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The molecular basis of cancer and cancer multiple phenotypes are not yet fully
understood. Next Generation Sequencing promises new insight into the role of genetic
interactions in shaping the complexity of cancer. Aiming to outline the differences in
mutation patterns between familial colorectal cancer cases and controls we analyzed
whole exomes of cancer tissues and control samples from an extended colorectal
cancer pedigree, providing one of the first data sets of exome sequencing of cancer in
an African population against a background of large effective size typically with excess of
variants. Tumors showed hMSH2 loss of function SNV consistent with Lynch syndrome.
Sets of genes harboring insertions–deletions in tumor tissues revealed, however,
significant GO enrichment, a feature that was not seen in control samples, suggesting
that ordered insertions–deletions are central to tumorigenesis in this type of cancer.
Network analysis identified multiple hub genes of centrality. ELAVL1/HuR showed
remarkable centrality, interacting specially with genes harboring non-synonymous SNVs
thus reinforcing the proposition of targeted mutagenesis in cancer pathways. A likely
explanation to such mutation pattern is DNA/RNA editing, suggested here by nucleotide
transition-to-transversion ratio that significantly departed from expected values (p-value
5e-6). NFKB1 also showed significant centrality along with ELAVL1, raising the suspicion
of viral etiology given the known interaction between oncogenic viruses and these
proteins.

Keywords: colorectal cancer, ELAVL1/HuR, NFkB, exome sequencing, network analysis, pathway analysis

Background

Colorectal carcinoma (CRC) is a universally prevalent cancer and a leading cause of death in
the world. The overwhelming heterogeneity of cancer has always been the focus of many genetic
studies. This complexity is notable at macroscopic, microscopic, and molecular levels. Colorectal
cancer can be sporadic, or may show familial predisposition that is due to identifiable single
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gene mutations with Mendelian or near Mendelian segregation
such as Hereditary Non-Polyposis Colorectal Cancer and
Familial Adenomatous Polyposis. A remaining percentage of
colorectal cancers are not familial but have an inherited tendency
(Hendon and DiPalma, 2005; Bodmer, 2006; Fearson, 2011). It
has been proposed that much of this inherited tendency may be
due to the cumulative effects of low frequency, low penetrance
variants, and possibly explained by the “rare variant hypothesis”
(Kemp et al., 2004; Bodmer, 2006). The field of oncology is
dominated by two competing theories that strife to explain the
complex phenomenon of cancer: the somatic mutation theory
and tissue organization field theory (Rosenfeld, 2013). Both
theories appreciate the complex etiology and multiple molecular
contributors to cancer phenotypes, but hitherto lack obvious
translational impact and a lucid understanding of triggers of
cancer. Furthermore, carcinogenesis is still viewed as a random
sequel of changes that attains levels of organization through
selective fitness of the tumor, although this scenario may raise
other questions to account for situations where tumors show
pronounced pathology at early stages or mutations targeting
certain critical biological pathways.

Genetic and epigenetic changes in colorectal cancer
encompass a wide range of alterations. The Cancer Genome
Atlas Network (2012) conducted a genome-scale analysis of
276 samples to characterize somatic alterations in CRC. They
found that 16% of CRCs were hypermutated: three-quarters of
these had the expected high microsatellite instability, usually
with hypermethylation and hMLH1 silencing, and one-quarter
had somatic mismatch-repair gene and polymerase e (POLE)
mutations. In other studies, integrative analysis suggested an
important role for MYC-directed transcriptional activation and
repression. Epigenetic modifications like altered methylation
events and modifications involving small non-coding RNAs
have all been described in the pathogenesis of colorectal cancer
(Ahuja et al., 1998; van Engeland et al., 2011; Jones et al.,
2015).

The extensive complexity of colorectal cancer, and indeed
cancer in general, requires unconventional methods do decipher
it. Integrative approaches are essential to understand the
interaction between genetic, epigenetic and otherwise non-
genetic factors in colorectal cancer pathogenesis, including the
application of system biology and network analysis into genomic
data (Kreeger and Lauffenburger, 2010; Zhang et al., 2013;
Emmert-Streib et al., 2014). Yu et al. (2015) studied the modules
of protein–protein interaction (PPI) networks of differentially
expressed genes. Functional enrichment analysis showed that
differentially expressed genes involved in these modules were
mainly associated with cellular activities. Shi et al. (2012)
investigated integrated information from network, expression,
andmutation data and demonstrated that the network-based data
integration method provides a convergence between biological
relevance and clinical usefulness in gene signature development.
Next generation sequencing is promoting such network and
pathway analysis to add much more to our understanding of
tumors biology.

We describe here the results of a family based study of the
genetic alterations in patients with familial colorectal cancer

compatible with autosomal dominant pattern of inheritance,
compared to healthy related controls. The aim was to delineate
the differences in genetic mutation patterns between cases
and controls using comparisons of mutational signatures and
network analysis, in an effort to explain the predisposition
to cancer development, to describe the genetic pathogenesis
and to facilitate genetic counseling. We used Whole Exome
Sequencing with subsequent comparisons of mutated genes
between cases and controls followed by gene set enrichment
and network analysis. The findings revealed an interesting
mutational pattern in tumor tissues reflected by enrichment of
genes sets affected by mutations – especially high impact short
insertions–deletions – in tumor tissues for certain pathways
and GO terms, a feature that was clearly less prominent in
controls.

Results

Here, we present the results of comparisons of genetic alterations
and mutational signatures between cases and controls, followed
by the results of enrichment analysis. The striking feature in this
family is the issue of identical by state (IBS) sharing of variants
observed in the cancer tissues as shown below, where comparison
of cases to controls did not conform to the expected identical by
descent (IBD) sharing especially among siblings. In accordance
with culture in this part of the country, consanguinity is common
but an F-test would be inconclusive given the comparison is
between blood and tissue samples with the latter being under
higher mutational load, manifested in tumors often having more
IBS sharing as discussed below. The lack of germline whole
exome sequencing for the two cases is a shortcoming we sought
to circumvent by adopting an indirect inference approach for
identity testing. BED files of variants from tumor tissues and
controls are available on GalaxyMain Instance (https://usegalaxy.
org/u/iend/h/colonexome) or otherwise upon request from the
corresponding author.

Patient Recruitment and Phenotyping
The study examined whole exome sequences of samples from
five subjects chosen from a Sudanese family with a strong
family history of hereditary colorectal cancer (as well as other
tumors and diseases) by convenience non-probability sample
selection. Two patients (male/female) were selected from two
different branches of the extended family. Cancer patients
had a histopathological diagnosis of Microsatellite Instability-
High moderately differentiated colorectal adenocarcinoma.
A diagnosis of hereditary non-polyposis colorectal cancer
(HNPCC) was made based on Bethesda Criteria. Three controls
were selected to comprise a sibling to one patient, a second
closely related individual, and a third distantly related control.
The family pedigree is shown in Figure 1. Tumor tissue samples
are labeled P17 and P61, and controls are labeled P39, P26, and
P84. The relations between individuals are shown in the pedigree
(Figure 1). The family of individuals P39, P26, P61, and P17 is
related to a common grandparent. Individual P84 is a distant
relative of the family and hence not shown in the pedigree.
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FIGURE 1 | Extended family pedigree showing sampled individuals and their relations. Four sampled individuals (colored arrowhead) are shown – patients
P17 and P61, and controls P39 and P26. P84 is distantly related and not shown. Shaded individuals are diagnosed with colorectal cancer. Decease status is not
shown. Double-lines indicate second degree consanguinous marriage. Multiple healthy siblings and/or branches with no affected offspring are depicted as diamonds
for simplification.

Exploratory Analysis for Mutational Signatures
There were higher numbers of variants in tumor samples
(Table 1 and Figure 2). We utilized unsupervised learning to
find hidden structure in unlabeled data (blinding the phenotypes)
using gene-based approach (genes affected by exonic and/or
splice site SNPs/INDELs used as variables; details in methods
summary). We used non-metric multidimensional scaling in four
dimensions to look for a pattern of gene affection by exonic
variants between the five samples (Figure 3). When we studied
INDELs, the first dimension completely separated cases from
controls with tight sub-clustering of tumor and control samples;
the second dimension perfectly separated the two cases while the
third and fourth dimensions reflected the variability between the
controls (Figure 3). The fact that multiple dimensions provided
complete separation of cases and controls – without including
the phenotypes in the clustering matrix – strongly implies that
the observed pattern of gene hits in INDELs is significantly
deviated from simple randomness. Hierarchical clustering of the
distance matrix provided comparable results. When analyzing
SNVs, clustering of controls was less evident (Figure 3). Except

for the third dimension, which likely reflected IBD sharing of
alleles resulting in a separation pattern of samples comparable
to the pedigree, P84 showed a behavior similar yet intermediary
to cancer samples in the first and second dimensions, deviating
from expected clustering with the two other controls. We can
argue from this preliminary analysis that a gene-based signature
of exonic INDEL hits is a reasonable possibility in tumorigenesis.
However, a distinct pattern in each tumor is clearly seen as well.

Comparison of SNVs and INDELs in Tumor
Samples and Controls
In both tumor samples, hMSH2 loss of function truncating
mutation (rs63749917) was found, consistent with Lynch
syndrome. Although generally there were higher numbers of
variants (especially insertions–deletions, referred to here as
INDELs) in tumor samples (Table 1), the number of non-
synonymous mutations was consistent with figures from other
studies in accordance with evolutionary conservation of the
functional protein-coding part of the genome and the higher
mutation rate of neutral non-coding regions. However, the

TABLE 1 | Number of single nucleotide variations and insertions–deletions per study sample and number of variants in each class.

Variations count

Class Sample All Novel Exonic Intronic UTR3 UTR5 Splicing

SNVs P17 48731 5097 19509 21904 2129 1041 281

P61 46761 5078 18682 20227 2019 1083 267

P84 46781 3402 17768 22041 2072 971 264

P26 46000 3332 17611 21372 2101 1013 254

P39 45627 3310 17477 21148 2082 1037 133

INDELs P17 21566 13473 1080 16129 1221 288 65

P61 21330 13130 1174 15762 1136 332 76

P84 15284 6682 661 11008 850 231 84

P26 14797 6367 604 11043 851 223 78

P39 6530 2004 411 4090 339 102 49

P17 and P61 are tumor tissue samples. P39, P26, and P84 are peripheral blood control samples. SNVs, single nucleotide variations; INDELs, insertions–deletions, UTR,
untranslated region.
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FIGURE 2 | Comparison of single nucleotide variations and insertion–deletions in study samples. (A) Bar chart showing Total number of SNVs, number of
damaging SNVs (assessed by ConDel scores) and novel SNVs (not found in 1000 genome) in study samples. (B) Bar chart showing total number of INDELs and
number of novel variants with reference to dbSNP137. Number of exonic and frameshift INDELs is shown as well. The discrepancy between tumor and control
samples is more prominent in INDELs.

overall number of damaging variants in the tumor tissues (as
identified by ConDel scores, see Methods) was significantly
higher with a stepwise increase in damaging mutations. Sample
P39 showed the lowest amount of damaging SNVs (hence
considered here as a true control) and tumor sample P17
exhibited the highest number while control sample P84 was
located in an intermediary position (Figure 2). The number of
INDELs was also highest in the two tissue samples and displayed
a unique feature of ordered mutation pattern shown below in
GO enrichment. Although two controls (P26, P84) have shown
similar features of possible genome instability – indicated by
number of INDELs – comparable to those in tumor samples
(Figure 2), there was no orderly pattern of enrichment in the
INDELs gene sets. Besides, none of them developed symptoms
of cancer over the past decade, indicating again that the pattern
of mutations is a necessary feature of cancer development and
pathogenesis.

An interesting feature seen in this family is the sharing of
excess variants more than expected by IBD for tumor tissues.
Unsupervised clustering of alleles in all variation positions
showed deviation from expected allele sharing with a clear
separation of tumor samples from control that did not reflect
the relations perceived from the pedigree. The two tumors
shared more variants than what is expected from familial allele
sharing, while the difference between closely related individuals,
for instance between the two siblings, patient P61 and control
P39, was large. The explanation of this sharing is cumbersome
and one of the few possible mechanisms for such ordered allele
change is DNA editing and site directed DNA transposition.
DNA and RNA editing are ancient mechanisms that originated
possibly as early as the emergence of Euokarya. We investigated
the possibility of editing which was recently reported to occur
in cancer tissues through members of the APOBEC family of
enzymes (Gallois-Montbrun et al., 2007; Roberts et al., 2013)
by comparing the percentage of A–G and C–T transitions. We
examined novel SNPs and those of low allele frequency or

otherwise not reported in the 1000 Genome database as these
are likely to be a product of editing. The observed percentages
conformed to editing ratios by excess of A–G/C–T transitions,
constituting 80–85% of the entire substitutions in the novel
SNVs compared to an average of 66–70% in known SNPs (Fisher
p-value 5e-6). To test the reliability of this finding, we compared
A–G and C–T transitions ratios in inferred IBS somatic variants
(described below) which revealed excess in A/G and C/T ratios as
well (Table 2).

Identity by State Inference
It is difficult to identify IBS with precision in a small number
of samples in a consanguineous family as we argued. However,
we adopted a unique inference approach based on simple
comparison between tumor samples, control samples, and TCGA
Colonic Adenocarcinoma somatic mutations (see Methods)
to identify variations with a high likelihood of being IBS
between tumor samples. The concept was based on identifying
variations present in both tumor samples and at least one
TCGA sample (considered a positive control) provided that
the variations are not seen in any of our controls (negative
controls). We identified slightly more than 1100 variations,
very likely to be somatic IBS variants between tumor samples,
corresponding roughly to more than 900 genes (Supplementary
Data: Data Sheet 1). Many of these genes were related to
cancer. For instance POLE was in this set of genes along with
POLE4, POLD1, POLI, POLQ, and REV1. This set of genes
showed a dense interaction network with multiple protein–
RNA interactions centered on ELAVL1/HuR, and remarkable
patterns of enrichment. Particularly, some miRNA (mir377,
mir199, and mir486), transcription factors (e.g., NFKB1, NFE2),
GO terms [extracellular matrix (ECM) organization, collagen
metabolism, DNA binding] and pathways [ECM Receptor
Interaction (KEGG), ECM Organization (Reactome)] showed
significant enrichment. We compared A–G and C–T transitions
ratios in inferred IBS variants. This subset of variants showed very
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FIGURE 3 | Gene set-based exploratory analysis. (Top) Pattern of affected gene sharing between samples is summarized as intersections of SNVs/INDELs
gene sets (Venn diagrams). Gene sets for INDELs included genes harboring splice site or exonic insertions–deletions. Gene sets for SNVs included genes harboring
splice site or exonic (stop gain, stop loss, or non-synonymous) changes. (Middle) Non-Metric Multidimensional Scaling of distance matrix between samples based
on INDELs and SNVs gene sets (set of genes affected by exonic INDELs and SNVs, respectively). The matrix was constructed using affected genes as variables
(columns) and sampled individuals as rows. A gene is assigned a score of one if it showed an exonic or splice site change, or a zero otherwise. Non-metric
multidimensional scaling is shown in four dimensions (maximum number of dimensions = N-1, where N is the number of rows). The stress value is <0.1
(approximates zero). Tumor samples are shown in red. Control samples are shown in blue. The clustering of tumor samples is evident in the first dimension especially
for INDELs. (Bottom) Hierarchical clustering of samples using the same distance matrix described above is depicted and reflects separation of cases from controls.
Clustering distance is larger between tumors and controls (rows) for INDELs compared to SNVs.
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little number of novel variations but reserved the excess in A/G
and C/T ratios (Table 2).

Cancer Signature
Although cancer is a multistep complex process, Mendelian-
like cancer syndromes are thought to be caused by a limited
set of tumor suppressor genes (TSG) germ line mutations.
In both tumor (and sometimes control) samples, there was
a number of mutations in known cancer-related genes. We
verified cancer mutational signatures through gene ontology
enrichment and network analysis. We used GO term enrichment,
pathway enrichment, and interaction network analysis to identify
the critical genetic alterations involved in the tumorigenesis
process as well as to highlight possible genetic circuits of
predisposition.

Pathway and GO Enrichment
Tested against KEGG database, enriched pathways unique to
the tumors included ABC transporters, Lysine degradation,
MODY (maturity-onset diabetes of the young), Pantothenate
and CoA biosynthesis, cell cycle, and cell adhesion as well
as olfactory receptors (Table 3). Individually, patients and
controls showed variable enrichment patterns. Yet in the
cancer samples, ECM receptor interaction, ABC transporter,
and olfactory transduction were maintained, while controls P84,
and P26 showed enrichment in ECM-receptor interaction and
glycosaminoglycan degradation respectively. Control P39 had
no significant enrichment in any pathway. The Wnt/B-catenin

TABLE 2 | Transitions and transversions in inferred identical by state
somatic SNVs.

Alt. Allele

Ref. Allele A C T G

A – 38 20 149

C 43 – 158 63

T 32 169 – 38

G 220 63 47 –

The table shows A–G and C–T transitions in inferred IBS variants (shared variants
between tumor samples replicated in TCGA). Ref, reference; Alt, alternative.

TABLE 3 | Enriched pathways and their p-values in mutated gene sets in
our study samples.

Pathway P17 P61 P26 P39 P84

ABC transporters 0.017 2.1e-06 – – –

ECM-receptor
interaction

0.017 0.0064 – – 0.0031

Focal adhesion – – – – 0.0362

Glycosaminoglycan
degradation

– 0.0064 0.00075 – –

Lysosome – 0.035 – – –

Metabolic pathways 0.043 – – – –

Olfactory transduction 3.7e-12 4.1e-07 – – –

Pantothenate and CoA
biosynthesis

– 0.0015 – – –

is an important pathway in cancer and particularly associated
with colorectal tumors. Mutations may dictate not only the
prognosis, and type of cancers in an individuals but population
profiles as well. Binding of LRP and FZ in the canonical
Wnt pathway disrupts the destruction complex for catenin
degradation and thus mutations in these genes (as in tumor
sample P17) would cause it to accumulate along with the
mutations in destruction complex pathway. Sample P61 showed
a CTNNB1 mutation that has been reported to cause the
same accumulation leading to cancer. RNF43 mutations were
encountered in both cases while DVK1 and FZD8 are mutated
in P61. Individual mutations in AXIN2 and CSNKIE in sample
P17 may similarly contribute to such effects. Enrichment in
the olfactory receptor family, which was seen, is probably not
due to the size of the gene family as claimed by some authors
(Glusman et al., 2001; Niimura and Nei, 2007; Young et al.,
2008), as the damaged genes turned to be over-represented
compared to other members of equally large gene families like the
histone and actin, which were all underrepresented in the exome
data set (p-value: 2e-4) particularly in the non-synonymous
mutations.

The greatest discrepancy in GO enrichment was seen in
INDELs-affected gene sets. Cancer samples showed significant
enrichment of certain GO terms. On the contrary, all control
samples did not feature any significant enrichment for INDELs-
affected gene sets. In line with our previous assumption on the
importance of INDELs pattern, none of the controls showed
significant over-represented GO terms; in fact, control 26 showed
statistically non-significant over-representation of few terms,
while P84 and P39 showed no over-representation at all. On
the other hand, the two cancer cases showed significant over-
representation of DNA binding proteins and signaling proteins
(Supplementary Data: Image 1). This may further supplement the
evidence that INDEL pattern is not at all random in colorectal
cancer tissues.

Network Analysis
We used two different interaction databases to study our
gene sets (Reactome and VanBuren Lab Cognoscente). To
study the genetic and protein interactions of mutated genes
(genes harboring high impact or damaging mutations) with
other molecules (including Protein–Protein, Protein–RNA, and
Protein–DNA interactions), we used VanBuren Lab online tool
Cognoscente that draws genetic interaction networks between
input genes and also highlights potential genetic interactions with
other intermediates. The advantage of such network approach
is the insights it gives into the potential biological mechanisms
involved that are not based directly on mutations within the
gene sets. We used all genes affected by exonic or splice
site variants (INDELs and damaging SNPs defined by ConDel
scores) in both tumor samples as input. The most spectacular
feature was the interaction of SNVs and INDELs with the RNA-
binding protein ELAVL1/HuR, a hub protein of remarkable
centrality interacting with over 2000 proteins in the human
proteome, together with another central hubs: UBC, TP73, and
NFKB1 (Supplementary Data: Image 2). The direct interactions
between ELAVL1 and mutated genes in tumor samples are
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FIGURE 4 | Centrality of ELAVL1/HuR. This figure shows ELAVL1/HuR direct interaction network with genes harboring high impact genetic alterations in both
tumor samples in this study. Input included perturbed genes harboring damaging genetic changes (both SNVs and INDELs). Only genes shared by both tumor
samples were included. This interaction network was constructed using GeneMania cytoscape app. ELAVL1 is highlighted in yellow. The complete set of ELAVL1
interactions is also available as supplementary Image 2.

shown in (Figure 4). Although ELAVL1/HuR and UBC are
not mutated in our samples, they were extensively interacting
with a large number of input genes. To address whether such
interaction particularly the centrality of the ELAVL1/HuR is an
artifact of the large interacting partners or true interactions we
compared the percentage of interactions in genes having non-
synonymous SNVs and genes with synonymous SNVs to test
the randomness of interactions. The synonymous set had no
significant interactions and ELAVL1/HuR was interacting with
only less than five nodes (Supplementary Data: Image 3). We
queried The Cancer Genome Atlas database for case records with
comparable clinical and pathological phenotypes to our studied
samples (family history of colorectal cancer and loss of hMSH2
expression). We looked at exonic somatic mutation data for four

patients we could identify (TCGA IDs: TCGA-CM-5864, TCGA-
CM-6674, TCGA-CM-6164, and TCGA-AY-6196). In two cases,
ELAVL1/HuR had relatively few interactions. Instead, another
hub protein, TP53, showed marked centrality (Supplementary
Data: Images 4–7).

We utilized a different approach to draw only direct
PPI networks for genes affected by all (not only damaging)
exonic/splice site variants, for each sample, based on
Reactome database. Network centrality was investigated
using three different methods of un-weighted centrality (degree,
betweenness, and closeness centrality). In tumor samples, we
found that NFKB1, HDAC2, PIK3R1, TCF7L2, ITGAV, TRAF2,
and CDC27 were top central nodes in sample P17, while in
sample P61, NFKB1, ACTN2, PPP2R1B, RELA, PIK3CB, SIRT1,
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FIGURE 5 | Position of NFkB1 mutations found in tumor samples P17 and P61 compared to TCGA database, and its relation to protein domains.
(A) NFkB1 mutations in this study. (B) NFkB1 mutations in TCGA queried using cbioportal.org. RHD, Rel homology DNA binding domain; ANK, ankyrin repeat
domain; Death, death domain.

and CAMK2B were central nodes. Overlap of interaction
networks of tumor samples showed an interesting feature of
increased sharing around central nodes (Supplementary Data:
Image 8). As well, clusters of related genes (e.g., receptor
variants) were also prominent. NFKB1, TCF7L2, TGFBR2,
NCOR2, CDC27, ACTN2, PIK3R1/2, PPP2R1B/2A, PABPC1,
TBP along with different MAPK and STAT proteins were
centrally shared. NFkB1 was the most central protein in direct
PPI network, and both cases in our study had NFkB1 mutations
(Figure 5). Bearing in mind the intricacies of NFkB interactions,
it is almost impossible to predict the change in the signaling
pathways based on mutational testing alone. However, the
centrality of NFkB1 in the interaction networks of mutated genes
is not something to overlook.

Predisposition Circuitry
The potential existence of predisposition circuitries is highlighted
by two findings: firstly by the network of genetic interactions of
genes shared between cancer samples (P17, P61) and controls
(P39, P26, and P84) where the gene ELAVL1/HuR was central
together with candidate cancer genes like WHSC1, ERBB2,
PRNP, PABPC1, TNFRSF14, MAP2K3, and UBC; and secondly
the evolving complexity of interaction networks from control
to tumor samples (Supplementary Data: Image 8) which is
consistent with the preliminary assumptions we made on a
stepwise pattern of predisposition and ordered mutations. The
number of PPI network nodes and edges was higher in colorectal
cancer tumor samples. The percentage of genes forming a single
major functional interaction network (using Reactome database)
in samples P39, P26, P84, P17, and P61 out of the total number
of gene sets was 4, 17, 19, 26, and 29%, respectively. This was
visually detectable from the topography of interaction networks
(Supplementary Data: Image 8).

Discussion

Cancer is a group of diseases characterized by multiple
phenotypes including abnormal cell growth and the potential
to invade or spread to other parts of the body, reflecting
the complexity of the biological processes involved. Given the
plethora of non-synonymous mutations leading to damaged or
altered protein functions in healthy individuals, cancer seems
like a probabilistic combination of events targeting the biological
processes, that raises the fitness of tumor cells. The question “do
somatic events occur randomly or due to ordered mutagenesis?”
remains unsolved. The network approach employed in the
current analysis combined with an individualized and familial
context fostered insight into the stepwise and multiple stages of
the carcinogenesis process, and allowed addressing these broad
themes of predisposition circuitries and mutation randomness.
Particularly, inclusion of familial proband controls allowed
inferences on the potential role of germline genetic alteration in
pathway and network analysis, compelling a revisit to the concept
of pathognomonic cancer mutations in disease predisposition.
Hundreds of driver mutations were identified following the
introduction of exome sequencing studies. For example, 558
interactions and 717 regulatory connections existed among 163
known cancer genes and 164 predicted driver genes extracted
from the database DAVID (Chen et al., 2013a). March et al. (2011)
reported in a mouse model and a comparison to human data sets
that 234 genes are dysregulated in colorectal cancer. Of those 70
genes showed the pairwise co-occurrence clustering into 38 sub-
networks that may regulate tumor developments (March et al.,
2011). Most exome investigations focused on analyzing cancer
cases and the role of somatic mutations, with no or little insight
on the role of germ line mutations. Few studies questioned the
role of germ line mutations. One study analyzed 35 potentially
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functional single-nucleotide polymorphisms in 10 candidate
cancer genes and based on the functional relevance suggested that
no influence of the studied germline variants existed on CRC risk
and survival (Huhn et al., 2014). The recent demonstration that
genes/proteins of centrality are prone to contrasting modes of
natural selection as opposed to peripheral ones (Luisi et al., 2015),
emphasizes the significance of the network as an evolutionary
unit of inheritance, and the role of these central genes in health
and diseases including cancer.

The current set of data was used to explore how such
molecular events may contribute to the carcinogenesis process
in an attempt to shed light on the actual complex etiology of
the disease from a network rather than a single gene perspective.
One challenging question is the magnitude and threshold of
accumulating somatic mutations that will tip off the homeostatic
balance toward cancer, bearing in mind the obvious existence of
predisposition circuitries among cancer-free controls. Variants
were not just in numerical excess in the tumors but targeted
fundamental pathways and genes in the cancer process including
cellular metabolism, cell cycle, angiogenesis, cell adhesion, and
DNA repair: in short all processes required for cell survival and
fitness.

As both germline and somatic point mutations including
splicing are rather conserved given their reported mutation rate,
they are unlikely to explain all the biological alterations leading
to function in cancer. This renders RNA and DNA editing –
both rather uncommon events in the human genome – along
with insertions–deletions, likely and plausible culprits of such
alterations. These events, however, whether affecting genes or
protein networks, seem to be least random in any sense, specially
with the notable sharing of variants between the two tumors.
Such compelling display of ordered mutagenesis suggests an
orchestrating molecule or a mechanism that governs or at least
sets the action of the network on course and may explain the
shared mutation pattern encountered in tumors. This molecule
is envisioned to be a central part of the potential cancer cell.
The milieu of this cell functions as a system with an input
signal (coupling this molecule to initiate the perturbation of the
cell through complex signaling processes) and converging on
complex output signals that dictate the phenotype. The input
signal is explanatory to the nature of the perturbation and how
the circuits and cascade exhibited by the cancer cell are switched
on. The most plausible candidate for the input signals, as we will
argue, are oncogenic viruses and primarily in our case Epstein–
Barr virus (EBV). A viral infection is envisioned to interact with
predisposition networks which include counterpart proteins in
various downstream stages (including in the current data set:
FOS, ELAVL1, NFkB1, POLR3B, and others at different cellular
compartments and stages of the tumorigenesis).

The protein ELAVL1/HuR seems the most plausible candidate
for coupling the initial viral input signal, yielding the expected
effector and orchestrating role of the system given the repertoire
of its interacting partners. ELAVL1/HuR is a hub protein like
TP3 and TGF-Beta and is thought to be central and key in the
carcinogenesis process. Interestingly TP53 was not implicated in
the analysis either directly or indirectly, in contrast to examples
from TCGA (Supplementary Data: Images 4–7), and consistent

with previous literature on its minor role in breast cancer in this
part of the world (Masri et al., 2002). The lack of TP53 mutations
and absence of network centrality should receive some further
inquiry. The role of ELAVL1/HuR in cancer has been reviewed
by Wang et al. (2013) and discussed by Winkler et al. (2014)
and López de Silanes et al. (2005). ELAVL1/HuR is enriched
in the nuclear matrix fraction and linked to the regulation of
colon adenoma to carcinoma progression (Albrethsen et al.,
2010). Yiakouvaki et al. (2012) suggested a role for HuR as a
homeostatic coordinator to guide innate inflammatory effects
and linked it to pathologic inflammation and cancer. In colon
cancer, HuR was shown to be increasingly expressed in the
cytoplasmic epithelial compartment in consecutive stages of the
adenoma-carcinoma sequence in FAP (Brosens et al., 2008). Also,
COX-2 levels correlate with cytoplasmic expression of HuR in
colorectal cancer specimens (Brosens et al., 2008; Lim et al.,
2009). In fact, ELAVL1/HuR has been linked to both promotion
and suppression of tumorigenesis (Shultz and Chalfant, 2012).
The intracellular location of HuR likely affects the expression of a
number of genes that are responsible for the invasive phenotype
of CRC, making inhibitors of HuR possible anticancer drugs
(Ignatenko and Gerner, 2008).

The significance of ELAVL1, which in itself is quite conserved
and unaffected by direct genetic alterations, lies in its potential
role in combination with other molecules. The role it plays
along with viral oncogenesis (that is believed to be central to
cancer etiology in our cohorts; Yahia et al., 2014) is supported
not only by the extensive connectivity of the protein, but also
its potential functional role in RNA/DNA editing. Editing is
thought to be a pivotal contributor to carcinogenesis in this
study and other recent literature (Paz et al., 2007; O’Bryan
et al., 2013; Wang et al., 2013; Winkler et al., 2014; Chou
et al., 2015). The main editing enzymes recognized in mammals
are members of the APOBEC family – and namely in this
case cytidine deaminase. Activation-induced cytidine deaminase
(AID) is known to interact with ELAVL1/HuR and is a
potential DNA/RNA editing enzyme (Muramatsu et al., 2000;
O’Bryan et al., 2013). AID is responsible for the induction
of three reactions of DNA somatic modification employed by
jawed vertebrates in the context of adaptive immunity: somatic
hypermutation (SHM), class switch recombination (CSR), and
immunoglobulin gene conversion (Ig GC; Muramatsu et al.,
2000). However, in conditions of dysregulation, AID has also
been implicated in both lymphoid and non-lymphoid neoplasia
(Koduru, 2012; Robbiani et al., 2015). ELAVL1/HuR was also
implicated in DNA global epigenetic regulation, another feature
of the viral etiology in relation to carcinogenesis, i.e., inactivation
and modulation of major circuitries involved in carcinogenesis
(Zhou et al., 2011). The cell reprogramming may account not
only for the activation, silencing, and regulation of key cancer
genes but also for the stem cell link in cancer andmay attribute to
the ability of cancer cell to performmultiple functions confined to
differentiated cells, and the regression to primitive and unicellular
behavior. In an independent study targeting the methylome of
Sudanese breast cancer patients (Abdallah et al., manuscript
in preparation), developmental pathways and EBV came out
prominently, both highly enriched, conforming to our original
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hypothesis of EBV etiology of cancer through viral dysregulation
of the methylome.

Wnt/B-catenin is an example of several intermediate
signaling cascades that are involved in both development and
carcinogenesis and in colorectal cancer is believed to be critical
in shaping the tissue specificity of the tumor (Kolligs et al., 2002;
MacDonald et al., 2009; Wallmen et al., 2012). In the current
study, the individualized context was reflected in the fact that
SNVs and INDELs were often unique in targeting genes or
gene regions, but converging in dysregulation of the pathway
as shown in the result section. Wnt/B-catenin couples several
molecules and networks, including ELAVL1/HuR and NFkB
(proteins that we propose for an input and a downstream output
signal, respectively; Kim et al., 2012a,b).

Experimental evidence for NFkB role in cancer was
demonstrated. Djavaheri-Mergny et al. (2007) observed
that TNF-alpha induced NFkB activation causes repression
of autophagy. It has been found that the temporal pattern of
NFkB activation influences apoptotic cell fate in a stimuli-
dependent fashion (Fan et al., 2002). As well, mutations of
NFKB1 gene, the precursor of p50, are observed in many solid
tumors (Rayet and Gélinas, 1999; Karin, 2009; Jiao et al., 2012;
Hoesel and Schmid, 2013). Moorchung et al. (2014) showed
that constitutive activation of NFκB was frequently observed
in CRC. A polymorphism in NFkB was associated with CRC
risk in Danish population, suggesting a role for NFkB in CRC
etiology (Andersen et al., 2010). Another study indicated that
the anti-inflammatory and antitumor activities of Gallotannin, a
plant polyphenolic compound, may be mediated in part through
the suppression of NF-κB activation (Al-Halabi et al., 2011).
The classical proposed mechanism for NFKB role in colorectal
and other solid tumors is constitutive activation via defective
regulatory proteins activity rather than changes in NFKB1 gene
(Courtois and Gilmore, 2006). Both tumors and one control
(P84) in our study, showed NFKB1 mutations, emphasizing
the role of interactions and predisposition (mutation positions
in each of the tumor samples are shown in Figure 5). The
DNA binding domain did not show mutations. It is difficult to
perceive why some malignant cells would break a central key
to cellular functions like NFKB. Yang et al. (2011) data provide
strong evidence that NFkB can function as a biphasic regulator
either suppressing or enhancing ovarian cancer through the
regulation of MAPK and cellular apoptosis. They showed that
NFkB functions as a tumor suppressor in four ovarian cancer cell
lines, but it functions as an oncogene in their aggressive chemo-
resistant isogenic variants. In this sense, mutations in NFkB1
observed in many tumors might be selected as a mechanism for
counteracting a pro-apoptotic effect in order to tip the balance
toward anti-apoptotic environment.

Conclusion

Exome sequencing of members of an extended family with
colorectal cancer revealed interesting features of stepwise
accumulation of mutations leading to tumorigenesis, a shared
mutation pattern and predisposition circuitry. We highlighted

the importance of central hub proteins in the study of cancer
genomics and pathogenesis. RNA binding protein ELAVL1/HuR
and NFKB, both of which appeared central in the network
analysis, are suspected to work in concert with viral etiology on
a background of predisposition circuitry to initiate and guide
the pathogenesis of colorectal cancer in a subset of predisposed
individuals.

Methods

Sample Preparation and DNA Extraction
DNA was extracted and purified from frozen colorectal tumor
tissues (tumor samples) and EDTA-preserved blood (controls)
usingWizard R© Genomic Purification Kit (Promega, USA). Tissue
lysates and extraction solutions were prepared according to
the Wizard R© SV Genomic DNA Purification System protocol.
Extracted DNA quantity and quality were assessed using the
NanoDrop R© ND-1000 (NanoDrop Products, Wilmington, DE,
USA) spectrophotometry at wavelength spectrum of 220–750 nm
and standard 1% agarose gel electrophoresis.

Whole Exome Sequencing
Library preparation, Exome Capture, and Whole Exome
Sequencing were performed at BGI R© (Hong Kong, China).
Library preparation and exome capture were done using
NimbleGenOligonucleotide Libraries (Roche NimbleGen, USA).
Exome sequencing was performed on Illumina HiSeq2000
platform (Illumina, USA). The clean reads (after removal of
adapter sequence in the raw data, low-quality reads and reads
with more than 10% unknown nucleotides) were aligned to the
reference human genome build hg19 using Burrows–Wheeler
Aligner (Li and Durbin, 2009). The average coverage in study
samples ranged from 107 to 210x. Quality control (QC) was
present in the whole pipeline. SNPs were called using SOAPsnp
(Li et al., 2009). Following local realignment using GATK
(McKenna et al., 2010), INDEL variant calling was performed
using Atlas2 (Challis et al., 2012). Annotation of all variants was
performed using ANNOVAR (Wang et al., 2010).

Exploratory Analysis
Gene sets were prepared by filtering for all genes harboring exonic
and/or splice site variations stratified into SNVs and INDELs
gene sets for each sample. Distance matrices for each category
were constructed using R stats package dist() function (R Core
Team, 2014) by concatenating all genes with exonic variants and
subsequently using a binary scoring matrix where an affected
gene is given a mark of 1 and a spared gene is given a mark
of zero. R function isoMDS in the package MASS (Venables
and Ripley, 2002) was used for non-metric Multi-dimensional
Scaling. Heatmap visualization of these distance matrices was
done using R package pheatmap (Kolde, 2012).

Pathway and GO Enrichment
EnrichNet network-based enrichment analysis online tools
(Glaab et al., 2012) were used to test pathway enrichment
for gene sets in multiple databases (KEGG, NCI, Reactome).
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Enrichr online query tool (Chen et al., 2013b) was used to test
the enrichment pattern for inferred IBS gene sets. Cytoscape
ReactomeFI (Wu et al., 2014) application provided pathway
enrichment testing for gene sets in Reactome Protein–Protein
Functional Interaction Networks. Cytoscape BiNGOapp (Maere
et al., 2005) was used to visualize over-representation of GO
terms. BiNGO maps the predominant functional themes of a
given gene set in the GO hierarchy and outputs this mapping
as a Cytoscape graph. Hypergeometric distribution, with FDR
correction and ‘0.05’ significance was used as app setting for all
gene sets.

Network Analysis
INDELs and non-synonymous SNVs in Exonic/Splice sites were
used in gene/protein set construction. Although other types
of INDELs/SNVs (UTR, upstream, Intronic, downstream) have
an influence on genomic milieu, they were not included in
these shortlists for network construction due to the lack of
consensus scoring criteria to classify their effect. The goal was to
reduce false positives as much as possible. VanBuren Lab online
tool Cognoscente (VanBuren and Chen, 2012) was used for
expanded genetic network construction for DNA–RNA–protein
interactions for gene lists. When needed, damaging SNVs were
defined according to Condel/FannsDB scores (González-Pérez
and López-Bigas, 2011). In this case, centrality of genes was
conceived visually from the topography of the network.

Cytoscape ReactomeFI App was used to construct
individualized functional interaction networks for gene sets from
each sample. In each sample, we used the network that included
the largest possible number of genes for further visualization
and centrality analysis (excluding small networks of gene
clusters – usually less than 10–15 genes). Cytoscape RINalyzer
app (Doncheva et al., 2011) was used for pair-wise network
comparisons and overlap. Cytoscape GeneMANIA app was used
to draw direct ELAVL1 interactions in Figure 4 (Warde-Farley
et al., 2010). Cytoscape CytoNCA app (Tang et al., 2014) was
used for un-weighed centrality (degree, betweenness, closeness)
ranking. Cytoscape (Shannon et al., 2003) workflow tool was used
to create centrality based custom styles.

TCGA Queries
Online repositories for TCGAdata available on TCGAdata portal
(Hudson et al., 2010) and cbioportal (Cerami et al., 2012) were
used to access TCGA records.
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