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The development of science is accompanied by a number of seminal inventions that contributed
significantly to make science what it is today. In biology and the biomedical sciences, the
introduction of the light microscope in the seventeenth century by Antony van Leeuwenhoek and
others can certainly seen as such a contribution because it literally opened a door to a new universe
that cannot be seen by the naked eye, the molecular world of biology (Wollman et al., 2015). Within
100 years after its introduction, new phenomena in biology and medicine have been discovered,
e.g., different types of cells such as red blood cells or the existence of single-cell organisms like
bacteria. Furthermore, performing tissue analysis enabled histopathology and new concepts of
diseases based on cells rather than whole organs.

Extending the principle idea of the microscope, a variety of imaging technologies have
been introduced since then allowing to visualize for instance, the 3D-structure of a protein
(crystallography), broken bones (x-ray), the structure of atoms (electron microscope), or the
neuronal activity of the brain (MRI). Despite the technical differences between all of these different
imaging technologies they share the common principle idea to enhance the capabilities of our eyes
by making them more sensitive to the scale of the microscopic and atomic world. Hence, this
allows it for everyone to easily grasp the capabilities of any of the above imaging methods and
to understand the resulting visualizations as a direct reflection of reality.

A recent publication by Cohen (2004) attracted wide attention, because the author put the
provocative argument forward that mathematics is biology’s next microscope. In our paper, we
provide a succinct example for this. In our opinion biological networks are a prime example for a
mathematical approach that has indeed much in common with a microscope, but differs in one
important point making them even more potent for biology and medicine. Namely, biological
networks are mathematical models, as we will argue below.

The history of networks, or graphs in general, started at about the same time as that of the
microscope with Euler studying the Königsberger bridges problem (Seven Bridges of Königsberg;
Euler, 1736) while the term “graph” was coined by König much later in the 1930s (König, 1936).
The first wave of general interest outside mathematics was sparked by the introduction of random
networks in the 1950s (Solomonoff and Rapoport, 1951; Erdös and Rényi, 1959) followed by the
second wave in the mid 1990s discovering that many different types of “real” networks have
structural properties quite different from random, which can be better described by scale-free and
small-world networks (Watts and Strogatz, 1998; Barabási and Albert, 1999). One highlight for the
application of random networks in biology can be found in the seminal work of Kauffman (1969)
introducing models for gene regulations, whereas scale-free and small-world networks helped
shaping the emergence of systems biology, network biology, and network medicine (Barabási et al.,
2011). Fueled by big data from genome-scale screening experiments in combination with powerful
statistical inference methods this enabled finally the emergence of gene regulatory networks for
mammalian organisms including Human (Basso et al., 2005; Emmert-Streib et al., 2014). Note
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that graph-theoretical methods such as graph comparison to
analyze biological networks have been discussed in Emmert-
Streib and Dehmer (2011).

A similarity between microscopes and networks is that both
allow the visualization of an underlying phenomenon so it can
be explored by means of the eyes. However, a fundamental
difference is that microscopes visualize geometric objects whereas
networks show topological objects, see Figure 1. The difference is
that neither the nodes/vertices of a graph nor their edges/links are
associated with 2- or 3-dimensional coordinates that specify their
Euclidean position, e.g., on a canvas or screen uniquely, but their
positions are not defined by the definition of the graph at all. In
other words, a graph is arbitrarily deformable with respect to the
positions of its constituting components.

The implications that result from this fundamental difference
are enormous and we want to highlight just three examples.
First, networks are not merely a magnification of a microscopic
world in a different scale, like a model car. Instead, networks are
mathematical models that cannot be observed with a microscope
at all, even with an hypothetically large magnification. For
instance, a transcriptional regulatory network (TRN) is a directed
network that represents the regulations of transcription factors
on the transcription of genes on a genomic-scale. While it is
true that one specific transcription factor binds at a particular

FIGURE 1 | (A) Application of an imaging technique results in a re-scaled image of the underlying biological sample. (B) Application of an inference method results in

a biological network either from one or several different data sets. A subsequent analysis of the network provides then biological information about the used data sets

coming from cell lines, model organisms, or patients.

time and space to the promotor region of a gene to initiate
its transcription, not all transcription regulation events happen
at this particular time or space. Also, no matter how long you
observe such events, they never happen all at once. As such the
TRN does not represent what can be observed but it corresponds
to averaged observations over time and space making it a
mathematical model of transcription regulation. Second, since
all types of biological networks are models, which are per see
abstract, one needs actually to derive the information captured
in them by application of abstract (mathematical/statistical)
methods. Examples for such an information extraction analysis
step are the identification of modules/pathways, identification
of bottleneck genes or the detection of evolutionary conserved
motifs (Milo et al., 2002; Yu et al., 2007). Third, considering
networks as data structures (Emmert-Streib and Dehmer, 2011)
allows a convenient integration of high-throughput data from
different experiments, e.g., by the application of Bayesian
methods. This also allows the integration across heterogeneous
data types, e.g., from gene expression and proteomics, resulting
in hierarchical, multi-scale models of molecular interactions.

We think that the long standing visualization tradition in
biology and medicine by means of microscopes causes also one
of the biggest misconceptions of biological networks. Namely,
that their purpose is their visualization to “see” what information
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the networks contain. However, the fact that one can visualize
biological networks does not establish this as their main purpose.
Instead, the main purpose of any mathematical model is to be
used for extracting information from it, and a visualization is just
one side of this, e.g., by enabling an exploratory analysis (Tukey,
1977).

We are of the opinion that, so far, biological networks
are not utilized up to their full potential and there are at
least three reasons for this. First, when biological networks are
inferred from data it is not clear where to deposit them so they
can be re-used by other groups. In contrast, when generating
gene expression or next-generation sequencing data there are
a number of well known databases that are open to anyone to
deposit the data, e.g., GEO or Ensembl. These databases enforce
also the documentation of the data in a standardized way that
ensures an easy re-use of the data with a minimal (ideally no)
interaction with the data generating groups. At the moment, it
is unclear where to store inferred biological networks, in what
format and what additional information needs to be provided
because, presently, there are no official standards. However, the R
packages igraph and graph (Csardi and Nepusz, 2006; Gentleman
et al., 2010) should be notably mentioned for providing low level
graph operations. In addition, depositing networks into databases
would be also an important step toward reproducible results in
this area.

Second, due to the lack of databases from which biological
networks can be acquired, necessarily, an analysis starts with
the inference of the networks. Unfortunately, the application
of causal inference algorithms to experimental or observational
data (Emmert-Streib et al., 2012) is far from being trivial leading
frequently to low quality networks, even when starting with high
quality data. This makes the resulting downstream analysis at
least problematic or even controversial. Due to the intricacy of
this analysis step, we suggest a collaborative approach by teaming
up with a computational biology or biostatistics group that is
specialized in such an analysis in order to ensure the highest

quality of the inferred networks and all derived subsequent
results.

As a third issue, we think that complementing biological
networks with additional information, e.g., from associations
between genes and disorders (OMIM) or drug targets
(Drugbank) would be very beneficial for studying problems
beyond biology, e.g., in translations medicine (Dudley and
Karczewski, 2013). Notable example studies can be found in
Ideker and Sharan (2008); Kotlyar et al. (2012). This connection
would allow to bring a systems approach down to the patient
side, e.g., for investigating diagnostic or prognostic questions.
Furthermore, in this way, naturally, a door to pharmacogenomics
is opened placing the drug targets into theirmolecular interaction
networks. In this way, new insights into the side effects of drugs
may be gained.

Returning back to our initial analogy, biological network
research is surely still at the stage of the early microscope and
it maybe too early to state without uncertainty that biological
networks will indeed acquire the status of a microscope.
However, implementing some of the above measures will quickly
allow biological networks to further blossom in biological,

medical, and pharmacogenomic research to drive these fields to a
level unachievable without the usage of biological networks.
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