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Phenotypic variance explained by
local ancestry in admixed African
Americans
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Adebowale Adeyemo and Charles N. Rotimi *

Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD, USA

We surveyed 26 quantitative traits and disease outcomes to understand the proportion
of phenotypic variance explained by local ancestry in admixed African Americans. After
inferring local ancestry as the number of African-ancestry chromosomes at hundreds of
thousands of genotyped loci across all autosomes, we used a linear mixed effects model
to estimate the variance explained by local ancestry in two large independent samples of
unrelated African Americans. We found that local ancestry at major and polygenic effect
genes can explain up to 20 and 8% of phenotypic variance, respectively. These findings
provide evidence that most but not all additive genetic variance is explained by genetic
markers undifferentiated by ancestry. These results also inform the proportion of health
disparities due to genetic risk factors and the magnitude of error in association studies
not controlling for local ancestry.
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INTRODUCTION

Two statistical techniques to map disease risk variants are widely used with genome-wide genetic
data, association testing and admixture mapping. Genetic association refers to a correlation
of phenotype and genotype. In association studies, population structure can be a confounder,
leading to both false positive and false negative associations. Population structure is typically
described by two models, population stratification and admixture. Population stratification refers
to systematic differences in allele frequencies between subgroups of the sample, also called
strata. Each individual belongs to one stratum. Methods to identify and control for population
stratification include genomic control (Devlin and Roeder, 1999), structured association testing
(Pritchard et al., 2000), principal components analysis (Price et al., 2006), and linear mixed models
(Eu-Ahsunthornwattana et al., 2014).

Linear mixed models account for relatedness by making use of pairwise genetic similarity. The
kinship coefficient is a measure of the expected genetic similarity between two individuals, usually
defined as the expected probability that two alleles, one sampled at random from each individual,
are identical by descent. The realized genetic similarity between a pair of individuals varies because
of segregation and also varies by locus (Hayes et al., 2009). The genetic similarity matrix can be
estimated from a genome-wide sample of single nucleotide polymorphisms (SNPs) and can be used
to estimate the proportion of phenotypic variance explained by additive genetic variance (Yang
et al., 2011a).

Admixture refers to mating between two or more previously isolated populations. An admixed
individual’s genome is a mosaic of chromosomal segments with ancestry variable by locus. The
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ancestral population of origin at each locus for each admixed
individual may be probabilistically identifiable. Characterization
of ancestry for an admixed individual involves ancestral
proportions measured as genome-wide averages, known as global
ancestry, and ancestral states inferred for each individual at
each locus, known as local ancestry (Padhukasahasram, 2014).
Admixture mapping is designed specifically to test the correlation
of phenotype and local ancestry (Winkler et al., 2010).

When working with genotype data, controlling for effects
of global ancestry can be achieved by including individual
admixture proportions. However, control of global ancestry
does not control local ancestry, nor does control of local
ancestry control global ancestry (Qin et al., 2010; Shriner et al.,
2011a). Consequently, in admixed individuals, estimates of the
proportion of phenotypic variance explained by genotype are
confounded by local ancestry.

The ancestral similarity matrix is a construct for use with
samples of individuals from admixed populations, such as
African Americans (Zaitlen et al., 2014). The ancestral similarity
matrix can be estimated from local ancestry inferred from a
genome-wide sample of SNPs and can be used to estimate the
proportion of phenotypic variance explained by additive genetic
variance (Zaitlen et al.,, 2014). Here, we extend this approach
to investigate the proportion of phenotypic variance explained
by local ancestry in two epidemiological studies of admixed
African Americans. We show that the proportion of phenotypic
variance explained by local ancestry can be interpreted in several
ways: (1) it provides an upper bound on how much phenotypic
variance is accessible to admixture mapping, (2) it quantifies the
magnitude of confounding in association studies of genotype
by local ancestry remaining even after adjustment for global
ancestry, and (3) it informs health disparities research by directly
estimating ancestry effects on outcomes.

MATERIALS AND METHODS

Study Descriptions

The Howard University Family Study (HUFS) is a population-
based observational study of African Americans from
Washington, D.C. Ethical approval was obtained from the
Howard University Institutional Review Board. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. Data are available upon collaboration with Dr.
Charles N. Rotimi. HUFS comprised 1976 individuals, 1055
of whom were unrelated (Adeyemo et al., 2009). Genotyping
was performed using the Affymetrix Genome-Wide Human
SNP Array 6.0, with quality control as described previously
(Adeyemo et al., 2009; Shriner et al., 2009). Also as described
previously (Shriner et al., 2012), local ancestry estimates (0, 1, or
2 chromosomes of African ancestry) were obtained for 797, 831
autosomal SNPs using LAMPANC version 2.3 (Sankararaman
et al., 2008) and HapMap Phase II+III CEU and YRI reference
allele frequencies (http://hapmap.ncbi.nlm.nih.gov/downloads/
frequencies/2010-08_phaselI+III/). We estimated the effective
number of tests in admixture mapping using autocorrelation
of local ancestry to be 373.1 (Shriner et al., 2011b), yielding a

partial Bonferroni-corrected genome-wide significance level
0.05

o = 37 = 1.34 x 10~*. Principal components analysis of the
genotype data revealed one significant principal component,
which represented two-way admixture (Shriner, 2011). All
quantitative phenotypes were Box-Cox-transformed to reduce
non-normality and winsorized at +3 standard deviations to
reduce kurtosis.

The Atherosclerosis Risk in Communities Study (ARIC) is a
prospective study of atherosclerosis and cardiovascular disease.
We obtained approval for data access from dbGaP (Accession
phs000280.v2.p1). We retrieved data from the GENEVA sub-
study (phs000090.v2.p1), including phenotype data (pht000114)
and genotype data (phg000035). ARIC included 2,600 unrelated
African Americans from Forsyth County, North Carolina or
Jackson, Mississippi. Genotyping was performed using the
Affymetrix Genome-Wide Human SNP Array 6.0, with quality
control as described previously (Shriner et al., 2009). Local
ancestry was inferred for 570,862 autosomal SNPs (Baran et al.,
2012). We estimated the effective number of tests in admixture
mapping using autocorrelation of local ancestry to be 226.2,
yielding a partial Bonferroni-corrected genome-wide significance
level @ = % = 2.21 x 10™*. Principal components analysis of
the genotype data revealed one significant principal component,

which reflected two-way admixture (Figure S1).

Estimation of the Ancestral Similarity
Matrix

We estimated the ancestral similarity matrix A for all unrelated
individuals in a study using the local ancestry estimates for all
autosomal loci. Let x;; represent the local ancestry, i.e., 0, 1, or 2
chromosomes of African ancestry for the j* of M individuals at
the i of N loci. For thgjth individual, the genome-wide average
of local ancestry ﬁ > i1 Xij is known as global ancestry or the
individual admixture proportion. For the HUFS data set, the
mean global ancestry was 79.9% =+ 11.6%. Similarly, for the ARIC
data set, the mean global ancestry was 82.2% + 10.3%. At the it
locus, let p; = ﬁ ]-Ail xij. As expected, the trace of ancestry
by locus is nearly constant across the autosomes (Figure S2),
indicating robustness to natural selection acting at specific loci.

We consider three estimators of pairwise ancestral similarity.
First, at a causal locus i, we can estimate pairwise ancestral
similarity between the j and k individuals based on identity
in state:

0.0 if Xij — Xig| = 2
0.5 if Xij — Xjg| = 1
1.0 if |x;; — x| = O.

Aj =

Second, we can estimate pair-wise ancestral similarity for use in
GCTA (Yang et al., 2011a) as

%Zf\f:lw,j#k

Ay — , 2pi(1 = pi) )
jk - iZN xp— (L+2pi)x + 207 P
N &=l Ty TR

For both studies, the number of genotyped SNPs is more than
sufficient to yield 100% coverage of switches in local ancestry
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in African Americans (Shriner et al., 2011a), providing 100%
coverage of chromosomal segments and all genetic variation
therein. Therefore, corrections for linkage disequilibrium used
for genotype data are unnecessary with local ancestry data.

Third, we can estimate pair-wise ancestral similarity as
Aj = % Z?Ll (xlj — 2p,~) (xik — Zp,-). We then estimate the
proportion of phenotypic variance explained by local ancestry
using GEMMA (Zhou and Stephens, 2012). It is important to
note that estimation of similarity in GCTA includes centering by
2p; and scaling by 2p; (1 — p;); this scaling induces an inverse
relationship between p; and effect size (Speed et al,, 2012). In
contrast, our estimation of similarity using GEMMA includes
centering but not scaling, which a priori is more appropriate
given that mean local ancestry estimates do not follow an
exponential distribution as do allele frequencies but are expected
to follow a uniform distribution (Figure S2).

Simulation to Assess Bias

To investigate bias in the random effects models implemented
in GCTA and GEMMA, we simulated phenotype data based on
the white blood cell count data from ARIC. Phenotype data were
simulated as the sum of signal normally distributed with mean
0 and variance 6> = 2p (1 — p) g%, with p equaling the mean
local ancestry at rs2814778 in the ARIC data and 8 equaling the
effect size under the additive model, and random noise normally
distributed with mean 0 and variance 1 — o%. We tested for bias
using the one-sample Wilcoxon signed rank test.

Software
GCTA is available at http://www.complextraitgenomics.com/
software/gcta/. GEMMA is available at http://www.xzlab.org/
software. html.

RESULTS

We first analyzed white blood cell count data from ARIC as a
positive control phenotype, i.e., a phenotype for which the genetic
architecture is known to include a major ancestry effect. Previous
admixture mapping for white blood cell count has revealed
a major effect gene at chromosome 1q23 explaining ~20.4%
of phenotypic variance (Nalls et al., 2008), with association
subsequently mapped to rs2814778 (Reich et al., 2009), a
promoter-null variant for the gene ACKRI (formerly known
as DARC) that causes the Fy-/- phenotype. Note that white
blood cell count is not unique for having a major effect gene
in admixture mapping of African Americans, as rs73885319 in
the gene APOLI defines a major effect for end-stage kidney
disease (Kao et al., 2008; Kopp et al., 2008; Genovese et al., 2010).
White blood cell count was Box-Cox-transformed to reduce non-
normality and winsorized at 43 standard deviations to reduce
kurtosis. We then performed admixture mapping using linear
regression of transformed white blood cell count on local ancestry
with age and global ancestry as continuous covariates and sex
and study center as discrete covariates. Using this fixed effects
model, we estimated that the chromosome 1q23 locus explained
19.3% (p = 2.07 x 107192) of the phenotypic variance of white
blood cell count (Figure 1). We observed a second genome-wide

80

—log1o(p)
60

20
|

Chromosome

FIGURE 1 | Manhattan plot from admixture mapping for white blood
cell count in ARIC. White blood cell count was regressed on local ancestry,
adjusted for age, global ancestry, sex, and center. The red line indicates the
genome-wide significance level.

significant admixture peak (p = 1.43 x 10~*) on chromosome 18
that explained 0.6% of the phenotypic variance (Figure 1). Taken
together, genome-wide significant admixture peaks explained
19.9% of the phenotypic variance of white blood cell count.

To account for the remaining admixture signal that did
not reach genome-wide significance, we adapted a random
effects model for estimating phenotypic variance explained by
common SNPs (Yang et al, 2011a). We performed restricted
maximum likelihood analysis of the adjusted white blood cell
counts, with age and global ancestry as continuous covariates
and sex and study center as discrete covariates. Using GCTA, the
proportion of phenotypic variance explained by local ancestry
was 16.1%, an underestimate compared to 19.9% obtained by
conventional admixture mapping. This result suggests that 19.9%
is an overestimate and/or 16.1% is an underestimate.

To better understand this estimation problem, we first
investigated whether the fixed effects model used in conventional
admixture mapping yielded an overestimate. We simulated a
quantitative trait conditional on the inferred ancestry states at
rs2814778, with a range of additive effect sizes. As theoretically
expected, the fixed effects model was unbiased across the entire
range of effect sizes (Figure 2). Furthermore, we estimated the
conditional power to detect a locus explaining 19.3% of the
phenotypic variance to be >99.99%, indicating that the effect size
is not overestimated due to the winner’s curse. Taken together,
we conclude that the estimate of 19.9% phenotypic variance
explained is not an overestimate.

We next investigated whether the random effects models
suffer from underestimation. It is important to recognize that
underestimation of large effect sizes by random effects models
compared to fixed effects models is theoretically expected because
random effects are assumed to be normally distributed with
finite prior variance whereas fixed effects are assumed to be
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FIGURE 2 | Simulation study of bias in the random effects model. Conditional on local ancestry at rs2814778, we simulated a continuous phenotype with a
known proportion of phenotypic variance explained by a single causal locus and the remainder of the phenotypic variance being random noise. We randomly
generated 100 independent data sets. We then used the fixed effects model (top left), ancestral similarity defined by identity in state (top right), centered and scaled
ancestral similarity as defined by GCTA (bottom left), and centered ancestral similarity as defined by GEMMA (bottom right) to estimate the proportion of phenotypic
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normally distributed with infinite prior variance. Such downward
bias has been noted previously for the large effects of HLA
on autoimmune diseases (Kang et al., 2010). We investigated
this bias in the context of local ancestry analysis by simulating
phenotype data given a range of additive effect sizes and
conditioned on the local ancestry values at rs2814778. Using
simple identity in state, we observed significant underestimation
when the proportion of phenotypic variance explained exceeded
1% (Figure 2). Using the centered and scaled estimator of GCTA,
we observed significant overestimation when the proportion of
phenotypic variance explained was 0% (as expected due to the
lower bound of variance at 0), statistically unbiased estimation
when the proportion of phenotypic variance explained was
between 0 and 5%, and significant underestimation when the
proportion of phenotypic variance explained exceeded 10%
(Figure 2). Thus, for white blood cell count, the random effects-
based estimate from GCTA is systematically biased downward. In
contrast, using the centered but not scaled estimator in GEMMA
yielded unbiased results, except at the boundary of 0% (Figure 2).

We further estimated similarity using the chromosome
and the locus, as would be done in the mapping procedure
called genome partitioning (Yang et al., 2011b). Using the

centered and scaled estimator, downward bias was exacerbated
as similarity was estimated genome-wide down to the causal
locus (Table 1), reflecting the fact that unrelated individuals
are not unrelated at a shared causal locus. Similarly, using
the centered but not scaled estimator, downward bias was also
observed but smaller in magnitude (Table 2). Therefore, genome
partitioning using either definition of similarity is a biased
mapping procedure.

We then surveyed genome-wide variance explained by local
ancestry using both GCTA and GEMMA for 25 phenotypes with
data in both the ARIC and HUEFS data sets: height, weight,
body mass index, waist circumference, hip circumference, and
waist-hip ratio; type 2 diabetes, fasting insulin, and fasting
glucose; hypertension, systolic blood pressure, and diastolic
blood pressure; total cholesterol, high density lipoprotein,
low density lipoprotein, and triglycerides; creatinine and the
estimated glomerular filtration rate; and albumin, calcium, C-
reactive protein, potassium, sodium, total protein, and uric
acid. Using the ARIC data set, we first performed analysis of
the transformed phenotypic data, with age and global ancestry
as continuous covariates and sex and study center as discrete
covariates. The estimates of the proportions of phenotypic
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TABLE 1 | Bias in genome partitioning using GCTA.

Phenotypic Genome Chromosome Locus
variance

explained Bias P-value Bias P-value Bias P-value
0.000 0.002 577 %107 0001 2.85x 107" 0.002 2.49x 10719
0.005 0.001 0.716 0.000 0.938 0.002 0.953

0.010 0.000 0.694 0.000 0.639 0.002 0.712

0.050 —0.001 0.156 —0.004 820x107° —0.028 4.20x 1018
0.100 —0.013 3.07 x 1072 —0.025 1.20x 1077 —0.073 3.96 x 10718
0.150 —~0.024 3.01x10°"7 —0051 396x 108 —0.118 3.96x 10~ '8
0.193 —0.039 4.08x10-18 —0.079 3.96x 10~ —0.158 3.96 x 10~ '8
TABLE 2 | Bias in genome partitioning using GEMMA.

Phenotypic Genome Chromosome Locus
variance

explained Bias P-value Bias P-value Bias P-value
0.000 0.002 3.24x 1079 0001 519x 107" 0002 3.89x 10~2°
0.005 0.001 0.706 0.001 0.551 0.008 2.68 x 107°
0.010 0.002 0.172 0.001 0.756 0.024 2.27 x 10710
0.050 0.001 0.985 0.002 0.391 0.028 1.05x 1077
0.100 —0.001 0.224 0.006 7.82x107° —0.006 6.11 x 1073
0.150 —0.003 0.136 0.008 143 x107° —0.045 7.67 x 10717
0.193 0.001 0.493 0.011 292x10™* —0.071 211 x 10"

variance explained by local ancestry ranged from 0 to 3.8%
(Table 3). Using the HUFS data set, we performed analysis
with age and global ancestry as continuous covariates and sex
as a discrete covariate. The estimates of the proportions of
phenotypic variance explained by local ancestry ranged from
0 to 8.1% (Table3). As expected given the smaller sample
size, the standard errors were approximately twice as big for
HUES as for ARIC (Table 3). Whereas one phenotype (sodium)
yielded a zero estimate of phenotypic variance explained by local
ancestry in ARIC, six phenotypes (C-reactive protein, creatinine,
diastolic blood pressure, potassium, sodium, and triglycerides)
yielded a zero estimate of phenotypic variance explained by local
ancestry in HUFS (Table 3). To confirm these zero estimates,
we performed admixture mapping using linear regression. We
detected genome-wide significant admixture peaks for sodium
(in both ARIC and HUFS) and potassium (Figure S3). Thus,
we recommend performing conventional admixture mapping
based on fixed effects in conjunction with variance components
estimation based on random effects to gain a more complete
understanding of genetic architecture.

DISCUSSION

We surveyed 26 quantitative traits and disease outcomes, mostly
anthropometric and metabolic, to understand the proportion
of phenotypic variance explained by local ancestry in admixed
African Americans. We used an extension of linear mixed models
in which genetic similarity was defined in terms of local ancestry

rather than genotype. In two large independent samples of
unrelated African Americans, we found that local ancestry at
major and polygenic effect genes can explain up to 20 and 8%
of phenotypic variance, respectively.

Theoretically, for a purely polygenic trait in an admixed
population, the proportion of additive genetic variance
explained by local ancestry is determined by the mixture
proportions and the amount of genetic differentiation among
the parental populations (Zaitlen et al., 2014). Given a two-way
admixed population with a mixture proportion 6 and genetic
differentiation between the parental populations Fsr, a fraction
2Fs76 (1 — 0) of the additive genetic variance is variance due to
local ancestry (Zaitlen et al., 2014). To illustrate, in an admixed
African American population with 80% African and 20%
European ancestry, assuming Fsr = 0.058 (The 1000 Genomes
Project Consortium, 2012), this fraction is 1.9%. For traits with
genetic architectures containing large effect genes, this fraction
could be substantially higher, as we demonstrated for white blood
cell count. However, Zaitlen et al. (2014) implicitly assume that
genotype effect sizes are constant across ancestries and that only
differences in allele frequencies contribute to ancestry effects.
Consequently, their estimation of additive genetic variance
requires estimates of genotype effect sizes with confounding by
local (and global) ancestry removed. Also, by ignoring loci at
which genotype effects differ by ancestry, their estimation of
additive genetic variance potentially misestimates heritability.
As a practical note, we have shown that centered but unscaled
ancestral similarity is more appropriate than centered and scaled
ancestral similarity, so that their estimates of variance explained
by local ancestry based on GCTA are likely underestimates.

There are limitations of the random effects approach to
estimating the polygenic variance component. First, we showed
that effect size estimation at large effect genes is systematically
biased downward. One approach to address this limitation is (1)
perform conventional admixture mapping in order to identify
loci with large effects and (2) model these loci using fixed effects
rather than random effects in a mixed effects model (Kang
et al., 2010; Segura et al., 2012). Another approach is to jointly
estimate separate terms for the polygenic component and the
additional effects of loci with larger effects all in one model
(Rakitsch et al., 2013; Zhou et al., 2013; Loh et al., 2015). In either
approach, ancestral similarity should not be standardized by the
empirical variance. Second, we showed that genome partitioning
is biased. This bias occurs because unrelated individuals are
not unrelated at a shared causal locus. Third, sampling error is
ignored in the estimation of the similarity matrix (Yang et al.,
2010). Errors in local ancestry inference could adversely affect
estimation of proportions of phenotypic variance explained by
local ancestry. This type of error has not been found to be
problematic for African Americans, for which local ancestry
inference is highly accurate, but could be a problem for other
admixed populations (Zaitlen et al., 2014). Fourth, similarity is
currently only defined for two-way admixture. The extension of
estimation of the proportion of phenotypic variance explained
by local ancestry in the situation of multi-way admixture is
straightforward in principle. The only procedural difference is to
use an estimator of ancestral similarity that accounts for more
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TABLE 3 | Genome-wide proportion of phenotypic variance explained by local ancestry.

Phenotype ARIC (GCTA) ARIC (GEMMA) HUFS (GCTA) HUFS (GEMMA)
Variance SE Variance SE Variance SE Variance SE
Height 0.0306 0.0128 0.0265 0.0119 0.0540 0.0303 0.0532 0.0326
Weight 0.0165 0.0113 0.0143 0.0110 0.0157 0.0249 0.0074 0.0238
Body mass index 0.0283 0.0127 0.0256 0.0123 0.0220 0.0256 0.0148 0.0247
Waist circumference 0.0114 0.0106 0.0116 0.0112 0.0370 0.0281 0.0249 0.0262
Hip circumference 0.0263 0.0125 0.0221 0.0118 0.0080 0.0231 0.0046 0.0229
Waist-hip ratio 0.0037 0.0097 0.0023 0.0103 0.0593 0.0313 0.0672 0.0362
Systolic blood pressure 0.0035 0.0089 0.0041 0.0092 0.0038 0.0229 0.0032 0.0234
Diastolic blood pressure 0.0081 0.0098 0.0082 0.0100 0.0000 0.0233 0.0000 0.0191
Hypertension (observed scale) 0.0203 0.0119 0.0207 0.0126 0.0084 0.0230 0.0127 0.0250
Hypertension (liability scale) 0.0322 0.0188 NA NA 0.0131 0.0359 NA NA
Fasting glucose 0.0283 0.0131 0.0212 0.0117 0.0293 0.0279 0.0250 0.0290
Fasting insulin 0.0049 0.0092 0.0039 0.0087 0.0057 0.0231 0.0096 0.0247
Type 2 diabetes (observed scale) 0.0173 0.0115 0.0146 0.0112 0.0324 0.0277 0.0273 0.0280
Type 2 diabetes (liability scale) 0.0247 0.0164 NA NA 0.0809 0.0692 NA NA
Triglycerides 0.0140 0.0112 0.0117 0.0111 0.0000 0.0254 0.0000 0.0411
High density lipoprotein 0.0292 0.0130 0.0295 0.0133 0.0115 0.0226 0.0171 0.0236
Low density lipoprotein 0.0380 0.0149 0.0328 0.0150 0.0073 0.0230 0.0073 0.0233
Total cholesterol 0.0249 0.0128 0.0236 0.0133 0.0347 0.0265 0.0400 0.0286
Sodium 0.0000 0.0097 0.0000 0.0105 0.0000 0.0215 0.0000 0.0219
Potassium 0.0197 0.0120 0.0156 0.0113 0.0000 0.0234 0.0000 0.0246
Calcium 0.0096 0.0098 0.0069 0.0087 0.0000 0.0231 0.0034 0.0253
Uric Acid 0.0059 0.0095 0.0056 0.0095 0.0000 0.0211 0.0001 0.0203
C-reactive protein 0.0091 0.0130 0.0096 0.0126 0.0000 0.0318 0.0000 0.0387
Albumin 0.0063 0.0098 0.0062 0.0102 0.0028 0.0223 0.0050 0.0231
Total protein 0.0180 0.0112 0.0154 0.0106 0.0604 0.0367 0.0698 0.0405
Creatinine 0.0161 0.0105 0.0159 0.0100 0.0000 0.0218 0.0000 0.0224
Estimated glomerular filtration rate 0.0181 0.0109 0.0173 0.0103 0.0012 0.0217 0.0044 0.0229

For hypertension and type 2 diabetes, we report phenotypic variance explained on the observed binary scale and on the unobserved liability scale, assuming a prevalence of hypertension
of 0.44 (Centers for Disease Control and Prevention, 2014) and a prevalence of type 2 diabetes of 0.187 (Centers for Disease Control and Prevention, 2011).

than two ancestries. By analogy with multi-allelic markers such as
microsatellites, there are several distance measures that could be
considered. For example, Smouse and Peakall (1999) suggested
that homozygotes in a diploid system of three codominant alleles
could be represented by the vertices of an equilateral triangle,
with the heterozygotes positioned midway between the respective
homozygotes (Table 4). Kosman and Leonard (2005) criticized
this geometric model on the grounds that there is no genetic
reason why homozygotes AA and BB should be more distant than
homozygote AA and heterozygote BC. Instead, they suggested
defining 100% identity in state if both alleles are shared, 50%
identity in state if one allele is shared, and 0% identity in state if
no alleles are shared (Table 4). Another consideration is whether
distances should be weighted, perhaps by the genetic distance
between ancestries (Morris, 2011).

Our results can be interpreted from several perspectives. One,
the proportion of phenotypic variance explained by local ancestry
is a direct measure of the proportion of phenotypic variance
amenable to admixture mapping. A major implication of our
results is that admixture mapping can benefit from a linear mixed
effects model including the polygenic effect of local ancestry.

TABLE 4 | Genetic distance assuming diploidy and three codominant
alleles.*

AA AB AC BB BC cc
AA 0 1 1 2 2 2
AB 1 0 1 1 1 2
AC 1 1 0 2 1 1
BB 2 1 V3 0 1 2
BC V3 1 1 1 0 1
cc 2 V3 1 2 1 0

*The Euclidean distance-based model of Smouse and Peakall (1999) is below the
diagonal. The Hamming distance-based model of Kosman and Leonard (2005) is above
the diagonal. In both models, AB, AC, and BC are assumed to be identical to BA, CA,
and CB, respectively.

Two, it is generally unknown how much health disparities reflect
genetic vs. socio-economic or environmental factors. Our results
inform this issue by providing estimates of the fraction of genetic
factors that contribute to ancestry-level differences for multiple
phenotypes. For example, given that the expected fraction of
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cases in a population-based study is equal to prevalence, our
estimates of the phenotypic variance explained by local ancestry
for hypertension and type 2 diabetes directly assess ancestry
effects on prevalence, thereby directly addressing a major
measure of health disparities. How much these ancestry-level
differences ultimately contribute to health disparities remains
unknown because the corresponding proportion of all non-
genetic sources of phenotypic variance that affect differences
in prevalence or other health disparities is unknown. Three,
our results illuminate the magnitude of error resulting from
association studies not controlling for local ancestry, while also
revealing the extent to which phenotype-associated SNPs have
cosmopolitan vs. population-specific effects.
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