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Mapping asthma-associated variants
in admixed populations
Tesfaye B. Mersha*

Division of Asthma Research, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of

Cincinnati, Cincinnati, OH, USA

Admixed populations arise when two or more previously isolated populations interbreed.

Mapping asthma susceptibility loci in an admixed population using admixture mapping

(AM) involves screening the genome of individuals of mixed ancestry for chromosomal

regions that have a higher frequency of alleles from a parental population with

higher asthma risk as compared with parental population with lower asthma risk.

AM takes advantage of the admixture created in populations of mixed ancestry to

identify genomic regions where an association exists between genetic ancestry and

asthma (in contrast to between the genotype of the marker and asthma). The theory

behind AM is that chromosomal segments of affected individuals contain a significantly

higher-than-average proportion of alleles from the high-risk parental population and thus

are more likely to harbor disease–associated loci. Criteria to evaluate the applicability of

AM as a gene mapping approach include: (1) the prevalence of the disease differences in

ancestral populations from which the admixed population was formed; (2) a measurable

difference in disease-causing alleles between the parental populations; (3) reduced

linkage disequilibrium (LD) between unlinked loci across chromosomes and strong

LD between neighboring loci; (4) a set of markers with noticeable allele-frequency

differences between parental populations that contributes to the admixed population

(single nucleotide polymorphisms (SNPs) are the markers of choice because they are

abundant, stable, relatively cheap to genotype, and informative with regard to the

LD structure of chromosomal segments); and (5) there is an understanding of the

extent of segmental chromosomal admixtures and their interactions with environmental

factors. Although genome-wide association studies have contributed greatly to our

understanding of the genetic components of asthma, the large and increasing degree

of admixture in populations across the world create many challenges for further efforts to

map disease-causing genes. This review, summarizes the historical context of admixed

populations and AM, and considers current opportunities to use AM to map asthma

genes. In addition, we provide an overview of the potential limitations and future directions

of AM in biomedical research, including joint admixture and association mapping for

asthma and asthma-related disorders.
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Introduction

Asthma: Its Importance, Prevalence, and Racial
Disparities
Asthma is the most common chronic illness affecting children
in the United States (CDC, 2012). It is a major public health
problem that affects up to 315 million individuals worldwide
and 40 million people in the United States, including 11
million children (Akinbami et al., 2012; WHO, 2013). Asthma
is the 3rd-ranking cause of hospitalization among children
less than 18 years old, and it is a leading cause of school
absences. According to the Centers for Disease Control and
Prevention (CDC, 2012), this translates into more than 14
million office visits, 2 million emergency department visits,
500,000 hospitalizations, and more than 3300 deaths each year.
On average, children and adult missed 10 and 14 million days
of school and work due to asthma, respectively. The cost of
asthma to the health care system surpasses $56 billion per
year (Sculpher and Price, 2003; Akinbami et al., 2011; Barnett
and Nurmagambetov, 2011; CDC, 2012). Figure 1 shows the

FIGURE 1 | Childhood asthma prevalence by state-by-state in the United States. Asthma prevalence rates are generally higher in the Northeast region. This

could attribute to the population composition. For example, the Puerto Rican population, in which asthma prevalence is highest, tends to be concentrated in the

Northeast region of the country. Source: CDC/NCHS, National Health Interview Survey, annual average for the period 2001–2005.

state-by-state prevalence of asthma across the United States.
Asthma prevalence rates are generally higher in the Northeast
region, which has a population with a higher degree of
African ancestry as compared with European ancestry (Bryc
et al., 2015). Although disparities in asthma rate clearly reflect
complex interactions among socioeconomic factors (e.g., income,
education, insurance) as well as physical and environmental
exposures (e.g., traffic, cigarette smoke), the contribution of
genetic ancestry factors is substantial. Heritability estimates
of between 36 and 79% support the genetic contribution to
asthma, yet relatively little is known about causal variants,
racial variation, and the pathways that contribute to asthma
etiology (Akinbami et al., 2011). Twin and family studies
showed that asthma runs in families. Although positive family
history is the strongest risk factor for asthma, the transmission
of asthma from parents to offspring does not follow simple
Mendelian inheritance. Rather, a polygenic, multifactorial
inheritance, which underscores the genetic and non-genetic basis
of asthma, both of which are incompletely understood (Mathias,
2014).
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Racial disparities exist with regard to prevalence and
drug response in asthma. Its prevalence in Puerto Ricans
(19.6%) and African Americans (14.6%) is higher than among
European Americans (8.2%), Mexican Americans (4.8%), and
Asian Americans (4.2%) (Gupta et al., 2006; Moorman et al.,
2007; Baye et al., 2011b; Silvers and Lang, 2012) (http://
cvp.ucsf.edu/docs/asthma_factsheet.pdf) (Figure 2). Although
Mexican American children have a low prevalence of asthma
(4.8%) and better lung function, they—in addition to Puerto
Ricans and African Americans—experience an excess of asthma-
related symptoms, missed school days, and unplanned health
care visits. African Americans, for instance, are four times
more likely to be hospitalized and seven times more likely to
die from asthma than their European American counterparts
(Akinbami et al., 2009, 2014). Federal efforts to reduce these
disparities include Healthy People 2020 and a coalition of
federal agencies formed under the auspices of the President’s
Task Force on Environmental Health Risks and Safety Risks
to Children (www.epa.gov/childrenstaskforce). Variations in
asthma prevalence among subpopulations suggest that asthma is
a heterogeneous disease with varied risk profiles (Miller, 2000).
These population differences can have clinical implications; an
example of this is the use of long-acting β2-agonists for patients
with asthma. Although combining corticosteroid treatment with
the use of a long-acting β2-agonist can lead to better asthma
control for most patients, a small proportion of patients—
including African-Americans—appear to be at increased risk
for adverse and even fatal outcomes from the use of long-
acting β2-agonists (Khianey and Oppenheimer, 2011). The
reason for this is still unknown. However, some studies have
suggested that β2-adrenergic receptors genotype—ancestry as
well as environment interactionsmay be responsible (Elbahlawan
et al., 2006; Blake et al., 2013). Admixed population is an idea
population to investigate the contribution of genetic ancestry and
environmental exposures with regard to modifying asthma risk.

Admixture and Admixed Populations
The term admixture refers to the process in which individuals
from two or more geographically isolated populations with
different allele frequencies mate and form a new mixed or
“hybrid” population (Reed, 1969; Chakraborty, 1986). It is
the result of gene flow over time between genetically distinct
human populations that leads to a mosaic of chromosomal
segments that represent each population. The world is becoming
highly multiethnic, and intermarriage between different groups
is becoming more and more common (Hellenthal et al., 2014;
Mersha and Abebe, 2015). As such, admixed populations exist in
several regions of the world today (Hellenthal et al., 2014; Bryc
et al., 2015). In the United States in particular, there are two large
admixed populations: African Americans and Latino Americans.
Populations like African Americans, and Latino Americans were
formed in the past 400 years (Smith et al., 2004). African
Americans were derived from an admixture event dating back
to the 16th century and the trans-Atlantic slave trade. Today,
on average, African Americans have genomic segments of ∼80%
African ancestry and ∼20% European ancestry (Patterson et al.,
2004; Reiner et al., 2005). Latino American populations are
admixed and are the result of three-way admixture events
between European, African, and Native American ancestries
(Collins-Schramm et al., 2002; Bonilla et al., 2004).With regard to
admixture history, the Latino populations are muchmore diverse
as compared with African Americans, and their proportions of
admixture vary significantly by geographical region (Collins-
Schramm et al., 2002; Bonilla et al., 2004; Parra, 2006; Bryc
et al., 2015). For example, Mexican Americans generally have a
higher genomic segment of Native American ancestry (ranging
between 35 and 64%) but lower genomic segments of African
ancestry (ranging from 3 to 5%) as compared with Puerto Ricans,
whose Native American ancestry ranges between 12 and 15% and
whose African ancestry ranges between 18 and 25% (Brehm et al.,
2012). The prevalence of asthma is highest among Puerto Ricans

FIGURE 2 | Asthma prevalence rates by race/ethnicity among the U.S. children. Race is considered as risk factor for asthma. But, how much is due to

environmental exposures, genetic, and asthma morbidity factors required further studies.
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and lowest among Mexican Americans which could be due to
higher proportion of African ancestry among Puerto Ricans
than Mexican Americans (see Figure 2); this phenomenon is
referred to as the “Latino paradox” (Cagney et al., 2007). In
an admixed population, the effects of individual loci on asthma
can be detected by (1) using admixture mapping—between
local ancestry and phenotype for ancestry-specific variants; (2)
using association analysis—between genotype and phenotype for
ancestry-shared variants. Admixture mapping-based approaches
is more powerful for cases in which the causative loci exhibit large
allele frequency differences in ancestral populations, whereas
genotype-based association approaches are expected to be more
powerful for cases in which the causative loci have similar allele
frequencies in ancestral populations.

Admixture Mapping in Admixed Populations
Admixture mapping (AM) is a gene mapping method used
for persons of mixed ancestry to identify genomic segments in
which the proportion of a particular ancestry is strikingly higher
or lower than that seen elsewhere in their genomes (Patterson
et al., 2004; Smith and O’Brien, 2005). Such enriched genomic
regions from a given ancestry among cases would indicate the
presence of ancestry-related genetic risk variants (Figure 3). At
a specific site in the genome, if two ancestral populations have
differences in disease risk allele (e.g., high risk in Europeans and
low risk in Africans), then an African American in the admixed
population with more European ancestry tends to have a higher
risk than a person in the same population with less European
ancestry. Thus, if an ancestral population carries a genetic
risk allele at a higher frequency, then the genomes of affected
offspring in this ancestral population will share a greater level

of ancestry at such disease susceptibility locus compared with
the background ancestry (i.e., genome-wide average) (Darvasi
and Shifman, 2005). The underlying argument of admixture-
based gene mapping is that, when two or more populations
with different genetic architecture interbreed, long segments of
DNA (haplotypes) that have distinguishable ancestral origins
will be created. Importantly, marker coverage and sample size
required for AM depends on how many generations passed
since admixture. The larger the genomic segments of particular
ancestry, the less marker saturation and the smaller the sample
sizes required (as compared with standard association studies)
to localize the genes that contribute to asthma (Hirschhorn
and Daly, 2005; Smith and O’Brien, 2005). Shriner et al.
(2011) reported a reduction in sample size of 64% to reach
genome-wide significance with AM as compared with association
mapping.

Admixture-based gene mapping in humans is similar to the
crossing of plants and animals. In both cases, the starting point
involves two (or more) genetically separated populations that
have been intermixed through several generations of mating
to form an admixed population. The genetic structure of the
new population is a mixture of the genetic materials of the
founding populations. In the experimental genetics of inbred
lines, phenotypically distinct strains are used. Using AM to
correlate phenotypes to the originating populations, differentially
selected traits may be identified in the two founding populations.
There are important differences between mapping in an admixed
population and mapping with crosses of inbred strains. Whereas,
inbred strain genetic mapping is mainly experimental, human
genetic mapping is observational (i.e., there may be no complete
information about the length of the generations being studied).

FIGURE 3 | Schematic presentations of the mosaic chromosomal structures of admixed population derived from two founders. The chromosomes of the

two founders are combined and after several generations of random mating produce present day admixed individual. Admixed population can be studied using

case-control and case-only admixture mapping study design to map mutation as indicated by red star.
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Why Might Admixture Mapping Work for Asthma
in Admixed Populations?
The concept of using admixed populations to localize disease-
associated genes was proposed more than 50 years ago
(Rife, 1954), but it gains momentum recently due to the
accessibility of genome-wide dense markers including highly
ancestry-informative markers (AIMs) and adequate statistical
tools (International Hapmap, 2005; McKeigue, 2005; Smith and
O’Brien, 2005). The arguments in favor of AM are compelling,
and the statistical methods are improving rapidly (McCarty et al.,
2005, 2008; McKeigue, 2005). The theme in favor of AM is
compelling and best applied when the prevalence of a disease
is significantly different between the ancestral populations. In
such situation, individuals who are carrying the disease are
expected to show an elevated genomic contribution around the
disease loci within the admixed genome. The African American
admixed population structure presents unique opportunities
to explore the genetic etiology of complex diseases such as
asthma because of the recent mixture between African and
European populations (on average, 10 generations ago) and to
look at the variation in asthma prevalence between African and
European ancestry (Patterson et al., 2004). Despite advances in
asthma care, African Americans are four times more likely to be
hospitalized and seven times more likely to die from asthma than
European Americans (Akinbami et al., 2009, 2014). The study
of admixed populations allows for analysis that is not possible
within homogeneous groups. This includes the analysis of single
nucleotide polymorphisms (SNPs), which do not differ within the
ancestral populations but which have different allele frequency

in different ancestral populations and which require an admixed
sample to detect their relationship with the phenotype.

Several variants associated with complex traits in admixed
populations have been identified with the application of AM.
These include risk variants associated with cardiovascular
disease (Zhu et al., 2005; Zhang et al., 2008b); multiple
sclerosis (Reich et al., 2005); prostate cancer (Freedman et al.,
2006); serum IL-6 levels (Reich et al., 2007); and asthma in
populations of African, Latino, Mexican, and Puerto Rican
ancestry (Salari et al., 2005; Choudhry et al., 2008; Mathias
et al., 2010; Torgerson et al., 2011, 2012; Drake et al., 2014;
Galanter et al., 2014; Pino-Yanes et al., 2014). These results
indicate that the admixed population provides an excellent
opportunity to harness the power of linkage disequilibrium
(LD) represented by ancestral markers transmitted together,
thereby making use of disease prevalence in the ancestral
(founder) populations. Although the exact numbers of AM
studies so far are difficult to establish, several reported studies
involved Latino populations compared with African American
populations (Table 1).

Procedures for Conducting Admixture
Mapping Analysis

AM using admixed population involves four main steps: (1)
select a panel of AIMs or high-density SNPs that differentiate
well between the ancestral populations; (2) ancestry estimation.
Genotype asthmatic and control subjects using the selected

TABLE 1 | Admixture peaks containing ancestry-specific asthma susceptible genes identified by admixture mapping (AM).

Population Genomic region Ancestry Associated gene(s) Reference(s)

African American 1q23.1 African PYHIN1 Torgerson et al., 2011

African American 5q33 African ADRA1B Mathias et al., 2010

African American 2q12.3–q14.2 African DPP10 Mathias et al., 2010

African American 20p12 African PRNP Mathias et al., 2010

Mexican 2q14.1 European DPP10 Torgerson et al., 2012

Mexican 4q22.1 African FAM13A Torgerson et al., 2012

Mexican 5q32–q33.1 Native American SPINK5,SCGB3A2 Torgerson et al., 2012

Mexican 1p13 N/A SLC22A15 Drake et al., 2014

Latino 6q15 African N/A Torgerson et al., 2012

Latino 8q12 African N/A Torgerson et al., 2012

Latino 6p21 Native American MUC22, PSORS1C1 Galanter et al., 2014

Latino 17q21 European IKZF3, IL1RL1, TSLP, IL33, ORMDL3 Torgerson et al., 2011

Latino 6p21.32–p22.1 Native American HLA-B Pino-Yanes et al., 2014

Latino 13p22–31 African N/A Pino-Yanes et al., 2014

Latino 14q23.2 African GPHB5 Pino-Yanes et al., 2014

Latino 22q13.1 African N/A Pino-Yanes et al., 2014

Puerto Rican 5q23.3 African N/A Choudhry et al., 2008

Puerto Rican 13q13.3 African N/A Choudhry et al., 2008

Puerto Rican 7q11.2 Native American EGFR Torgerson et al., 2012

Puerto Rican 7q31.3–31.31 Native American CFTR Torgerson et al., 2012

Puerto Rican 4q13.1 African MUC7 Torgerson et al., 2012

Puerto Rican 5q31.2 Native American EGR1 Torgerson et al., 2012

Puerto Rican 5q33.3 Native American IL12B Torgerson et al., 2012
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AIMs or a high-density SNPs panel followed by inferring
admixture proportions; (3) admixture mapping using cases-only
or cases and controls analysis. Ancestral estimates will be used
to search for an aberration toward the ancestral population with
a higher disease risk locus using the AM procedure; and (4)
the prioritization of variants in AM peak region using step-wise
regression and conditional analyses.

Step 1: Selection of a Panel of
Ancestry-informative Markers or High-density
Single Nucleotide Polymorphisms
The idea that genetic markers are present at different allele
frequencies in different ancestral populations was reported over
40 years ago (Reed, 1973). Neel (1974) referred to these markers
as “private.” Reed (1973) used the term ideal (in reference to
their utility for individual ancestry estimation) to describe the
alleles fixed in different populations. Chakraborty et al. (1991)
called those variants “unique alleles,” and they demonstrated how
frequencies of such “unique” alleles in an admixed population
could be used to provide a likelihood estimate of the “hereditary”
proportion of disease prevalence differences in populations.
Markers with different frequency distributions among ancestral
populations are considered as AIMs, and they are used to map
ancestry-related genes in admixed populations because they can
distinguish the ancestral origin of the haplotype on which they
reside. Informativeness is the amount of information that is
imparted by such markers (Shriver et al., 2003). The distinctive
distribution of these alleles results from the history of human
population migration. As human populations grew and fanned
out over the globe from Africa several hundred thousand years
ago, populations dispersed and settled farther and farther away
from one another (Bamshad et al., 2004). During this time period,
genetic changes occurred, including spontaneous mutations that
could be passed down from generation to generation in each
population. Depending on how close populations lived to one
another, they may share few or many of these alleles.

AIMs are used to estimate the geographical origins of
an individual’s ancestors, which is typically expressed as the
proportion of ancestry from different continental regions (Ding
et al., 2011b). Any marker differentiating racial ancestry can be
used for ancestry estimation and for AM. Although autosomal
SNPs are commonly used as genetic markers to infer ancestry,
polymorphic sites of mitochondria, Y-linked DNA markers, and
X-linked markers are also important for providing separate
stories of the ancestry of individuals from paternal and maternal
lineages (Rohl et al., 2001; Phillips et al., 2007; Mersha and
Abebe, 2015). SNPs have become the markers of choice for
locating disease genes: they are abundant and stable, they
are easier than other existing markers to genotype, and they
are informative for LD when selected for appropriate allele
frequencies. The ideal AIM should have alleles that are fixed
between the two ancestral populations and that thus have fixation
index (FST) value of 1.0 (Ding et al., 2011a). Measures that
precisely quantify the amount of information that each locus
contributes to the inference of ancestry or population structure
are highly relevant for the selection of informative markers
(Pritchard and Donnelly, 2001). These methods lead to a great

reduction in genotyping required for ancestry inference. Over
the years, several measures of marker informativeness (i.e., the
ability of markers to differentiate between ancestral populations)
have been developed to select themost informative AIMs from an
ever-increasing wealth of genomic databases (Shah and Kusiak,
2004; Baye et al., 2009). Ding et al. (2011b) compared the
performance of measures of marker informativeness, including
Fisher information content, Shannon information content, F
statistics, informativeness for assignment measure, and the
absolute allele frequency differences. In addition, Amirisetty
et al. (2012) developed AncestrySNPminer, the first Web-based
bioinformatic tool designed to retrieve AIMs from public
databases (e.g., HapMap, 1000 Genomes Project).

While sparse ancestry informative markers (AIMs) are more
cost effective and can estimate global ancestry proportion, high-
density SNP markers are required for local ancestry estimation.
The high-density genome-wide markers provide an increased
sensitivity to smaller ancestry segments and higher resolution of
ancestry switches (i.e., changes in ancestry in the interval between
twomarkers) than a sparse panel of AIMs (Shriner et al., 2011; Jin
et al., 2014). By assessing local ancestry for every variant (taking
LD patterns into account) from high-density SNP chips rather
than relying on local ancestry estimates from a small number of
AIMs, researchers have the opportunity to prioritize and evaluate
potential variants directly in each admixture peak.

Multipoint Ancestry-blocks Analysis Improve
Power
Although human genetic variations reflect differences at single
alleles as well as at the haplotype level, most ancestry estimators
use allele frequency (locus-by-locus) data between parental
contributions along the chromosome and ignore the molecular
information that is available in the ancestry-haplotype block
structures in the genome. Individual mutations carry only
weak signals as they apply to population ancestry. Inferring
information about admixture proportions by combining
information from across multiple loci that form haplotypes or
haploblocks is quite valuable. By adding information across the
whole genome at the haplotype level, these admixture events can
be reconstructed more accurately (Jobling et al., 2004). However,
previous methods have not taken into account multiple loci
as provided by haplotype structures in ancestral populations.
Multipoint ancestral haplotype advantages include their use
of more information from the data when a susceptibility
variant in the region is untyped or partially typed, improve
comparability of results across studies for localization. As a
result, multipoint ancestral haplotype block methods have the
potential to vastly improve power as compared with single-point
methods (Giardina et al., 2008).

Step 2: Ancestry Estimation
Ancestry can be viewed at populations, at individuals within
a population, and at a locus within individual levels. In gene
mapping, the goal of ancestry estimation is to determine
individual’s ancestral origin at the global and local (chromosome
segment) levels. Theoretically, it is possible to measure every
point in the genome and determine ancestry. However,
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recombination events at each intermixing stage cannot be
observed directly (Sankararaman et al., 2008; O’Reilly and
Balding, 2011), and complex pedigrees and founder information
(the number of ancestral or founders) is usually unknown.
Thus, it is of interest to estimate the ancestry of resulting DNA
sequences at each position.

Local and Global Ancestry
Chromosomes of an individual with admixed ancestry represent
a mosaic of chromosomal blocks from the ancestral populations,
and they can be inferred at the global and local levels using
AIMs or high-density SNPs. The ancestral origin at a particular
locus is referred as local ancestry. Local ancestry is concerned
with the locus-by-locus ancestry of a genomic segment given
reference population data (Pasaniuc et al., 2009; Price et al., 2009).
Local ancestry might provide better coverage of rare variation
because rare variants are more likely to differ in frequency
between populations with varying demographic histories (Gravel
et al., 2011). Global ancestry involves estimating the proportion
of local ancestry averaged across the entire genome (oraverage
proportion of each contributing population across the genome
(Falush et al., 2003; Patterson et al., 2006; Alexander et al.,
2009). Global ancestry is often used as a covariate to correct for
population stratification in genetic analysis, because it roughly
reflects differences in allele frequencies between continental
populations.

Tools to Estimate Local and Global Ancestry
Local ancestry methods, at each position in the genome,
estimate how many copies (0, 1, or 2) were inherited from
prespecified ancestral populations (see Figure 3). Simply put,
they identify which parts of the DNA sequence were inherited
from each ancestral population. Local ancestry mapping focuses
on particular segments of a genome and determines from which
ancestral lineage these segments were most likely inherited.
The hidden Markov model–based algorithm is used traverse
each marker and attempt to assign an ancestral state to each
chromosomal block by considering the allele frequencies of the
marker and the surrounding markers, which are incorporated
as “transition probabilities” from each previous SNP. Through a
series of probabilistic computations, these predicted transmission
probabilities generate the most likely ancestry for a haplotype.
Several methods have been proposed to estimate local and
global genetic ancestry in admixed individuals using AIMs
(or sparse markers) on reference allele frequencies for each
parental population [e.g., Local Ancestry in adMixed Populations
(LAMP)] (Sankararaman et al., 2008); on reference haplotypes
for each of the ancestral populations from high-density SNPs
such as HAPMIX (Price et al., 2009) and LAMP-LD (Baran et al.,
2012); or sequence data such as SEQMIX (Hu et al., 2013) and
NGSadmix (Hu et al., 2013).

Global ancestry is estimated as the proportion (percentage) of
ancestral blocks from each contributing population across the
markers of interest. Several tools are used to infer global ancestry.
LAMP-LD uses high-density SNP data and incorporates LD
information when estimating local ancestry from two or more
ancestral populations (Baran et al., 2012). LAMP-LD performs

better than LAMP (Chen et al., 2014; Yorgov et al., 2014),
which relies on set of AIMs that are in low LD (Sankararaman
et al., 2008). HAPMIX uses haplotype information to infer local
ancestry in admixed samples (Price et al., 2009). STRUCTURE,
perhaps the most widely used program for estimating global
genetic ancestry, was developed by Pritchard et al. (2000a). It
is a model-based clustering approach which utilizes genotype
data to identify admixture proportions at the individual level. A
maximum likelihood estimation method such as ADMIXTURE
can also be used to estimate global ancestry (Alexander
and Lange, 2011). Other methods, such as EIGENSTRAT,
compute principal components by comparing African American
genotypes with 1000 Genomes Project reference populations
YRI and CEU and by correcting for global ancestry variations
between continental populations (Price et al., 2006). Summaries
of admixture estimations (or control values for population
stratification) and AM software packages are shown in
Table 2.

Step 3: Admixture Mapping: Case-only or
Case-control Analysis
AM is designed to detect genomic signals by correlating disease
prevalence with the admixture proportions estimated by AIMs
or high-density SNPs (Chakraborty andWeiss, 1988). Estimation
of the local ancestry of admixed population at every locus or
individual provides the basis for AM. In case-control design, the
ancestry is compared at a given locus between the cases and the
controls (McKeigue, 1998). In case-only design, local ancestry
estimates of the cases at a given locus is compared with the global
ancestry within the cases (Figure 3) (Montana and Pritchard,
2004; Mexal et al., 2010; Zhu, 2012). Since there is no statistical
noise introduced by the controls, the case-only approach is more
powerful than the case-control approach. However, its power
requires that no null loci exist with deviations due to selection
since admixture (Seldin et al., 2011).

Test Statistics for Case-only and Case-control
Admixture Design
When mapping asthma genes using AM, the primary test will
be the association of asthma with local ancestry at a locus.
Zhu (2012) outlined the test statistics for the case only design:
ZC(t) = (π̂d(t) − π̂d(θ = 0.5)) / (σ (π̂d(t))), and for the case-
control design: ZCC(t) = [(π̂d(t) − π̂d(θ = 0.5)) − (π̂c(t) −
π̂c(θ = 0.5))] / (σ (π̂d(t) − π̂c(t))), where πd(θ) and πc(θ) be
the proportions of alleles that are from ancestral population X
among cases and controls in the current admixed population
(c), respectively, t represent the chromosome location, and θ

represents the genetic distance between the disease location and
the candidate marker. The null hypothesis is θ = 0.5 between
a marker locus and a disease locus (the marker is unlinked
to the disease risk). In both models, regions with statistically
significant regression coefficients for local ancestry are inferred
to harbor disease modifying genes. The case-only or case-control
admixture tests are not affected by population structure, because
the excess of ancestry is being tested at a marker position
(Montana and Pritchard, 2004).
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TABLE 2 | Lists of publicly available software usefulness in developing

ancestry informative markers, global and local ancestry inferences, and

admixture mapping with a link to software website.

Software Link

ADMIXTURE http://www.genetics.ucla.edu/software/admixture/

index.html

ADMIXMAP http://www.ucd.ie/genepi/software.html

ALDER http://groups.csail.mit.edu/cb/alder/

ALDsuite https://github.com/johnsonra/ALDsuite

ANCESTRYMAP http://genepath.med.harvard.edu/~reich/Software.htm

ANCESTRYSNPMINER https://research.cchmc.org/mershalab/

AncestrySNPminer/login.php

DBM-Admix http://sites.stat.psu.edu/~yuzhang/software/

EIGENSTRAT/smartpca http://www.hsph.harvard.edu/faculty/alkes-price/

software/

EILA http://cran.r-project.org/

ELAI https://www.bcm.edu/research/labs/statistical-

genetics-lab/software

FRAPPE http://med.stanford.edu/tanglab/software/frappe.html

GEMTools http://www.wpic.pitt.edu/wpiccompgen/GemTools/

GemTools.htm

HAPAA http://hapaa.stanford.edu

HAPMIX http://www.stats.ox.ac.uk/~myers/software.html

iAdmix https://sites.google.com/site/vibansal/software/iAdmix

LAMP http://lamp.icsi.berkeley.edu/lamp/

LAMP-LD http://lamp.icsi.berkeley.edu/lamp/lampld/

LASER http://csg.sph.umich.edu/chaolong/LASER/

parLEA http://dm.unife.it/parlea

MaCH-admix http://www.unc.edu/~yunmli/MaCH-Admix/

MEADMIX http://www.mybiosoftware.com/meadmix-1-0-

molecular-estimator-admixture.html

MULTIMIX http://mathgen.stats.ox.ac.uk/genetics_software/

multimix/multimix.html

NGSadmix http://www.popgen.dk/software/index.php/NgsAdmix

PCAdmix https://sites.google.com/site/pcadmix/home

PSMIX http://zhaocenter.org/labcode/PSMix/psmixreadme.txt

RFMix http://med.stanford.edu/bustamantelab/

SABER http://med.stanford.edu/tanglab/software/saber.html

SEQMIX http://genome.sph.umich.edu/wiki/SEQMIX

SNAP https://www.broadinstitute.org/mpg/snap/ldsearchpw.

php

SPSmart http://spsmart.cesga.es/hapmap.php?dataSet=

hapmap

STRUCTURE http://pritchardlab.stanford.edu/software.html

In both case-only and case-control models, targeted regions
with statistically significant regression coefficients for local
ancestry are inferred to harbor disease associated loci. A
target admixture signal region in AM is defined as a 1-unit
drop region from a peak of –log10 (P-value) (Zhu, 2012).
Estimates of local ancestry may be highly correlated. Case-only
or case-control admixture tests are not affected by population
structure, as excess of ancestry is being tested at a marker
position (Montana and Pritchard, 2004). To determine statistical
significance, the numbers of independent tests in all of the

regions under consideration have to be considered. For instance,
on a given chromosome a block of ancestry from one ancestral
population can be up to several mega bases long. Thus,
the total number of tests is much less than the number of
tests in GWASs (which generally requires larger number of
participants). This is an important advantage of AM, which
reduces the penalty as a result of a larger number of multiple
comparisons.

Although appropriate genome-wide significance for AM
remains data dependent, local ancestry estimates can be highly
correlated and independent blocks of local ancestry must be
considered rather than simply the total number of SNPs (Sha
et al., 2006). Shriner et al. (2011) estimated the effective number
of independent tests based on fitting an autoregressive model
to the local ancestry data and evaluating the spectral density at
frequency zero. A Bonferroni correction was applied to calculate
an adjusted significance threshold to yield an experiment-wise
type I error rate of 5%. A conservative estimate of genome-
wide significance for local ancestry was used to be 1.2 × 10−6

(0.05 divided by 38,566, which is the number of admixture tests)
(Parker et al., 2014). On the basis of previous simulation results,
a nominal P-value 7× 10−6 yielded a genomewide type I error of
0.05 (Tang et al., 2010). Others conducted follow-up admixture
peak region with a nominal p-value < 1 × 10−3 (Gomez et al.,
2015).

Tools for Admixture Mapping
Well-established first generation admixture analysis tools for
from sparse AIMs panels (e.g., ANCESTRYMAP, ADMIXMAP)
are used in asthma to identify genomic regions that differ
significantly between ancestries (Hoggart et al., 2004; Patterson
et al., 2004). Like local and global ancestry tools, Hidden Markov
Models estimate individual, population and locus level admixture
and test for a relationship between disease risk and individual
(or locus) level admixture in case-control and case-only studies.
An underlying assumption is the absence of linked, i.e., low
LD between markers (Wise et al., 2012). ANCESTRYMAP
compares no ancestry effect with an ancestry effect on asthma
risk (Patterson et al., 2004). Parameters of 1000 for burn-in
iterations and 2000 for follow-on iterations are recommended
for Markov chain Monte Carlo runs (Patterson et al., 2004).
A log-genome score of more than 1.0 is considered suggestive
evidence for the association, whereas a score of more than 2.0
is considered to represents genome-wide significance. Similarly,
ADMIXMAP use 1000 burn-in iterations and 4000 follow-on
iterations (Hoggart et al., 2004). ADMIXMAP implements a
score test that compares ancestry in each chromosomal position
with genome-wide ancestry. Z statistics is used for significance
test, with |Z|> 3.0 (suggestive) and |Z|> 4.0 (significant)
(Hoggart et al., 2004). Once a disease locus is identified based on
these tests, a fine mapping analysis is needed to identify specific
variants most strongly associated with the disease outcome (Wise
et al., 2012). These programs were developed for traditional
AM on AIM panels, and not well evaluated for local genetic
ancestry estimates using dense panels of markers at genome scale.
Ancestry software which gives an accurate estimation of local
ancestry at high density markers level are critically important
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as we move to next generation sequencing studies in admixed
populations. Recently, developed tools for high density marker
data include HAPMIX (Price et al., 2009) and LAMP-LD (Baran
et al., 2012); MULTIMIX (Churchhouse and Marchini, 2013)
for genotype/haplotype data, or SEQMIX (Hu et al., 2013) and
NGSadmix (Hu et al., 2013) for sequence data. However, further
evaluation is required including computational efficiency for
next generation whole genome sequencing datasets. A recent
R based ALDsuite has functionality that account for local
LD using principal components of haplotypes from ancestral
population data as well as quality control and downstream
analysis of results and visualization graphics (Johnson et al.,
2015).

Step 4: Prioritization of Variants in Admixture
Mapping Peaks using Conditional Analysis
AM estimates ancestry at genetic markers, which represent
the surrounding genomic region; therefore AM does not have
the resolution of a GWAS. Hence, once a disease associated
admixture signal is identified from previous step, a fine mapping
analysis is required to identify specific variants most strongly
associated with asthma. To fine-map these AM regions in an
effort to reveal loci or variants that contribute to population-
level asthma differences, conditional single SNP association
analysis can be performed for all loci in each region. Two
criteria are used to evaluate loci that “explain” an AM peak
region (Shriner et al., 2011). (1) Loci should show suggestive
association with the trait conditioning on the genome-wide
ancestry (global); (2) these loci should substantially reduce the
local ancestry–asthma association. To test the first criterion,
variants must have genome-wide significance of P < 10−6.
To assess the second criterion, a joint regression model that
includes both local ancestry and SNP genotype in addition to
all covariates adjustment is used, and the P-value for local
ancestry must be less significant as compared with that of
the model without the SNP genotype. For regions in which
multiple variants or genes meet both criteria, stepwise regression
is performed to prioritize a set of variants that may jointly
explain the local ancestry association. To search for any
additional variants that contribute to these effects, one can
further perform conditional analyses while adding the most
significant variant as a covariate in the regression model. This
analysis is finalized by ranking P-values and identifying the
most significant associations between local ancestry and disease
traits (Patterson et al., 2004). After association is established,
association mapping approaches are applied for finer-level
resolution, which helps to hone in on the particular variant
underlying the association and to validate the original AM
result.

In a fine mapping analysis both ancestral and genotype data
from admixed population are included in the model, and an
association between genotype and disease is the primary test
being investigated. Link (Y) ∼ β0 + β1(genotypes) +β2(local
ancestry) +β3(global ancestry) +β4(covariates). The generalized
linear models are flexible, allowing for multiple types phenotypes
(e.g., continuous, dichotomous) and covariates to be included
(Johnson et al., 2015).

Genome-wide Associations in Admixed
Populations
Most GWASs have been conducted in individuals of
homogeneous populations (e.g., those of European descent)
(Ding et al., 2013). European-derived populations are good
candidates for GWASs as a result of the relative homogeneity
of their genetic origins. GWASs involve scanning thousands of
case-control cohorts, which use hundreds of thousands of SNP
markers in the human genome. Algorithms are then applied
to compare the frequencies of SNPs or haplotype markers
between the disease and the control cohorts. Collecting clinical
phenotypes from matching cases and control groups as reflected
by geographic origin and ethnicity is of critical importance to the
success of GWASs. However, the world is continually becoming
highly admixed, and allele frequencies are known to vary widely
within and between populations; these differences are widespread
throughout the genome (International Hapmap, 2005). Thus,
it is becoming difficult to find recruits for traditional GWASs
because of the highly admixed nature of world populations.
GWASs of admixed populations offer the promise of discovering
genetic variations that would be missed by the exclusive study
of European populations. However, in GWASs of admixed
populations, the heterogeneity of the genetic background can
lead to spurious associations; this is also referred to as genetic
confounding caused by population stratification (Price et al.,
2006; Baye, 2011; Baye et al., 2011c). Statistical methods (e.g.,
local and global ancestry inferences) have been employed to
overcome or make use of such ancestral variations to identify
disease-associating loci in diverse populations. Accordingly,
GWASs in African and Latino Americans and other admixed
populations are now underway. Although admixed populations
require a more careful approach, considering the origin of the
chromosomal regions, the vast genetic diversity and population
history may be better viewed as an opportunity for new insights.
For example, the degree of LD is less in individuals of African
descent because of the many generations of recombination in this
population (Tishkoff and Kidd, 2004; Bedoya et al., 2006; Price
et al., 2007; Tishkoff et al., 2009). For GWASs of populations of
European descent, associated SNPs are more often considered as
a proxy for the functional variants. For individuals with a lesser
degree of LD (e.g., many of those of African descent) the SNPs
that are associated with the disease are more likely to be localized
much more closely to the biologically relevant regions.

Because most GWASs involve populations of European
ancestry, we examined the allele frequency patterns of 78
GWAS SNPs associated with asthma and deposited at the
GWAS Catalogue site (Welter et al., 2014). We used the 1000
Genomes Project database (http://www.1000genomes.org) and
the AncestrySNPminer (Amirisetty et al., 2012) online tool
to explore these variants among African American (ASW),
African (YRI), and European American (CEU) samples. The
admixed African American sample (ASW) exhibited allele
frequencies that are intermediate between ancestral CEU and
YRI samples, suggesting admixed populations require a different
gene-mapping strategy than the relatively homogenous ancestral
populations (Mersha and Abebe, 2015). We recently investigated
differences in candidate gene association between asthmatic
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children of European ancestry and African American ancestry
using the high-throughput genotyping custom Illumina Golden
Gate assay (http://www.illumina.com) in combination with the
Greater Cincinnati Pediatric Clinic Repository cohort (Butsch
Kovacic et al., 2012). To account for population substructure
and admixture, AIMs were selected on the basis of our recent
work (Baye et al., 2009). The analyses unveiled two genes—
IL4 (among individuals of European ancestry) and INSIG2 (in
populations of African American ancestry)—that were associated
with asthma (Baye et al., 2011b). Our data suggests that the
genetic architecture of asthma in European Americans ancestry
may be different from the genetic architecture of asthma in
African Americans. We also observed ancestry-based allele “flip-
flop” that could also attributed to differences in the genomic
architecture between the two groups (Kovacic et al., 2011;
Baye et al., 2011b). This observation is consistent with the
longstanding observation that asthma prevalence differs by race.
By using the results of recently published SNPs from the
GWAS catalog (www.genome.gov/gwastudies) and PhenoGram
visualization software (Wolfe et al., 2013), we demonstrated
the shared and unique etiology of asthma as grouped by
ancestry (Figure 4). Chromosomes 6 and 17 show many of the
genomic variants related to asthma in the European ancestry.
Variants such as rs1837253 (chromosome 5) and rs16929097
(chromosome 6) shared between European ancestry and Asian

ancestry as well as between African and European ancestry,
respectively (Figure 4). Overlapping loci that are shared between
ancestries may suggest shared molecular pathways involved in
asthma etiology, which should aid in the determination of the
molecular mechanisms that trigger their progression across all
ancestries.

Admixture Mapping Vs. Genome-wide
Association Testing
AM uses estimates of ancestry at each SNP to test for associations
with a phenotype; this is in contrast with GWASs, which compare
allele frequencies with phenotype (Montana and Pritchard,
2004). GWAS is based on frequencies of SNP variants in
cases vs. controls. As mentioned previously, GWASs have been
implemented based on ancestral homogenety within European
population, with the assumption that association is uniform
across all loci (Wellcome Trust Case Control, 2007). However,
for AM approach, this assumption means that any prior evidence
from AM of ancestry effects is completely ignored. In admixed
populations, AM has greater statistical power as compared
with GWASs because, as we focus on efficient detection of
genomic region of ancestral difference, we require a smaller
number of genetic markers to cover the genome (Patterson
et al., 2004; Smith et al., 2004). This is because, for example,
in African Americans, LD extends as far as 20 cM, while

FIGURE 4 | Asthma GWAS catalog variants grouped by ancestry: Asthma related variants identified through genome-wide association studies (GWAS)

NHGRI catalog of published GWAS was searched. PhenoGram was used to plot and visualize GWA catalog association results for potentially pleiotropic SNPs

among across ancestry (Wolfe et al., 2013). An Ideogram of all 22 chromosomes is plotted, along with the X and Y chromosomes. Lines are plotted on the

chromosomes corresponding to the base-pair location of each asthma-related SNP, and the line connects to colored shape representing the phenotype(s) associated

with that SNP.
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LD in European ancestry rarely extends longer than 0.1 cM
(Parra et al., 1998). At the same time, AM estimates ancestry
of the genomic region (i.e., the region of admixture LD) and
therefore does not have the resolution of a GWAS. However,
AM draws our focus to a specific region of interest with
200–500 fold fewer comparisons that must be corrected using
multiple comparisons techniques. Thus, the optimal settings for
admixture-based approaches would be best in combination with
GWASs to potentially identify ancestry-specific and ancestry-
shared genetic variants in asthma (Figure 5). Results from the
two largest meta-analyses of GWAS on asthma done to date,
the GABRIEL and EVE consortia, indicated that some loci are
ancestry specific, including ORMDL3/GSDML in European and
Hispanic ancestry and PYHIN1 in African-American ancestry
(Torgerson et al., 2011). Recent ethnic-specific associations of
rare and low-frequency variants with asthma showed association
of GRASP and GSDMB variants in the Latino ancestry and
MTHFR variants in the African ancestry samples (Igartua et al.,
2015). Thus, to explain genetic basis of population differences
and risks for asthma disparities, it is important to conduct
genetic studies in different race, ethnicity, and admixed ancestry
because genetic markers can vary from findings of European
ancestry (Galanter et al., 2014; Leung et al., 2014). AM in admixed
population have led to the identification of novel associations that
would not otherwise have been identified in traditional GWAS.

Joint Admixture and Association Testing in
Admixed Populations
Admixture and association mapping signals contain
complementary information, and incorporating both signals
may estimate much of the heritability missed by either of these
methods alone (Manolio et al., 2009). Several methods have been
developed to combine AM and association mapping (Tang et al.,
2010; Lettre et al., 2011; Shriner et al., 2011; Pasaniuc et al., 2013).
However, most of these methods assume independence between
local ancestry and genotype. To overcome this, one can jointly
test ancestry and association for a sample of admixed individuals
in two steps. Step 1 involves the performance of high-density
AM using local ancestry. Step 2 uses association mapping
with a stratified regression approach wherein each marker’s
genotypes are stratified by local ancestry. Joint testing of the
posterior probabilities with AM and the prior probabilities with
association mapping capitalizes on the reduced testing burden
of AM relative to association mapping. Thus, the combination
of AM and association mapping has significant potential to
effectively uncover novel variants that have been missed in
previous mapping efforts and thus may be able to potentially
explain much missing heritability (Manolio et al., 2009). By
taking advantage of the reduced test burden of AM as compared
with association mapping, Shriner et al. (2011) developed a
two-step approach as follows:

FIGURE 5 | Strategies to prioritize ancestry-specific risk loci via admixture mapping and ancestry-shared risk loci via GWAS for follow-up genotyping

and analysis.
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the coefficient for stratum specific genotype association. Joint
framework for testing the effects of ancestry via admixture
and genotype via association mappings results will motivate
additional analyses in existing GWAS or admixture based NGS
studies, potentially detecting additional loci which might be
missed otherwise.

Rare Variants and Admixture Mapping
The bulk of human genetic variation is the result of common
variants that were inherited from the ancestral African
population before the “out-of-Africa” migration and that are
present across the world. Rare variants have occurred in recent
human history and therefore they may not be shared among
different ancestral populations (Rosand and Altshuler, 2003;
Frazer et al., 2009; Baye and Wilke, 2010). The recent admixture
between geographically isolated populations (e.g., Europeans,
Africans, Native Americans) has had a marked effect on the
genetic variation of rare variants. For rare variants, there have
been significant changes in allele frequency during the time since
the separation of the parental populations; these loci can be
leveraged to identify the loci that affect clinically relevant traits
(Chakraborty and Weiss, 1988; McKeigue et al., 2000; Shriver
et al., 2003; Reich et al., 2005). Since rare variants might have
arisen after populations diverged, they are more likely to be
specific to certain populations and might also be overrepresented
in specific ethnic groups (Chakravarti, 1999; Keen-Kim et al.,
2006). A study showed the reduced sharing of rare variants as
compared with common variants even among closely related
populations, such as Chinese and Japanese populations as well
as Northern and Southern European populations (Gibson, 2011).
This lack of sharing can be explained by ancestry divergence
as a result of local adaptation, and expected to increase with
sample size. Thus, the presence of rare variants in only one of
the ancestral populations might explain the difference in disease
prevalence, including asthma. If the source of an association with
a gene is a rare allele, population genetic theory suggests that, in
the absence of selection, the allele will have established itself in
the population more recently than most common alleles.

Although GWASs have successfully identified numerous
asthma associations (Zhang et al., 2012), their reliance
on “common disease/common variants” hypotheses with
notoriously small effect sizes has become a barrier to further
progress. For example, as of January 2015, 33 GWASs of asthma
and asthma-related traits have yielded 78 common variants,
which collectively account for only 5% of the variance in asthma
susceptibility (Ramasamy et al., 2012). This leaves most of the
high-risk mutations that contribute to asthma unidentified

(“missing heritability”) (Manolio et al., 2009). In addition,
growing evidence suggests that rare variants exhibit considerably
larger effect sizes relative to common variants (Rivas et al.,
2011; Gudmundsson et al., 2012). A recent study identified a
low-frequency variant (MAF = 1.1%) for adiponectin levels that
explained a large percentage (17%) of phenotypic variance in the
sample (Bowden et al., 2010). Moreover, many of the variants
that have been identified in GWASs are largely from individuals
with European ancestry and thus are not representative of the
admixed AA genome (Carlson et al., 2013). Recent studies
showed that only 81% of the common SNPs from African
ancestry are represented in the GWAS commercial genotyping
platforms as compared with 94% of those from European
ancestry (Clark et al., 2005; Consortium et al., 2007; Baye et al.,
2009). In addition, recent study using exome data showed that
rare variants in asthma are ancestry specific (Igartua et al.,
2015). AM can be particularly useful when mapping rare risk
alleles from admixed populations that have important frequency
differences between ancestral populations (Mersha and Abebe,
2015). Studies have shown an accumulation of rare variants in the
extreme range of the phenotype; such variants operate equally
across all levels of the phenotype (Coassin et al., 2010; Gloyn
and McCarthy, 2010; Johansen et al., 2010). Sequencing from the
upper and lower 10% tails of the phenotype distribution increases
the power of AM by increasing the frequency differences of risk
variants between the two extreme phenotypes, thus requiring
smaller sample sizes for the identification of novel regions and
variants (Pritchard, 2001; Plomin et al., 2009; Lanktree et al.,
2010; Guey et al., 2011; Li et al., 2011a,b; Barnett et al., 2013;
Benitez et al., 2013). The strategy of selecting individuals from
the extremes of the phenotypic distribution for maximum allele
frequency difference has been successfully applied to quantitative
traits such as plasma low-density lipoprotein levels (Cohen et al.,
2006). Ancestry-based rare variant studies in admixed groups can
play a great role in the mapping of asthma susceptibility loci, and
thus have the potential to map the genetic basis of inter-ethnic
differences. The joint modeling of rare and common variants
signal could potentially explore independent contributions from
each effect on asthma and increase our power to explain much
of the missing heritability (Manolio et al., 2009; Dickson et al.,
2010; Baye et al., 2011c).

Genetic Ancestry and Asthma Clinical Outcome
Variables
Asthma outcome variables such as forced vital capacity (a
measure of lung size), forced expiratory volume in 1 s (a
standard measure of lung function), and the ratio of forced
expiratory volume in 1 s to forced vital capacity could be
used to explain differences in disease prevalence among racial
groups (Salari et al., 2005; Menezes et al., 2015). African
ancestry was inversely related to FEV1, FVC, and FVC (Kumar
et al., 2010) (Figure 6). A study showed that each percentage
point of increase in African ancestry was associated with an
8.9ml decrease in forced expiratory volume in 1 s and an
11.8ml decrease in forced vital capacity (Ortega et al., 2014). A
higher degree of African ancestry was associated with a greater
likelihood for an asthma-related physician visit and a greater

Frontiers in Genetics | www.frontiersin.org 12 September 2015 | Volume 6 | Article 292

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Mersha Mapping asthma genes to our ancestors

frequency of urgent or emergency department visits. Total higher
serum immunoglobulin E levels and lower responsiveness to
bronchodilators have also been observed among individuals with
higher African ancestry with persistent asthma as compared
with whites and other racial groups (Kumar et al., 2010). All
evidence demonstrated that measures of genetic ancestry—rather
than race/ethnicity classification—could improve clinical care
for people of mixed race. Adding measured ancestry to lung
function prediction equations in asthma severity analysis reduced
misclassification rate by 5% (Kumar et al., 2010).

Genetic Ancestry and Environmental Risk
Factors in Asthma
Although genetic influences are important determinants
of asthma risk, there is also compelling evidence for the
socioenvironmental contributions. However, there is lack of

studies on the role that socioenvironmental factors play on
asthma risk. Gravlee et al. (2009) and many others (Kaufman
et al., 1997; Non et al., 2010, 2012) have indicated that ancestry
may serve as a means of tracking environmental influences
such as socioeconomic status and sociocultural factors that may
contribute to asthma disparity (Figure 7). Thus, individuals
with mixed ancestry provide an effective way to disentangle the
effects of ancestry from those of the environment. For example,
if a greater African ancestry is observed across the genome
in asthmatic patients relative to controls without significant
rise in local ancestry at a particular locus, this may point to a
stronger role for non-genetic factors (e.g., exposures to traffic,
mold, cigarette smoke, socioeconomic status) in asthma risk
(Deo et al., 2007; Gravlee et al., 2009; Winkler et al., 2010).
However, the absence of significant chromosomal increase does
not exclude multiple genes with small effects that contribute

FIGURE 6 | Studies considering the relationship between degrees of African ancestry proportion and asthma and asthma-related outcomes.

FIGURE 7 | Impact of ancestry with both genetic and non-genetic risk factors in causing asthma and asthma-related risks.
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to asthma in persons of African ancestry. It does suggest that
there are no large-effect genes that explain asthma risk. The
availability of dense markers, environmental and social variables,
and new analytical tools allow for a more rigorous approach in
which the effects of ancestry and environmental determinants
can be disentangled and comprehensively investigated in
asthma.

In recent years, the increase in asthma prevalence worldwide
has been especially noticeable in the developed world, where
asthma prevalence has increased from 3.6% in 1980 to 10% in
2007 (CDC, 2011; Norman et al., 2013). The rise in asthma
prevalence is occurring at a faster rate than changes in allele
frequencies of the genome should allow, and this may indicate the
role of underlying environmental risk factors in the modulation
of asthma (Huang et al., 2015). Such observations are consistent
with the highly publicized analogy, “genetics loads the gun, but
the environment pulls the trigger”(Olden and White, 2005). That
is, one can inherit the genetic predisposition to develop a disease
but will do so only if or when exposed to the environmental
trigger. Today, it is believed that a large component of asthma
variance responds not only to the individual contributions of
predisposing genes but also to the extent to which such genes
interact with the environment (Baye et al., 2011a). Thus, many
factors in addition to ancestry can influence asthma severity, and
the study of genetic ancestry with environmental exposure and
other social determinants of health are critical to understand the
etiology of asthma.

In a study of the Wayne County Health Environment
Allergy and Asthma Longitudinal Study (WHEALS) cohort,
601 WHEALS mothers who identified themselves as white
(n = 216) or African American (n = 385) were studied.
Self-identified African American women were more likely
to be sensitized to at least one allergen (allergen-specific
immunoglobulin E, ≥0.35 IU/mL) as compared with white
women [odds ration (OR) = 2.19]. However, genetic ancestry
based on AIMs was not significantly associated with allergic
sensitization (OR= 1.34) after adjusting for location of residence
(urban vs. suburban). Similarly, Keet et al. (2015) showed
that “black race, Puerto Rican ethnicity, and lower household
income” to be strong independent risk factors for asthma
exacerbation and ED visits for asthma. These data suggest that
genetics may not explain all of the observed racial disparity
associated with allergic sensitization (Yang et al., 2008). Among
children who were approximately 2 years old, the Boston
Birth Cohort genotyped 150 AIMs and found that African
ancestry was associated with food sensitization (OR = 1.07
for a 10% increase in African ancestry). However, there was
no adjustment for location of residence, income, maternal
education, or other socioeconomic factors. The understanding
of how genetic ancestry interacts with socioenvironmental
risk factors to impact asthma-related traits is an area that
requires further exploration (Mersha andAbebe, 2015). However,
investigating these interactions will require the following: (1) the
a priori identification of which environmental parameters will
be considered relevant for the analysis; (2) methodologies to
allow for the simultaneous consideration of multiple genes and
perhaps multiple environmental variables and various ancestry

proportions; and (3) an effort to overcome the perceived
assumption of genetic and environmental homogeneity when
evaluating admixed populations.

Asthma Genetic Heterogeneity and
Pharmacogenomic Intervention
Race variations in response to medication were observed as
early as the 1920s (Kalow, 2004). Wu et al. (2005) summarized
many clinical trials results for antihypertensive medications and
found that some of these drugs were more effective for African
Americans than for those with European ancestry and vice
versa. Lin et al. (2005) provided an example of some typical
population complexities seen in the application of personalized
medicine. Differences in drug outcome measure by race suggest
that drug metabolism in African Americans may be governed
by different genetic factors than European Americans, and may
lead to different options for risk identification and intervention.
This potential genetic difference in drug outcome is supported
by recent work identifying associations between individuals’
proportion of African ancestry and drug related phenotypes
(Ortega and Meyers, 2014). By analyzing the drugs in ancestry
dependent manner, we will increase power and able to determine
whether ancestral variation is associated with the class of drugs
or whether the ancestral variation affects the drugs differently
(that is, interaction). However, the majority of asthma clinical
studies have been conducted with the use of individuals of
European ancestry, and their results have been generalized to
all patients, irrespective of their racial or ethnic groups (Deo
et al., 2009). For example, the frequency of alleles related to
asthma medication drugs, such as the β2-adrenergic receptor
gene ADRB2, differs between African American, Caucasian,
and Chinese populations (Sayers and Hall, 2005). There exist a
significant pharmacogenetic difference in β2-adrenergic receptor
polymorphisms and bronchodilator responses to albuterol even
between the two largest Latino groups: Mexicans and Puerto
Ricans (Suarez-Kurtz, 2005). There is also a momentous debate
about the “race-targeted” drug BiDil, which is used for treating
heart failure in African Americans (Brody and Hunt, 2006).
Recent research in the field of pharmacogenomics has used
DNA information to improve the prediction of drug response.
However, many models incorporate race but do not consider
ancestry informationwhen assessing host–drug interactions, thus
limiting its predictive ability. Warfarin dosing algorithms that
are developed for well-defined racial groups are not applicable
to the heterogeneous admixed population because admixed
populations deviate from the idea of race- or ethnicity-based
classification. Given that the variation in the response to therapy
could be largely due to genetic differences, the field of asthma
is well suited to pharmacogenetic investigations to develop and
provide a genetic basis for “individualized therapy” (Lin et al.,
2005).

Admixture Based Population Substructure and
Socioenvironmental Factors in Asthma Studies
Hidden population substructure in human populations has
become a major issue for studying complex diseases including
asthma, especially in admixed populations (Bryc et al., 2015;
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Mersha and Abebe, 2015). Population stratification arises
when ancestry is associated with a phenotype of interest.
Understanding the consequences of admixture based population
substructure in admixed populations is important, because
admixture can be both a confounding factor and a source
of statistical power to map asthma-related genes (Redden
et al., 2006). Population stratification is the existence of groups
of individuals within a population that arise as a result of
reproductive isolation from the rest of the population. For
example, several association studies (candidate gene studies or
GWASs) have case-control study designs in which the frequency
of an allele or genotype at a locus in the study patients is
compared with its frequency in an unaffected control population.
This study design is subject to population stratification as a
result of genetic admixture, which occurs when the cases and
controls are unintentionally drawn from two or more racial
or ethnic groups or subgroups in disproportionate frequencies
(Mersha and Abebe, 2015). If one of these subgroups has
higher disease prevalence than the others, stratification occurs,
because that subgroup can be overrepresented in the cases
and underrepresented in the controls. For the bias caused
by population structure to exist, both of the following must
be true: (1) the frequency of the variant of interest varies
significantly by race; and (2) the background disease prevalence
varies significantly by race (Wacholder et al., 2000). In addition,
environmental exposures that differ between ancestry groups
may confound or interact with genetic factors. It can be difficult
to fully account for confounding with socioeconomic status
including income because disparities in wealth, educational
opportunities, family structure, and employment by race or
ethnicity are even higher than what is represented by income
(Sampson et al., 2008). The standardization of environmental
exposure assessment methods is needed, and statistical analyses
have to be carefully adjusted for demographic and environmental
factors (Thomas et al., 2012). African Americans and Latino
Americans often have lower socioeconomic statuses, and
these are often associated with environmental factors such
as diet, the presence of allergens, and pollution exposure.
These factors can have a direct effect on the development of
asthma and need to be carefully adjusted for during statistical
analysis.

To date, several algorithms have been developed to adjust for
population stratification including genomic control, structured
association, and principle component analysis (Devlin and
Roeder, 1999; Pritchard et al., 2000b; Price et al., 2006).
Detail comparison of these methods are provided by Zhang
et al. (2008a). The common practice to correct population
substructure involves estimating global genetic ancestry for each
sample (Reich et al., 2008; Torres-Sanchez et al., 2013). This
correction is often accomplished by genotyping a set of AIMs
(or high density markers) and then using the known reference
populations for evaluation with the use of either principal
components analysis (for a continuous estimate of ancestry
group) (Price et al., 2006) or cluster analysis (for a categorical
ancestry assignment) (Pritchard et al., 2000b). Global ancestry
measures are used to stratify individuals or to include them as
covariates for adjustment in statistical analysis. In using AIMs or

high density markers, the population under study should have
the same substructure as the population in which the AIMs or
high density markers were discovered. In admixed populations
when the disease prevalence differs between ancestries (e.g.,
populations with asthma), global ancestry is a confounder that
must be adjusted for to obtain valid inference.

The Application of Admixture Mapping in the
Context of Next-generation Sequencing
As computational power increase and cost of sequencing has
decreases, next-generation sequencing (NGS) strategies are now
being used to find causal variants associated with asthma (Dewan
et al., 2012). With the availability of high-density NGS data, the
ancestral origin of chromosomal segments can be inferred with
high accuracy. The estimation of ancestral proportion segments
has practical implications for both accounting population
structure in association testing and AM. Failure to adequately
account for ancestry variation may lead to spurious results
in large-scale association studies (Baye et al., 2011c). With
increasing knowledge gained through sequencing, high-density
genotyping arrays of diverse populations, and the construction
of a high-resolution map of admixture, a recent study showed
that populations that were assumed to be homogeneous (e.g.,
European Americans) are in fact admixed and that AM could
be feasible for the mapping of ancestry-associated variants
in this population (Bryc et al., 2015). Admixture may work
well for sequencing data, because it relies on consistent
genetic differences between populations that may exist at the
rare variant level. In contrast with common variants, rare
variants are not shared across divergent populations, because
they have either arisen relatively recently or their frequencies
have been influenced by population history (e.g., the out-of-
Africa expansion, natural selection). It has been shown that
haplotype-based approaches allow for the finer reconstruction
of genetic structure as compared with single-marker genotypes
(Conrad et al., 2006; Lawson et al., 2012). The challenge with
the NGS approach is that the frequency rare variants are
unknown, and data quality will be an issue. For rare variants-
based NGS admixture mapping, we suggest a haplotype-based
ancestry identification approach to determine the contributions
of different ancestral populations. This approach will provide
multiple rare variants in a given haplotype will provide
power to identify previously unreported contributions from
African, European, and Native American populations in the
ancestry of American admixed populations (Montinaro et al.,
2015). Although NGS data can be used to identify genetic
variants (e.g., copy-number variants, insertions, deletions, other
structural variants, regulatory variants) and DNA methylation
sites, new methods are required to employ AM for these
data.

Limitations of Admixture Mapping

The underlying assumption in AM is that the risk allele
occurs at different frequencies among ancestral populations,
i.e., affected individuals share an excess ancestry from the
ancestral population with the highest frequency of the risk allele.
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Thus, the power of AM relies strongly on the allele frequency
difference of the causative variants. AM has no power if the
frequency of asthma-associated variant is similar between the
ancestral populations. Another limitation of AM is that, if a
region in the ancestral genome undergoes selection for another
cause (e.g., an infectious disease) that is unrelated to asthma
risk per se, this could lead to spurious results. Most alleles
that vary across geographic regions may also have developed
in relation to environmental exposures (e.g., alleles related to
malaria resistance). As a result, a shared or unique allele might
reflect similar or different environmental exposures rather than
shared or unique ancestries (Bolnick et al., 2007; Frudakis,
2008). Ultimately, the best means of protection from false-
positive errors (e.g., the identification of loci unrelated to disease)
is replication in an independent study population. Most AM
methods make use of reference ancestry panels that serve as
proxies for the ancestral populations in the admixture. Good
reference panels may not exist for many populations, including
the Native American ancestral component that is present inmany
Hispanic populations.

Several methodological challenges also exist in admixed
populations, including the following: (1) The history of human
admixture is not under experimental control or even necessarily
known. The number of generations is usually estimated. (2)
Ancestral populations are not available for study. Ancestry-
specific allele frequency is re-estimated within the admixed
population, with prior estimates based on sampling unadmixed
modern descendants. However, the true number of ancestral
populations in an admixed population is not known. (3) The
exact mix of ancestral populations that contributes to the
admixed gene pool cannot be sampled. (4) Human racial groups
are not inbred strains, and markers with 100% frequency
differentials are rare. Thus, we cannot unequivocally infer
ancestry at a specific locus from a marker genotype. (5)
Despite recent interest in applying admixture methods to diverse
populations (Beaumont et al., 2001; Wen et al., 2004; Reich
and Patterson, 2005; Semon et al., 2005; Winkler et al., 2010),
most methods were developed with the use of an isolation (or
intermixture) model (which assumes that admixture occurs only
at the first generation and is then followed by random mating
within the admixture population) and tested via the simulation
of randomly generated genotypes and allele frequencies (from
uniform distribution) for individuals in an admixed population
(Long, 1991). However, human admixing is continuous over
time and it is unlikely this model accurately represents the
complexity of the process by which admixed human populations
were formed (Waples and Gaggiotti, 2006). These admixture
models create different LD patterns (Long, 1991). (6) There are
currently few software options which offer admixture analysis of
dense marker data from more than two admixed populations.
In addition, currently available software estimate admixture but
not ancestry (Vaughan et al., 2009). Admixture is an error
containing proxy measurement of ancestry, i.e., Admixturei =

Ancestryi+ Errori. The error could be due to measurement
(incomplete coverage of genome), missing data (imprecise
allele frequencies for founding populations), biological variation
(meiosis/recombination) and other errors such as genotyping,

information content ofmarkers (Divers et al., 2007). (7) Ancestral
population LD tends to confound with admixture LD, and
methods are required to unravel admixture LD from ancestry LD.

To evaluate some of these limitations through simulation
models and testing randomly generated ancestral and admixed
human populations, it may be relevant to use 1000 Genomes
Project datasets as a starting point in the simulation process
and to follow the gradual admixture model, which assumes
that admixture occurs at each generation (Ewens and Spielman,
1995). In addition, Vaughan and colleagues (Vaughan et al., 2009)
presented the relevance of plasmode datasets for comparing the
true and estimated admixture values using root mean square
error (RMSE) accuracy measures (Tang et al., 2005). Final
limitations include samples of ancestry reference sets that are
comprised of the genomes of relatively few sampled individuals
who are themselves from a relatively small number of ancestral
samples from geographically restricted regions. To what extent
this panel represents the current status of admixed populations
is debatable. Most methods estimate ancestry at a continental
scale, thereby making the identification of multiple sources
from the same continent or region challenging. Regional genetic
differentiation and differing patterns of shared ancestry within
regions may provide clear signals of historical demographic
events. Ultimately, AM, as hypothesis-generating tool, can only
coarsely localize loci that contribute to asthma; it cannot fine-
map important variants (Reich et al., 2007). Follow-up “zoom
in” analysis will be required to identify the specific variants
associated with asthma. Therefore, it is prudent to recognize the
limitations of ancestry reference samples, markers, and current
methodological challenges in genetic and genomic studies of
admixed populations.

Summary and Conclusion

Admixed populations arise when two or more previously isolated
populations start interbreeding. As DNA recombination breaks
and rejoins to form new ones, genomic mosaicism with different
genetic ancestry segments are created and further reshaped
and rearranged by recombination in each generation. As the
number of generations increases, the ancestral chromosomal
segments from different parental populations are spliced into
shorter pieces. These segments of DNA (blocks of haplotypes)
have distinguishable ancestral origins and provides valuable
information for AM. Studies have shown that the frequency
of alleles associated with asthma differ by race. Differences
among individuals of African and European descent, for example,
and the admixture nature of the African American population
create an ideal opportunity of AM to map ancestry-specific
variants. Ancestry-based gene-mapping approaches in admixed
groups can be expected to play a great role in the mapping
disease susceptibility loci, and to elucidate the genetic basis of
inter-racial differences. Furthermore, they will provide valuable
opportunities to study the interactions of race, genetics, culture,
and environments.

Most genomic studies in admixed populations use commercial
genotyping arrays that are developed based on reference
panel from relatively homogeneous European ancestry
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population, and may not adequately tag relevant variations
in admixed populations. Increasing availability of polymorphic
molecular markers from directly sequencing multiple
individuals/populations using NGS (e.g., the 1000 Genomes
Project), allows admixture proportions to be accurately estimated
at unprecedented local detail. Consequently, researchers are able
to distinguish between closely related individuals of variable
with varying ancestry and to determine the ancestry of genomic
segments at a fine scale across an individual’s genome. Although
recent technologies make it possible to sequence and generate
millions of high-density variants to identify ancestry-specific
markers, well-characterized and standardized phenotyping still
lags behind.

Until now, AM approaches for asthma have focused on
single-locus ancestry effects, whereas comprehensive analyses
of haplotype–ancestry blocks from multiple loci or ancestry–
environment interactive effects in the context of disease genetics
have not yet been incorporated. Studies focusing on accurate and
stringent phenotyping and genotyping at multilocus ancestry
markers—including other types of variants (e.g., copy-number
variants, insertions, deletions, other structural variants,

regulatory variants) and omics data (e.g., DNA methylation,
metabolome)—and that take into account potential population
stratification due to intrinsic and extrinsic environmental
stimuli will facilitate ancestry-based asthma gene mapping.
Taken together, investigating the genetic architecture of asthma
in diverse ancestral and admixed populations will help to
understand its etiology and perhaps shed light on the disparities
seen in childhood asthma risk between races.
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