is not a trivial task. This would require a tool
designed to simulate pathways and protein-protein interaction
networks, and then simulate GWAS data where several SNPs
are involved in these networks. Such a tool does not exist
yet. Therefore, for this kind of filter based on comprehensive
knowledge, we cannot properly and objectively assess its scientific
relevance.

One software program worth mentioning is Biofilter. It
gathers information from 13 databases (Pendergrass et al.,
2013a), which contain experimental evidence of interaction,
pathway or ontological similarity relationships. On the basis
of biological plausibility, Biofilter models interactions that
will be tested irrespective of the marginal effects. So it
creates polygenic models, thanks to gene-disease and gene-gene
connection knowledge (Pendergrass et al., 2013b). The statistical
and computational challenges are also addressed since not all
combinations of interactions are examined. Statistical relevance
is based on the statement that the more two genes are involved
in a relationship, the more likely they are to share an important
biological link (Bush et al., 2009).

Although data-integration techniques yield meaningful and
biologically relevant results, exploiting external information
sources like pathways or protein-protein interaction networks
is controversial. Online databases are incomplete and so is our
understanding of biological pathways. Thus, making use of them
to build filters would in most cases results in a flawed analysis.
Moore and Hill recently recommended (Moore and Hill, 2015)
to combine both the biased approach (from a biologist point of
view) based on expert knowledge, and computational approaches
solely driven by GWAS data (neither immune to bias from a
statistician point of view). Similarly to computational exhaustive
methods, this combined approach is taking advantage of artificial
intelligence methods, which we discuss in the next section.

Non-exhaustive Searches Enhanced by
Artificial Intelligence

Machine learning and combinatorial optimization represent
alternatives to parametric statistical methods for detecting
combinations of variants that are associated with a phenotype.
Machine learning methods build non-parametric models to
compile information further used for epistatic detection.
Combinatorial optimization techniques consider a search space
of solutions (i.e., combinations of potentially interacting SNPs)
and browse through this space to find the more relevant
combinations. Heuristics are commonly used in these algorithms,
especially when dealing with genome-wide datasets in search of
higher order genetic interactions. Identification of classification
variables and interactions between them which allows outcome
prediction is a well-known hurdle addressed by the machine
learning and data mining fields of artificial intelligence (Cordell,
2009). In such non-parametric models, precautions must be
taken to avoid overfitting (see Box 3). It has to be noted that if the
model complexity of the underlying genetic mechanisms is too
high compared to the sample size, using non-parametric methods
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BOX 3 | Overfitting.

The aim of machine learning is to explain a system by learning a model with a training dataset. But dataset’s particularities result in an overly tuned model adjusted for

very specific features (Leinweber, 2007). In other words, overfitting happens when the training stage gives too much importance to the noise within data. Overfitting is

detected when a simpler and more accurate model exists. However, identifying what to ignore in the overfitting model is a non-trivial task. Overfitting typically arises

when model complexity is too high compared to the size of the training data. In practice, cross-validation possibly combined with pruning is used to avoid overfitting.

may not be affordable. In this case, parametric methods are the
only practical alternative, assuming that the model assumptions
are not severely violated.

A majority of these heuristics test for associations of
variants allowing interactions, rather than testing for interactions
themselves. The distinction lies in the following: besides
SNPs involved in epistatic interactions, a model representing
associations allowing for interactions also includes SNPs which
have marginal effects. Therefore, although it is not a straight
proof of epistasis, it is nonetheless an examination of polygenic
models. Thus, if such procedures heavily rely on marginal effects
for association findings, they will detect multiple SNPs with
independent effect. But if they do not rely on marginal effects,
they will also consider epistatic interactions.

With regard to machine learning techniques, we will
first take a look at random forests and their variants,
then move on to Bayesian network-based strategies. As for
combinatorial optimization strategies, ant colony optimization
and computational evolution system approaches will be
presented.

Random Forests and their Variants
A tree-based algorithm generates a tree where each tree-node
represents a predictor variable and a path designates a sequence
of predictor variables from the root to the leaves of the tree.When
the tree is constructed from GWAS data, each node represents a
SNP. A basic tree-growing algorithm is deterministic in that each
step looks for the predictor variable that optimally segregates
the population. So a grown tree is a classifier which represents
a SNP set allowing prediction of the phenotype of interest. This
approach can handle SNPs that are associated in a non-linear
way, dealing with interactions encoded in a hierarchical fashion
between layers of the tree. A notable shortcoming of tree-based
methods is that they are quite dependent of marginal effects.
At the beginning of the tree learning step, the algorithm looks
for a single SNP that well discriminates cases from controls. In
practice, this is equivalent to looking for SNPs with highmarginal
effects.

Random forests were designed to avoid bias generated by
growing a single tree. The random forest strategy creates
multiple—generally thousands—classification or regression trees
(e.g., CART) in order to apply an ensemble procedure. An
ensemble procedure aggregates the predictions of all trees to
produce a powerful and robust prediction tool (Breiman, 2001).
The SNP set output is defined as the most important variable
set of the random forest (to be further explained in this section).
Although growing a random forest is a relatively computationally
intensive procedure, it has been evaluated as a good strategy
for detecting the most predictive SNPs in large-scale association
studies (Bureau et al., 2005) and was applied to GWAS several

times in the last 5 years with epiForest (Jiang et al., 2009), random
Jungle (Schwarz et al., 2010) and SNPInterforest (Yoshida and
Koike, 2011).

A classification tree is grown using the following steps (Jiang
et al., 2009). First, a bootstrap sampling is performed from
the GWAS dataset comprised of N individuals andM SNPs. It
consists in randomly selecting, with replacement, N individuals
from the N original individuals. Individuals not drawn are
called out-of-the-bag (OOB) individuals. So a new dataset and
an OOB set are created for each grown tree. Then a random
feature selection is applied to construct each node of the tree.
To do so, instead of considering all variables from the initial
GWAS dataset, a random subset of variables is picked out
without replacement. A recursive data splitting procedure is next
executed, such that a parent node results in two child nodes given
a rule that leads to a better discrimination of the current set of
individuals (from the parent node) with regards to the disease
status. This discrimination score is measured as a goodness of
split or a decrease in impurity1i. The tree is then grown up to its
largest extent. These previous steps are repeated until a forest is
built (Figure 6).

For each node, a so-called variable importance is assessed to
evaluate its contribution to the trait either individually or via
multi-way interactions with other predictor markers. In other
words, variable importance represents weight approximating the
causal effect of a predictor variable. There are several ways to
measure variable importance (Schwarz et al., 2010). One is the
Gini importance, a second one is the permutation importance,
and a third one is the conditional variable importance, based on
permutation importance. The conditional variable importance
seems to be more suitable when applied to genetic data while
the other two are biased in presence of linkage disequilibrium
(correlation between SNPs) (Strobl et al., 2008). Compared to
the original random forest construction, algorithms readjusted
for epistasis detection include multiple SNPs at each tree-node
during tree building (Botta et al., 2014). It is intended to detect
SNP combinations even when marginal effects are very weak or
inexistent (Yoshida and Koike, 2011). The readjusted method
is less sensitive to SNPs presenting little marginal effects than
an exhaustive approach like MDR. However, even if random
forests reveal associations potentially pointing at interactions,
they cannot make a distinction between a scenario of interacting
SNPs and a scenario of several independent SNPs additively
contributing to the phenotype. As a result, random forests are
lacking clear interpretation.

More recently, another tree assembling software program was
developed: GWGGI (Wei and Lu, 2014). It differs from the
previous methods in two points. First, it uses a tree-growing
algorithm which is more computationally efficient (Lu et al.,
2012): the standard variable selection procedure is replaced with
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FIGURE 6 | Random forest algorithm. (A) Algorithm of a random forest procedure. (B) An example of the three steps needed to grow one tree.

a forward algorithm. The principle of a forward algorithm is
to take into account previously selected variables. The novel
variable identified is the one, when added to the previous set of
variables, allowing for the most accurate prediction. Secondly,
the GWGGI algorithm relies on likelihood ratios and the Mann-
Whitney statistics to assess the predictors’ importance in order
to facilitate the statistical significance assessment of selected
association models. Since each tree can be considered as a multi-
locus genotype model, each individual is confronted to each

grown tree and a likelihood ratio is generated: LRti =
P(Gt

i |D)

P(Gt
i |D)

where Gt
i is the genotype of individual imapped t, andD (resp.D)

is the control status (resp. case status). Then for each individual,
all likelihood ratios are assembled into a unique one by averaging
the total number of trees. Finally, aU-statistic is constructed with
comparisons between assembled likelihood ratios of cases vs.
controls in order to evaluate the joint association of the selected
SNPs with the phenotype (Wei et al., 2013). The U-statistic is

calculated in the following way: U =

∑N_cases
i = 1

∑N_controls
j = 1 ψ(LRi, LRj)

N_cases∗N_controls .
The ψ function is a kernel function defined as:

ψ
(

LRi, LRj
)

=







1 if LRi > LRj
0.5 if LRi = LRj
0 if LRi < LRj

The null hypothesis states that there is no association between the
selected SNPs and the phenotype.

Bayesian Networks
Bayesian networks provide a compact representation of
dependencies between variables. A Bayesian network consists

of two components: a graphical one and a probabilistic one.
In the former—directed acyclic graph (DAG)—variables are
represented by nodes and dependencies between them are
represented by directed edges. The probabilistic component of
a Bayesian network associates a probability distribution with
each node of the DAG, thus accounting for uncertainty. A
Bayesian network encodes the Markov property: each variable
is independent of its non-descendants, given its parents in the
DAG. The governing theorem of a Bayesian network is the
following. Let X, Y, and Z be variables of the Bayesian network.
If P (X|Y,Z) = P(X|Y), then X is conditionally independent
of Z, given Y (noted X ⊥ Z|Y). When applied to genetic data,
variables are typically SNPs and phenotypic values. Bayesian
networks offer an appealing and intuitive way to capture
relationships existing between genetic markers and disease
status. The structure learning of a Bayesian network amounts to
a model selection problem. Because this learning is an NP-hard
problem (Chickering et al., 2004), specific techniques have to be
used to reduce the computational burden.

A famous Bayesian network-based software program called
BEAM (Bayesian Epistasis Association Mapping) (Zhang and
Liu, 2007) is often used as a Bayesian-based reference for
performance comparisons. BEAM relies on a Markov Chain
Monte Carlo (MCMC) algorithm to test iteratively each marker,
conditional on the current status of other markers. For each
marker, the algorithm outputs its posterior probability of
association with disease. Markers are then distributed into three
groups: group 0 for markers unlinked with the phenotype, group
1 for SNPs that contribute independently to the phenotype
(additive model) and group 2 for SNPs that influence the disease
risk given particular allele combinations (epistasis model). After
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that partitioning phase, a B-statistic is used to further filter
detected SNP groups. When the BEAM method was originally
published, the B-statistic was a new alternative to the usual
χ2 test of association between a phenotype and a set of SNPs.
A detailed explanation of its computation would require a
much deeper presentation of BEAM, which is not the aim
of this section. The interested reader is referred to Zhang
and Liu (2007) for a comprehensive explanation of how to
build a B-statistic. Although the B-statistic enables to get rid
of expensive permutation tests, MCMC iterations make this
method inadequate when handling datasets containing more
than 500,000 genetic markers, which is now commonplace in
GWAS studies.

More recently, Han et al. (2012) also worked with Bayesian
networks to capture SNP-disease associations with EpiBN. As
these authors consider that SNPs are causal with respect to
the phenotype, the Bayesian network built here is composed
of two layers: one layer with the phenotype as a unique node,
connected to parent nodes of the phenotype in the second
layer which represents the SNPs associated with the phenotype.
Edges between nodes representing SNPs can exist, thus allowing
detection of interactions between genetic variants in the model.
Instead of a MCMC-based algorithm, they use a Branch-and-
Bound iterative procedure to learn the structure of the Bayesian
network. At each iteration, the algorithm adds, deletes or reverses
an edge. Then a score function is called to find the best network
structure evolution since the previous iteration. The network is
iteratively constructed and at each iteration, the current network
structure goodness is assessed with a score function. The goal
is to maximize this score. The score function is made of two
terms that indicate how well the current structure fits the data—
on the basis of a maximum likelihood ratio—and how complex
the Bayesian network is. In Han et al. (2012), it has been shown
through multiple simulations that the EpiBN software program
seems to outperform BEAM in interactions detection power.

A different but not less appealing Bayesian strategy is the
Markov blanket-based method. It allows discovery of SNPs in the
local pathway of the phenotype, also referred to as “local causal
SNPs” (Alekseyenko et al., 2011). In the context of GWAS, this
strategy is used to avoid the time-consuming training processes
like tree-growing of random forests or structure learning of a
full Bayesian network. The principle is to find a minimal set of
variables that completely shield the disease status from all other
variables, thus resulting in a local Bayesian network fraction that
borders the phenotype node in the graph: this set is defined as
the Markov blanket. In other words, each SNP will be statistically
independent of the case-control status when conditioned on the
SNPs forming the Markov Blanket. A Markov blanket-based
strategy can be applied for causal findings because the Markov
Blanket contains direct causal variables (i.e., parent nodes), direct
effect variables (i.e., child nodes), and direct causal variables of
direct effect variables (i.e., spouses) (Figure 7A).

With the goal of finding a minimal SNP set, this strategy is
expected to minimize the number of false positives. Besides its
classification accuracy, this strategy has been put forward for
its compactness (Aliferis et al., 2010a). Moreover, the Markov
blanket-based strategy has proved to properly address the

combinatorial hurdle raised by epistasis analysis at the GWAS
scale (Aliferis et al., 2010b). The Markov blanket construction
algorithm will generally go through two stages (Figure 7B). The
first one, called “forward phase,” adds new relevant variables
to the candidate Markov blanket (noted canMB). In practice,
this stage consists in finding the SNP X which is the most
associated with the phenotype, given canMB (e.g., tested with
a G2 test, which is a subclass of likelihood-ratio tests and
is similar to a χ2 test, McDonald, 2014), and including X
in canMB if X is dependent of the phenotype, given canMB
(e.g., if the G2 statistics is lower than some user-specified
threshold): ¬(X Phenotype | canMB) ⇒ add X in canMB.
This operation is repeated until canMB no longer changes from
one iteration to the other. The second phase, called “backward
phase,” aims at removing false positives that were included in
the previous step. To achieve it, each SNP of the candidate
Markov blanket is checked. A SNP Y is detected as a false positive
if it is independent of the phenotype given a SNP subset of
canMB. Three implementations of this approach were recently
developed: DASSO-MB (Han et al., 2010), TIE∗ (Alekseyenko
et al., 2011; Statnikov et al., 2013) and IMBED (Yanlan and
Jiawei, 2012), and all proved to be more sample-efficient than
BEAM, i.e., less samples are needed to reach the same power
of detection as BEAM. In DASSO-MB (Han et al., 2010, Han
and coworkers postulate that, in epistatic interaction studies,
only causal SNPs are sought, and consequently only parent
nodes of the phenotype have to be detected. Hence, DASSO-
MB represents a more specific application of the Markov Blanket
approach. Considering a set of 19 SNPs already known to be
associated with rheumatoid arthritis, an application of TIE*
(Target Information Equivalency) showed that aMarkov blanket-
based approach could make the whole SNP set independent of
the phenotype when conditioned on three other SNPs identified
in the Markov blanket (Alekseyenko et al., 2011). In other words,
the reported SNP set does not provide any predictive information
about the disease status beyond that brought by the three SNPs
identified with the Markov blanket.

The bias of this approach is that the first SNP added to the
candidate Markov blanket is picked on the basis of a univariate
test. So the detection of marker combinations when marginal
effects are slight or nonexistent is still a major obstacle (Han and
Chen, 2011). Markov blanket-based strategies also heavily rely on
the faithfulness assumption, defined with respect to the sample, as
follows: every conditional independence in the Bayesian network
also exists in the probability distribution of the variables. In
practice, this hypothesis is rarely met in GWAS.

Ant Colony Optimization
Ants communicate with each other through pheromone levels to
find the optimal path leading to food. If an ant finds a shorter
path, it will produce and increase the pheromone concentration
along this path. Other ants will more likely follow that path
showing increased pheromone concentrations, thereby creating
a positive feedback to find the best path to food. In 2010,
AntEpiSeeker algorithm (Wang et al., 2010b) was derived from
the generic ant colony optimization (Dorigo and Gambardella,
1997) (ACO) algorithm. AntEpiSeeker performs the search of

Frontiers in Genetics | www.frontiersin.org 12 September 2015 | Volume 6 | Article 285

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Niel et al. Methods dedicated to epistasis detection

FIGURE 7 | (A) Markov blanket of a phenotype, in gray area. It is made of the parents (SNP 2, SNP 3, and SNP k), of the children (Effect 1 and Effect 2) and of the

spouses (Common cause of Effect 1 with respect to the Phenotype). (B) Two stages of Markov blanket learning. For ease of reading, the Markov blanket is reduced to

parents from (A).

multiple groups of SNPs associated with the disease in parallel.
The algorithm is an iterative procedure where artificial ants
cooperate at each iteration to update knowledge about the
propensity of SNPs to be related to the disease (Figure 8). From
a computational point of view, ants represent SNP sets that
have potential epistatic effects, and a pheromone concentration
is a weight evaluated by epistatic interaction significance of the
selected set of SNPs. Communication between ants is mimicked
by a probability distribution function (PDF) shared by all ants.
The PDF is a function describing the probability of selecting
a specific SNP at a specific iteration. This probability depends
on the pheromone concentration for this SNP at this iteration,
and on another factor which allows to weight SNPs according
to expert knowledge drawn from additional biological data. At

each iteration, multiple SNPs are picked up, depending on the
PDF, to build each ant. Then a χ2 test is used as a score function
to measure the association between an ant and the phenotype.
Results are used to update the PDF for the next iteration.
Once highly suspected sets of SNPs are assembled, AntEpiSeeker
conducts a second analysis stage: an exhaustive search of epistasis
within each built ant is performed, as well as within the set of
SNPs that have the highest pheromone levels. The ant colony
strategy was also exploited more recently in MACOED (Jing and
Shen, 2015).

The positive feedback effect represents an interesting feature
of the algorithm. Unfortunately, many parameters require fine
tuning, like the number of iterations, the order of interactions,
the number of SNPs in each ant, or the evaporation rate of
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FIGURE 8 | Ant colony optimization procedure. For each ant, multiple SNPs are drawn. The probability distribution function (PDF) gives the probability of each SNP

to be drawn. Once an ant is filled with a SNP set, joint association of this SNP set with the phenotype is evaluated with a χ2 test. For each ant, the PDF is updated

according to p-values resulting from χ2 tests, such that SNPs efficiently classifying individuals will have a higher probability of being drawn in the next iteration.

pheromones which is an ingredient of the update function of
the PDF. Those parameters must be estimated a priori, which is
considered as a limitation of this algorithm.

Computational Evolution System
The algorithm behind the Computational Evolution System
(CES) is an original strategy based on natural selection and
Darwinian evolution. The goal is to grow a computer program
from several basic building blocks, similar to a DNA strand
emerging from a composition of the four basic nucleotides.
This program tries to reproduce the natural evolution process
underlying complex real biological systems. The first question is
what the building blocks are, whenever one wants to build such
a computer program. The answer is non-trivial and is decisive in
epistasis analysis when trying to avoid dependence to marginal
effects. In a recent application of CES (Moore and Hill, 2015),
the building blocks were defined as basic functions involving
SNPs. A basic function is an operator (add, delete, and copy)
aggregating SNPs in combinations, and the resulting composition
of building blocks is called a solution. In other words, a solution
can be perceived as a set composed of various elements, where
each element is a function dealing with genetic polymorphisms.
A solution is thus a classifier designed to predict the case-control
status of an individual given its genotype.

A CES is governed by a pyramidal architecture where each
level is probabilistically controlled by its upper layer. The lowest
level is a two-dimensional grid of solutions where each solution
is a list of building blocks. The second level is a grid of solution
operators influencing the lower layer. Each cell consists of a
combination of add, delete, and copy operators having a given
probability of being executed. Attributes can be added, deleted
or copied either randomly or using expert knowledge. A third
level of computation is used to introduce changes in execution
probabilities of the latter operators. A last level controls the
variation rate of the third layer. Uncertainty is injected in this

architecture in order to mimic a realistic natural evolution
system. As a result, there is high flexibility in model creation
based on CES.

The stage during which all solutions are modified is called a
generation. From one generation to the next, accuracy of each
solution is modified as follows: an operator is drawn according
to the execution probability distribution; this operator is then
applied to each solution. It has to be noted that the initialization
of the CES grid of solutions is either random or guided with
expert knowledge. This last option has been highly recommended
(Greene et al., 2009a; Payne et al., 2010). The accuracy of each
solution is assessed in the following way. Each solution is applied
to case and control individuals to obtain two distinct score
distributions: one for cases and one for controls. A threshold is
determined as the arithmetic mean between the medians of the
two distributions. Then individuals are predicted to be cases or
controls given this threshold. The solution accuracy is computed
afterwards as an error ratio between predicted and actual status.
Once one knows how to compare solutions, one can select the
optimal solution which maximizes the prediction accuracy. The
solution is selected among all generations (e.g., 1000 generations)
in the following way. Each solution occupies a lattice position in
the two-dimensional grid and competes with its neighborhood
composed of eight adjacent solutions. Within this neighborhood,
the solution with the highest accuracy is selected to replace the
central position of that neighborhood.

This approach is interesting in that it allows modeling
of complex interactions with few hypotheses. It also has
the capability to use expert knowledge, and is well suited
for parallelization. However, the computational complexity of
the CES strategy precludes a direct analysis of GWAS data
with hundreds of thousands SNPs. Such datasets will require
a preprocessing step with filtering methods introduced in
Section Two-stage Approach: Filters to Obtain Reduced Search
Space.
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Discussion

While an exhaustive epistasis analysis has become a quite
straightforward task for SNP pairs, higher order interactions
search in an exhaustive way is not conceivable at the
moment. In this paper, we reviewed main current strategies
for epistasis detection: exhaustive ones based on brute-force
approach, filtering ones aiming at reducing genome-wide SNP
set size, and different machine learning and combinatorial
optimization procedures to find SNP associations yielding the
best classification power. Table 2 summarizes categories of
methods described in this paper and gives representative software
programs illustrating each category. In particular, this table
highlights characteristics of the largest GWAS dataset analyzed
using each software program. Runtimes are indicated, when
available, for sequential and parallel versions of each program,
for information about scalability.

Despite efforts for developing novel methods dedicated to
epistasis detection, genetic variance of complex traits is weakly
explained by detected epistatic interactions. This may be due to
low detection power of pure and strict epistatic interactions for
many of these methods. Much remains to be done to improve
power of detection using model-free searches. For instance, the
TURF method (see Section Filtering Based on Data Mining
Techniques) which excludes SNPs with low predictive power,
prior to performing epistasis detection, could be extended to
other strategies like random forests, thereby improving detection
of epistasis.

Precision of association measure estimates between epistatic
interactions and phenotypes can be enhanced by increasing

the number of samples
number of SNPs

ratio. First, increasing the sample size is a

way to improve power of epistasis detection. Federating data
from laboratories in the context of meta-analysis is a widespread
approach, though subject to biases due to heterogeneity of
laboratory practices. Second, reducing the number of SNPs
to analyze might improve the statistical power under a given
hypothesis. For instance, such a reduction of the search space size
is possible thanks to systematic methods, like using significant
pairwise interactions as a prior basis for the search of higher order
interactions. Regarding data integration approaches, biological
expert knowledge based-filters are often proposed to guide
epistasis analysis. Being a biased approach, it is recommended to
run at the same time a procedure without any a priori knowledge
(Ritchie, 2015). Although development of epistasis detection
methods is growing, many methods are hampered in presence
of genetic heterogeneity or incomplete penetrance. Random
forest-based techniques have been described to efficiently deal
with genetic heterogeneity because data is split in different
subsets in early stages of the algorithm (Koo et al., 2013). Besides,
some of the existing software programs, like BEAM, will soon
become unsuitable to GWAS datasets which will keep growing in
size so that several millions of SNPs will be the rule rather than
the exception. On the other hand, such a huge number of SNP
might increase power of existing strategies tailored to handle
massive datasets.

An interesting fact rarely discussed in literature describing
the strategies reviewed in this survey is the confusing boundary
between epistasis and linkage disequilibrium. Because linkage

disequilibrium is by definition a phenomenon involving
dependence between genetic variants, its frontier with epistatic
interactions may be blurred since the aforementioned software
programs are designed to detect SNPs that jointly affect
the phenotype. This issue is particularly acute for case-only
approaches. For standard case/control studies, if estimation of
linkage disequilibriumwithin controls provides the same result as
within cases, then the observed linkage disequilibrium does not
originate from epistatic interactions.

Development of simulation models dealing with epistasis
is also an active research area (Moore et al., 2015). Even
if some authors already use various simulation models to
estimate efficiency of their algorithms (Beam et al., 2014), these
simulation tools lack the complexity of genetic mechanisms
observed in real data. For instance, simulation models used in
most software programs introduced in the previous sections
only generate pairwise epistatic interactions. As a consequence,
strategies dealing with higher order interaction detection are
not confronted to simulation scenarios involving those types of
interactions. Hopefully, such a gap will certainly be filled in the
future.

With regard to evaluating association strength several authors
rely on p-values to sort the best candidate SNPs. However, p-
values alone do not allow any straightforward statement about
the association strength. A p-value only estimates the probability
of having observed the value of the test statistic under the null
hypothesis (i.e., there is no association between the tested SNP
and the phenotype) (du Prel et al., 2009). Odds ratio combined
with confidence intervals are also widely usedmeasures in GWAS
reports.

The need for scalable and powerful strategy to detect SNP-
SNP interactions is clearly unmet today. This is especially true for
detection of higher order interactions. Massive testing of SNPs
combinations should no longer be a tedious task, but rather a
routine operation in a GWAS analysis workflow.

Conclusion

Currently, no strategy to detect epistasis stands out: all
must strike balance between time efficiency and detection
power. However, different techniques are available to reduce
running times. Some authors improved time efficiency through
parallelization of their strategies, e.g., random forests, ant colony
optimization and approaches based on computational evolution.
Other authors implemented versions of their software programs
which use graphic processing units (GPU) instead of traditional
central processing units (CPU).

Acknowledgments

CN is supported by the Regional Bioinformatics Research project
GRIOTE granted by the Pays de la Loire region on the one hand,
and the European Genomic Institute for Diabetes (EGID) Labex
(Lille) on the other hand. GR’s work is supported by a Chair
in Biostatistics jointly sponsored by the Centre National de la
Recherche Scientifique and Lille 2 University. We also thank two
anonymous reviewers for very helpful comments and valuable
improvement of the manuscript.

Frontiers in Genetics | www.frontiersin.org 16 September 2015 | Volume 6 | Article 285

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Niel et al. Methods dedicated to epistasis detection

References

Agresti, A. (2002). Categorical Data Analysis, 2nd Edn. Hoboken, NJ: John Wiley
& Sons, Inc.

Alekseyenko, A. V., Lytkin, N. I., Ai, J., Ding, B., Padyukov, L., Aliferis, C. F.,
et al. (2011). Causal graph-based analysis of genome-wide association data in
rheumatoid arthritis. Biol. Direct. 6:25. doi: 10.1186/1745-6150-6-25

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., and Koutsoukos, X. D.
(2010a). Local causal and markov blanket induction for causal discovery and
feature selection for classification part I: algorithms and empirical evaluation.
J. Mach. Learn. Res. 11, 171–234.

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., and Koutsoukos, X. D.
(2010b). Local Causal and markov blanket induction for causal discovery and
feature selection for classification part II: analysis and extensions. J. Mach.

Learn. Res. 11, 235-284.
Bateson, W. (1909). Mendel’s Principles of Heredity. Cambridge, UK: Cambridge

University Press.
Beam, A. L., Motsinger-Reif, A., and Doyle, J. (2014). Bayesian neural networks for

detecting epistasis in genetic association studies. BMC Bioinformat. 15:368. doi:
10.1186/s12859-014-0368-0

Boone, C., Bussey, H., and Andrews, B. J. (2007). Exploring genetic interactions
and networks with yeast. Nat. Rev. Genet. 8, 437–449. doi: 10.1038/nrg2085

Botta, V., Louppe, G., Geurts, P., and Wehenkel, L. (2014). Exploiting SNP
Correlations within Random Forest for genome-wide association studies. PLoS
ONE 9:e93379. doi: 10.1371/journal.pone.0093379

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi:
10.1023/A:1010933404324

Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., et al.
(2005). Identifying SNPs predictive of phenotype using random forests. Genet.
Epidemiol. 28, 171–182. doi: 10.1002/gepi.20041

Bush, W. S., Dudek, S. M., and Ritchie, M. D. (2006). Parallel multifactor
dimensionality reduction: a tool for the large-scale analysis of gene-gene
interactions. Bioinformatics 22, 2173–2174. doi: 10.1093/bioinformatics/btl347

Bush, W. S., Dudek, S. M., and Ritchie, M. D. (2009). Biofilter: a knowledge-
integration system for the multi-locus analysis of genome-wide association
studies. Pac. Symp. Biocomput. 368–379. doi: 10.1142/9789812836939_0035

Chatr-Aryamontri, A., Breitkreutz, B. J., Oughtred, R., Boucher, L., Heinicke, S.,
Chen, D., et al. (2015). The BioGRID interaction database: 2015 update.Nucleic
Acids Res. 43, D470–D478. doi: 10.1093/nar/gku1204

Chickering, D. M., Heckerman, D., and Meek, C. (2004). Large-sample learning of
Bayesian Networks is NP-Hard. J. Mach. Learn. Res. 5, 1287–1330.

Cho, Y. M., Ritchie, M. D., Moore, J. H., Park, J. Y., Lee, K.-U., Shin, H.
D., et al. (2004). Multifactor-dimensionality reduction shows a two-locus
interaction associated with Type 2 diabetes mellitus. Diabetologia 47, 549–554.
doi: 10.1007/s00125-003-1321-3

Cordell, H. J. (2002). Epistasis: what it means, what it doesn’t mean, and statistical
methods to detect it in humans. Hum. Mol. Genet. 11, 2463–2468. doi:
10.1093/hmg/11.20.2463

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., et al. (2014).
The Reactome pathway knowledgebase.Nucleic Acids Res. 42, D472–D477. doi:
10.1093/nar/gkt1102

Culverhouse, R., Suarez, B. K., Lin, J., and Reich, T. (2002). A Perspective on
Epistasis: limits of models displaying no main effect. Am. J. Hum. Genet. 70,
461–471. doi: 10.1086/338759

De, R., Bush, W. S., and Moore, J. H. (2014). Bioinformatics challenges in
genome-wide association studies (GWAS).MethodsMol. Biol. 1168, 63–81. doi:
10.1007/978-1-4939-0847-9_5

Dorigo, M., and Gambardella, L. M. (1997). Ant colonies for the travelling
salesman problem. Biosystems 43, 73–81. doi: 10.1016/S0303-2647(97)01708-5

Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., et al. (2010).
Missing heritability and strategies for finding the underlying causes of complex
disease. Nat. Rev. Genet. 11, 446–450. doi: 10.1038/nrg2809

Ellis, J. A., Scurrah, K. J., Li, Y. R., Ponsonby, A. L., Chavez, R. A., Pezic, A.,
et al. (2015). Epistasis amongst PTPN2 and genes of the vitamin D pathway
contributes to risk of juvenile idiopathic arthritis. J. Steroid Biochem. Mol. Biol.
145, 113–120. doi: 10.1016/j.jsbmb.2014.10.012

Fisher, R. A. (1918). The correlation between relatives on the supposition
of Mendelian inheritance. Trans. R. Soc. Edin. 52, 399–433. doi:
10.1017/S0080456800012163

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth,
A., et al. (2013). STRING v9.1: protein-protein interaction networks, with
increased coverage and integration. Nucleic Acids Res. 41, D808–D815. doi:
10.1093/nar/gks1094

Gertz, J., Gerke, J. P., and Cohen, B. A. (2010). Epistasis in a quantitative trait
captured by a molecular model of transcription factor interactions. Theor.
Popul. Biol. 77, 1–5. doi: 10.1016/j.tpb.2009.10.002

Gou, J., Zhao, Y., Wei, Y., Wu, C., Zhang, R., Qiu, Y., et al. (2014). Stability SCAD:
a powerful approach to detect interactions in large-scale genomic study. BMC

Bioinformatics. 15:62. doi: 10.1186/1471-2105-15-62
Goudey, B., Rawlinson, D., Wang, Q., Shi, F., Ferra, H., Campbell, R. M., et al.

(2013). GWIS–model-free, fast and exhaustive search for epistatic interactions
in case-control GWAS. BMC Genomics. 13 (Suppl. 3):S10. doi: 10.1186/1471-
2164-14-S3-S10

Grady, B. J., Torstenson, E. S., McLaren, P. J., DE Bakker, P. I., Haas, D. W.,
Robbins, G. K., et al. (2011). Use of biological knowledge to inform the
analysis of gene-gene interactions involved in modulating virologic failure with
efavirenz-containing treatment regimens in ART-naïve ACTG clinical trials
participants. Pac. Symp. Biocomput. 253–264.

Greene, C. S., Hill, D. P., andMoore, J. H. (2009a). Environmental sensing of expert
knowledge in a computational evolution system for complex problem solving
in human genetics. Genet. Evolut. Comput. 19–36. doi: 10.1007/978-1-4419-
1626-6_2

Greene, C. S., Himmelstein, D. S., Kiralis, J., and Moore, J. H. (2010). The
informative extremes: using both nearest and farthest individuals can improve
relief algorithms in the domain of human genetics. Evolut. Comput. Mach.

Learn. Data Min. Bioinform. 6023, 182–193. doi: 10.1007/978-3-642-12211-
8_16

Greene, C. S., Penrod, N.M., Kiralis, J., andMoore, J. H. (2009b). Spatially uniform
relieff (SURF) for computationally-efficient filtering of gene-gene interactions.
BioData Min. 2:5. doi: 10.1186/1756-0381-2-5

Gui, J., Moore, J. H., Williams, S. M., Andrews, P., Hillege, H. L., van der Harst, P.,
et al. (2013). A simple and computationally efficient approach to multifactor
dimensionality reduction analysis of gene-gene interactions for quantitative
traits. PLoS ONE 8:e66545. doi: 10.1371/journal.pone.0066545

Hahn, L. W., Ritchie, M. D., and Moore, J. H. (2003). Multifactor dimensionality
reduction software for detecting gene-gene and gene-environment interactions.
Bioinformatics 19, 376–382. doi: 10.1093/bioinformatics/btf869

Han, B., and Chen, X.W. (2011). bNEAT: a Bayesian networkmethod for detecting
epistatic interactions in genome-wide association studies. BMC Genomics 12
(Suppl. 2):S9. doi: 10.1186/1471-2164-12-S2-S9

Han, B., Chen, X.-W., and Talebizadeh, Z. (2011). FEPI-MB: identifying SNPs-
disease association using a Markov Blanket-based approach. BMC Bioinform.

12 (Suppl. 12):S3. doi: 10.1186/1471-2105-12-S12-S3
Han, B., Chen, X. W., Talebizadeh, Z., and Xu, H. (2012). Genetic studies

of complex human diseases: characterizing SNP-disease associations using
Bayesian networks. BMC Syst Biol. 6 (Suppl. 3):S14. doi: 10.1186/1752-0509-
6-S3-S14

Han, B., Park, M., and Chen, X. W. (2010). A Markov blanket-based method
for detecting causal SNPs in GWAS. BMC Bioinform. 11 (Suppl. 3):S5. doi:
10.1186/1471-2105-11-S3-S5

Cordell, H. J. (2009). Detecting gene-gene interactions that underlie human
diseases. Nat. Rev. Genet. 10, 392–404. doi: 10.1038/nrg2579

Hirschhorn, J. N. (2009). Genomewide association studies–illuminating biologic
pathways. N. Engl. J. Med. 360, 1699–1701. doi: 10.1056/NEJMp0808934

Howard, T. D., Koppelman, G. H., Xu, J., Zheng, S. L., Postma, D. S., Meyers, D.
A., et al. (2002). Gene-gene interaction in Asthma: IL4RA and IL13 in a Dutch
population with Asthma. Am. J. Hum. Genet. 70, 230–236. doi: 10.1086/338242

Huang, C. H., Pei, J. C., Luo, D. Z., Chen, C., Chen, Y. W., and Lai, W. S.
(2015). Investigation of gene effects and epistatic interactions between Akt1 and
neuregulin 1 in the regulation of behavioral phenotypes and social functions
in genetic mouse models of schizophrenia. Front. Behav. Neurosci. 8:455. doi:
10.3389/fnbeh.2014.00455

Huang, Y., Wuchty, S., and Przytycka, T. M. (2013). eQTL Epistasis
- challenges and computational approaches. Front. Genet. 4:51. doi:
10.3389/fgene.2013.00051

Jiang, R., Tang, W., Wu, X., and Fu, W. (2009). A random forest approach to
the detection of epistatic interactions in case-control studies. BMC Bioinform.
10:S65. doi: 10.1186/1471-2105-10-S1-S65

Frontiers in Genetics | www.frontiersin.org 17 September 2015 | Volume 6 | Article 285

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Niel et al. Methods dedicated to epistasis detection

Jing, P. J., and Shen, H. B. (2015). MACOED: a multi-objective ant colony
optimization algorithm for SNP epistasis detection in genome-wide association
studies. Bioinformatics 31, 634–641. doi: 10.1093/bioinformatics/btu702

Johnstone, I. M., and Titterington, D. M. (2009). Statistical challenges of high-
dimensional data. Philos. Trans. A. Math. Phys. Eng. Sci. 367, 4237–4253. doi:
10.1098/rsta.2009.0159

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012). KEGG for
integration and interpretation of large-scale molecular data sets. Nucleic Acids
Res. 40, D109–D114. doi: 10.1093/nar/gkr988

Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.
(2012). The IntAct molecular interaction database in 2012. Nucleic Acids Res.
40, D841–D846. doi: 10.1093/nar/gkr1088

Kononenko, I. (1994). Estimating attributes: analysis and extensions of RELIEF.
Lect. Notes Comp. Sci. 784, 171–182. doi: 10.1007/3-540-57868-4_57

Koo, C. L., Liew, M. J., Mohamad, M. S., and Salleh, A. H. (2013). A Review for
detecting gene-gene interactions using machine learning methods in genetic
epidemiology. Biomed. Res. Int. 2013:432375. doi: 10.1155/2013/432375

Leinweber, D. J. (2007). Stupid data miner tricks:overfitting the S&P 500. J. Invest.
16, 15–22. doi: 10.3905/joi.2007.681820

Liu, J., Martin-Yken, H., Bigey, F., Dequin, S., François, J. M., and Capp, J. P.
(2015). Natural yeast promoter variants reveal epistasis in the generation of
transcriptional-mediated noise and its potential benefit in stressful conditions.
Genome Biol. Evol. 7, 969–984. doi: 10.1093/gbe/evv047

Lu, Q., Wei, C., Ye, C., Li, M., and Elston, R. C. (2012). A likelihood ratio-based
Mann-Whitney approach finds novel replicable joint gene action for type 2
diabetes. Genet. Epidemiol. 36, 583–593. doi: 10.1002/gepi.21651

Ma, L., Keinan, A., and Clark, A. G. (2015). Biological knowledge-driven analysis
of epistasis in human GWAS with application to lipid traits. Methods Mol. Biol.
1253, 35–45. doi: 10.1007/978-1-4939-2155-3_3

Mackay, T. F. (2014). Epistasis and quantitative traits: using model organisms to
study gene-gene interactions. Nat. Rev. Genet. 15, 22–33. doi: 10.1038/nrg3627

Mackay, T. F., and Moore, J. H. (2014). Why epistasis is important for tackling
complex human disease genetics. Genome Med. 6, 42. doi: 10.1186/gm561

Maher, B. (2008). Personal genomes: the case of the missing heritability. Nature
456, 18–21. doi: 10.1038/456018a

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter,
D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature
461, 747–753. doi: 10.1038/nature08494

Marchini, J., Donnelly, P., and Cardon, L. R. (2005). Genome-wide strategies for
detectingmultiple loci that influence complex diseases.Nat. Genet. 37, 413–417.
doi: 10.1038/ng1537

Matsubara, K., Yamamoto, E., Mizobuchi, R., Yonemaru, J., Yamamoto, T.,
Kato, H., et al. (2015). Hybrid breakdown caused by epistasis-based recessive
incompatibility in a cross of rice (Oryza sativa L.). J. Hered. 106, 113–122. doi:
10.1093/jhered/esu065

Matsuda, H. (2000). Physical nature of higher-order mutual information:
intrinsic correlations and frustration. Phys. Rev. E. 62, 3096–3102. doi:
10.1103/PhysRevE.62.3096

McDonald, J. H. (2014).Handbook of Biological Statistics, 3rd Edn. Baltimore, MD:
Sparky House Publishing.

McKinney, B. A., Reif, D. M., Ritchie, M. D., and Moore, J. H. (2006). Machine
learning for detecting gene-gene interactions. Appl. Bioinformat. 5, 77–88. doi:
10.2165/00822942-200605020-00002

McKinney, B. A., Reif, D. M., White, B. C., Crowe, J. E. Jr., andMoore, J. H. (2007).
Evaporative cooling feature selection for genotypic data involving interactions.
Bioinformatics 23, 2113–2120. doi: 10.1093/bioinformatics/btm317

Moore, J. H. (2003). The ubiquitous nature of epistasis in determining
susceptibility to common human diseases. Hum. Hered. 56, 73–82. doi:
10.1159/000073735

Moore, J. H., Amos, R., Kiralis, J., and Andrews, P. C. (2015). Heuristic
identification of biological architectures for simulating complex hierarchical
genetic interactions. Genet Epidemiol. 39, 25–34. doi: 10.1002/gepi.
21865

Moore, J. H., and Andrews, P. C. (2015). Epistasis analysis using multifactor
dimensionality reduction.Methods Mol. Biol. 1253, 301–314. doi: 10.1007/978-
1-4939-2155-3_16

Moore, J. H., Gilbert, J. C., Tsai, C. T., Chiang, F. T., Holden, T., Barney, N., et al.
(2006). A flexible computational framework for detecting, characterizing, and

interpreting statistical patterns of epistasis in genetic studies of human disease
susceptibility. J. Theor. Biol. 241, 252–261. doi: 10.1016/j.jtbi.2005.11.036

Moore, J. H., and Hill, D. P. (2015). Epistasis analysis using artificial intelligence.
Methods Mol. Biol. 1253, 327–346. doi: 10.1007/978-1-4939-2155-3_18

Moore, J. H., and White, B. C. (2007). Tuning ReliefF for genome-wide genetic
analysis. Evol. Comput. Mach. Learn. Data Min. Bioinformat. 4447, 166–175.
doi: 10.1007/978-3-540-71783-6_16

Moore, J. H., and Williams, S. M. (2005). Traversing the conceptual divide
between biological and statistical epistasis: systems biology and a more modern
synthesis. Bioessays 27, 637–646. doi: 10.1002/bies.20236

Moore, J. H., andWilliams, S. M. (2009). Epistasis and its implications for personal
genetics. Am. J. Hum. Genet. 85, 309–320. doi: 10.1016/j.ajhg.2009.08.006

Namkung, J., Elston, R. C., Yang, J. M., and Park, T. (2009). Identification
of gene-gene interactions in the presence of missing data using the
multifactor dimensionality reduction method. Genet Epidemiol. 33, 646–656.
doi: 10.1002/gepi.20416

Nishimura, D. (2001). BioCarta. Biotech Softw. Internet Rep. 2, 117–120. doi:
10.1089/152791601750294344

Pattin, K. A., and Moore, J. H. (2008). Exploiting the proteome to improve the
genome-wide genetic analysis of epistasis in common human diseases. Hum.

Genet. 124, 19–29. doi: 10.1007/s00439-008-0522-8
Payne, J. L., Greene, C. S., Hill, D. P., andMoore, J. H. (2010). Sensible initialization

of a computational evolution system using expert knowledge for epistasis
analysis in human genetics. Exploitation Link. Learn. Evol. Algorithms 3,
215–226. doi: 10.1007/978-3-642-12834-9_10

Pendergrass, S. A., Frase, A., Wallace, J., Wolfe, D., Katiyar, N., Moore, C.,
et al. (2013a). Genomic analyses with biofilter 2.0: knowledge driven filtering,
annotation, and model development. Bio. Data Min. 6:25. doi: 10.1186/1756-
0381-6-25

Pendergrass, S. A., Verma, S. S., Holzinger, E. R., Moore, C. B., Wallace,
J., Dudek, S. M., et al. (2013b). Next-generation analysis of cataracts:
determining knowledge driven gene-gene interactions using Biofilter, and gene-
environment interactions using the PhenX Toolkit. Pac. Symp. Biocomput.
147–58. doi: 10.1142/9789814447973_0015

du Prel, J.-B., Hommel, G., Röhrig, B., and Blettner, M. (2009).
Confidence interaval or p-value? Dtsch. Arztebl. Int. 106, 335–339. doi:
10.3238/arztebl.2009.0335

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al.
(2007). PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795

Ritchie, M. D. (2015). Finding the epistasis needles in the genome-wide haystack.
Methods Mol. Biol. 1253, 19–33. doi: 10.1007/978-1-4939-2155-3_2

Ritchie, M. D., Hahn, L. W., and Moore, J. H. (2003). Power of multifactor
dimensionality reduction for detecting gene-gene interactions in the presence
of genotyping error, missing data, phenocopy, and genetic heterogeneity.Genet.
Epidemiol. 24, 150–157. doi: 10.1002/gepi.10218

Ritchie, M. D., Hahn, L.W., Roodi, N., Bailey, L. R., Dupont,W. D., Parl, F. F., et al.
(2001). Multifactor-dimensionality reduction reveals high-order interactions
among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum.

Genet. 69, 138–147. doi: 10.1086/321276
Robnik-Šikonja, M., and Kononenko, I. (2003). Theoretical and empirical analysis

of ReliefF and RReliefF. Mach. Learn. 53, 23–69. doi: 10.1023/A:1025667309714
Sasieni, P. D. (1997). From genotypes to genes: doubling the sample size. Biometrics

53, 1253–1261. doi: 10.2307/2533494
Schwarz, D. F., König, I. R., and Ziegler, A. (2010). On safari to Random

Jungle: a fast implementation of Random Forests for high-dimensional data.
Bioinformatics 26, 1752–1758. doi: 10.1093/bioinformatics/btq257

Siemiatycki, J., and Thomas, D. C. (1981). Biological models and statistical
interactions: an example from multistage carcinogenesis. Int. J. Epidemiol. 10,
383–387. doi: 10.1093/ije/10.4.383

Smith, S. B., Reenilä, I., Männistö, P. T., Slade, G. D., Maixner, W., Diatchenko,
L., et al. (2014). Epistasis between polymorphisms in COMT, ESR1, and
GCH1 influences COMT enzyme activity and pain. Pain 155, 2390–2399. doi:
10.1016/j.pain.2014.09.009

Statnikov, A., Lytkin NI, Lemeire, J., and Aliferis, C. F. (2013). Algorithms for
discovery of multiple markov boundaries. J. Mach. Learn. Res. 14, 499–566.

Steen, K. V. (2012). Travelling the world of gene-gene interactions. Brief Bioinform.

13, 1–19. doi: 10.1093/bib/bbr012

Frontiers in Genetics | www.frontiersin.org 18 September 2015 | Volume 6 | Article 285

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Niel et al. Methods dedicated to epistasis detection

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008).
Conditional variable importance for random forests. BMC Bioinformat. 9:307.
doi: 10.1186/1471-2105-9-307

Taylor, M. B., and Ehrenreich, I. M. (2015). Higher-order genetic interactions
and their contribution to complex traits. Trends Genet. 31, 34–40. doi:
10.1016/j.tig.2014.09.001

Vassy, J. L., Hivert, M. F., Porneala, B., Dauriz, M., Florez, J. C., Dupuis, J., et al.
(2014). Polygenic type 2 diabetes prediction at the limit of common variant
detection. Diabetes 63, 2172–2182. doi: 10.2337/db13-1663

Waddington, C. H. (1942). Canalization of development and the
inheritance of acquired characters. Nature 150, 563–565. doi: 10.1038/
150563a0

Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N. L., et al. (2010).
BOOST: a fast approach to detecting gene-gene interactions in genome-wide
case-control studies. Am. J. Hum. Genet. 87, 325–340. doi: 10.1016/j.ajhg.
2010.07.021

Wang, X., Elston, R. C., and Zhu, X. (2010a). The meaning of interaction. Hum.

Hered. 70, 269–277. doi: 10.1159/000321967
Wang, Y., Liu, X., Robbins, K., and Rekaya, R. (2010b). AntEpiSeeker: detecting

epistatic interactions for case-control studies using a two-stage ant colony
optimization algorithm. BMC Res. Notes 3:117. doi: 10.1186/1756-0500-
3-117

Wei, C., and Lu, Q. (2014). GWGGI: software for genome-wide gene-
gene interaction analysis. BMC Genet. 15:101. doi: 10.1186/s12863-014-
0101-z

Wei, C., Schaid, D. J., and Lu, Q. (2013). Trees Assembling Mann-Whitney
approach for detecting genome-wide joint association among low-marginal-
effect loci. Genet. Epidemiol. 37, 84–91. doi: 10.1002/gepi.21693

Willighagen, E. L., Waagmeester, A., Spjuth, O., Ansell, P., Williams, A. J.,
Tkachenko, V., et al. (2013). The ChEMBL database as linked open data.
J. Cheminform. 5:23. doi: 10.1186/1758-2946-5-23

Yanlan, L., and Jiawei, L. (2012). An improved markov blanket approach to
detect SNPs-Disease Associations in case-control studies. Int. J. Digit. Content
Technol. Appl. 6, 278–286. doi: 10.4156/jdcta.vol6.issue15.32

Yoshida, M., and Koike, A. (2011). SNPInterForest: a new method for detecting
epistatic interactions. BMC Bioinformat. 12:469. doi: 10.1186/1471-2105-
12-469

Zhang, Y., and Liu, J. S. (2007). Bayesian inference of epistatic interactions in
case-control studies. Nat. Genet. 39, 1167–1173. doi: 10.1038/ng2110

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Niel, Sinoquet, Dina and Rocheleau. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 19 September 2015 | Volume 6 | Article 285

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

	A survey about methods dedicated to epistasis detection
	Introduction
	Background—Epistasis
	Biological Epistasis and Statistical Epistasis
	Origin of Epistasis: an Evolutionary Point of View

	Box 1 | Logistic regression and odds ratios.
	Logistic regression and odds ratios.
	Challenges in Epistasis Detection

	Box 2 | Bonferroni correction.
	Bonferroni correction.
	Exhaustive Search for Epistasis
	Parametric Regression Methods
	Bitwise Representation of Data and Likelihood Ratio-based Testing
	ROC Curve Analysis
	A Full Combinatorial Approach

	Two-stage Approach: Filters to Obtain Reduced Search Space
	Filtering Based on Data Mining Techniques
	Filtering Based on Data-integration Techniques

	Non-exhaustive Searches Enhanced by Artificial Intelligence
	Box 3 | Overfitting.
	Overfitting.
	Random Forests and their Variants
	Bayesian Networks
	Ant Colony Optimization
	Computational Evolution System

	Discussion
	Conclusion
	Acknowledgments
	References


