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Genome-wide assays and screens typically result in large lists of genes or proteins.
Enrichments of functional or other biological properties within such lists can provide
valuable insights and testable hypotheses. To systematically detect these enrichments
can be challenging and time-consuming, because relevant data to compare against
query gene lists are spread over many different sources. We have developed AnGeLi
(Analysis of Gene Lists), an intuitive, integrated web-tool for comprehensive and
customized interrogation of gene lists from the fission yeast, Schizosaccharomyces
pombe. AnGeLi searches for significant enrichments among multiple qualitative and
quantitative information sources, including gene and phenotype ontologies, genetic and
protein interactions, numerous features of genes, transcripts, translation, and proteins
such as copy numbers, chromosomal positions, genetic diversity, RNA polymerase II
and ribosome occupancy, localization, conservation, half-lives, domains, and molecular
weight among others, as well as diverse sets of genes that are co-regulated or lead
to the same phenotypes when mutated. AnGeLi uses robust statistics which can be
tailored to specific needs. It also provides the option to upload user-defined gene sets
to compare against the query list. Through an integrated data submission form, AnGeLi
encourages the community to contribute additional curated gene lists to further increase
the usefulness of this resource and to get the most from the ever increasing large-scale
experiments. AnGeLi offers a rigorous yet flexible statistical analysis platform for rich
insights into functional enrichments and biological context for query gene lists, thus
providing a powerful exploratory tool through which S. pombe researchers can uncover
fresh perspectives and unexpected connections from genomic data. AnGeLi is freely
available at: www.bahlerlab.info/AnGeLi

Keywords: gene cluster, ontology, S. pombe, PomBase, data mining, database, large-scale assay, genetic screen

Abbreviations: AnGeLi, Analysis of Gene Lists; BioGRID, Biological General Repository for Interaction Datasets; EMBOSS,
European Molecular Biology Open Software Suite; FDR, False Discovery Rate; FYPO, Fission Yeast Phenotype Ontology;
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INTRODUCTION

Large-scale and genome-wide studies such as the profiling of
gene expression, DNA-binding sites, mutant phenotypes, or
genetic interactions, typically lead to sizeable lists of candidate
genes or proteins. Such gene lists often contain valuable, hidden
biological information which can enlighten the processes studied,
provide useful context, and generate testable hypotheses for
targeted follow-up experiments. While the generation of gene
lists entails established experimental and analytical procedures,
the extraction of any biologically meaningful information from
such lists can be a serious challenge. Evidently, prior knowledge is
a major factor affecting interpretation of any gene list, regardless
of the underlying biological or experimental context by which
it was generated. Gene list interpretation therefore relies on the
availability of comprehensive reference information on genes and
proteins against which the list can be compared to uncover any
statistically significant common features among its members.

To get the most from gene lists, such reference information
may include validated or predicted gene/protein functions,
detailed data on gene architecture and conservation, regulatory
factors, expression levels and context, cellular localization,
pathway information, physical/genetic interactions, and
phenotypic data, to name just a few. Such databases of integrated
gene and protein information are partially provided through
InterMine for some organisms but not for fission yeast
(Kalderimis et al., 2014). Hence, gene list interpretation relies
on incomplete functional annotation databases, combined
with statistical tools, which typically interrogate one or more
properties in search for any significant enrichment. GO
enrichment tools are popular (Ashburner et al., 2000; Boyle et al.,
2004; Carbon et al., 2009), which look for over-representation
of associated GO terms within gene lists. To meet the growing
needs of biologists in the omics era, more specialized gene
identifier-based search engines have been developed for various
model organisms, including free or commercial resources such
as functional annotation tools (Huang da et al., 2009), pathway
mapping algorithms (Kanehisa and Goto, 2000; Nikolsky
and Bryant, 2009; Kelder et al., 2012; Mi et al., 2013; Croft
et al., 2014), or protein interaction search tools (Stark et al.,
2006).

The emergence of central, regularly maintained and updated
databases that store genomic variation, ontology, pathway,
interaction or phenotypic data has attracted software developers
to design ‘all-in-one’ search engines that enable systematic
searches against published, pre-defined gene sets (Subramanian
et al., 2005) and/or multiple functional annotation resources
(Zhang et al., 2005; Araki et al., 2012). Such gene set enrichment
tools have proven valuable for downstream analysis of large-
scale experiments by providing functional insights for query gene
lists of interest. Given the rapid growth of relevant information,
integration of developer-curated and user-defined gene sets into
a single resource offers a flexible solution. GSEA (Subramanian
et al., 2005), for example, a standalone or web-based application
for selected vertebrates, allows the user to search a query gene list
against thousands of curated gene sets but also against additional
user-defined lists.

The fission yeast Schizosaccharomyces pombe is an important
model organism that shares many critical biological processes
with multicellular eukaryotes (Wood et al., 2002). Over the years,
the fission yeast community has produced many genomic data
sets and resources, including a gene deletion collection (Kim
et al., 2010; Chen et al., 2015) and protein localization data
(Matsuyama et al., 2006). The curators at PomBase [the S. pombe
model organism database (Wood et al., 2012; McDowall et al.,
2015)], are assembling rich information on gene characteristics
and functions and on mutant phenotypes by applying the FYPO
(Harris et al., 2013). These efforts are supported by volunteer
expert curators among the fission yeast community, using the
Canto online tool (Rutherford et al., 2014).

We have exploited the rich published and annotated
resources to build a generic gene list enrichment tool, AnGeLi,
that can satisfy the growing need of the community for a
comprehensive, one-stop analysis of gene lists. AnGeLi is an
intuitive web-based tool which offers customized analyses of
gene lists, by systematically screening a multitude of data
sources, including published and user-defined gene sets to
highlight statistically significant enrichments. Moreover, AnGeLi
encourages a community-wide effort to further increase its
usefulness by contributing additional published or otherwise
annotated gene lists via its data submission feature. The more
data are included in AnGeLi the more powerful it will become
in uncovering functional insights, context and unexpected
connections, and thus fully unleashing the information hidden
in genomic data that currently remain only partially explored.

OVERVIEW OF AnGeLi Tool

Database, Data Types, and Gene Set
Resources
AnGeLi is a knowledge-driven, web-based application
implemented in Perl. It takes as an input a list of systematic gene
identifiers and searches for any enrichment of common features
using a diverse collection of annotated resources, published
gene lists, or curated gene sets or features (henceforth AnGeLi’s
database), as well as user-defined gene sets (optional). AnGeLi’s
database includes three discrete types of data: categorical, metric,
and pairwise (Table 1). Categorical data refer to gene sets
representing membership in specific biological categories, where
gene membership of a category is stored in binary format. These
gene sets are derived from different sources such as specific GO
categories, phenotypes, or published gene lists, as examples.
A query gene can either belong to a specific gene set (gene value
is 1) or not (gene value is 0). Metric data describe a quantifiable,
continuous characteristic of a gene or protein such as intron
number, distance from centromere or transcript copy number,
to name a few examples. Both categorical and metric data are
organized in a tabular format prior to data compilation (Table 1).
Pairwise data represent pair relationships such as genetic or
protein–protein interactions.

AnGeLi’s database currently holds 9632 features (9579 binary,
49 metric, and 4 pairwise features; Supplementary Table S1).
These features are sourced directly from PomBase, or calculated
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TABLE 1 | Organization of data types (binary and metric) and grouping into themes.

Feature ID GO:0007126 FYPO:0002061 mRNA-cpc pI . . .

Feature name Meiotic nuclear division Inviable vegetative cell population mRNA copies per-cell Isoelectric point . . .

Feature group GO Biological Process Phenotypes (FYPO) Transcript features Protein features . . .

Data type Categorical/Binary Categorical/Binary Metric Metric . . .

Source GO Biological Process Phenotypes (FYPO) Marguerat et al., 2012 PomBase . . .

Gene 1 0 1 0.1 9.9 . . .

Gene 2 0 0 0.041 5.4 . . .

Gene 3 0 1 0.47 6.7 . . .

Gene 4 1 0 0.34 7.7 . . .

. . . . . . . . . . . . . . . . . .

GO, Gene Ontology; FYPO, Fission Yeast Phenotype Ontology; cpc, copies per cell; pI, isoelectric point.

using sequence or annotation data (55 features). Other data
sources include GO categories (5603 features: 3529 Biological
Process; 1277 Molecular Function; 797 Cellular Component;
Wood et al., 2012), phenotypes (FYPO; 2682 features; Harris
et al., 2013), Pfam domains (1130 features; Finn et al., 2014),
and BioGrid interactions (four features; Breitkreutz et al.,
2008). To augment AnGeLi’s database beyond the annotated
resources, we have initially selected 23 genomic papers which
report fundamental expression or functional profiling data
(158 features); many more such data can be added in the
future using a straightforward submission form (see below).
Among the categorical data, we included gene lists from defined
‘housekeeping’ genes (Pancaldi et al., 2010), stress-response
genes (Chen et al., 2003, 2008; Tanay et al., 2005), meiotic
differentiation genes (Mata et al., 2002, 2007; Tanay et al., 2005;
Mata and Bähler, 2006), and cell cycle-regulated genes (Rustici
et al., 2004; Marguerat et al., 2006), genes regulated in chromatin
mutants (De Groot et al., 2003; Tanny et al., 2007) or in response
to caffeine and rapamycin (Rallis et al., 2013), and gene sets that
highlight differences between haploid and diploid transcriptomes
(Bitton et al., 2011).We also incorporated key regulatorymodules
(Tanay et al., 2005), transcription factor targets (Rustici et al.,
2004; Tanay et al., 2005), protein localization data (Matsuyama
et al., 2006), genes identified in genome-wide splicing assays
(Bitton et al., 2014, 2015), targets of RNA-binding proteins
(Lemieux et al., 2011; Hasan et al., 2014), GPI-anchored cell-
surface proteins (De Groot et al., 2003; Tanny et al., 2007), as
well as genes involved in TORC1 function, lifespan and growth
(Rallis et al., 2014; Sideri et al., 2014). Among the metric data,
we incorporated genetic diversity among wild S. pombe strains
(Jeffares et al., 2015), transcript half-life data (Amorim et al.,
2010; Hasan et al., 2014), RNA polymerase II occupancy (Lackner
et al., 2007), cellular transcript and protein copy numbers
(Marguerat et al., 2012), protein molecular weight, amino acid
composition, ribosome occupancy, and density (Lackner et al.,
2007), AUG translation initiation index (Miyasaka, 2002; Lackner
et al., 2007) poly-A tail lengths (Beilharz and Preiss, 2007;
Lackner et al., 2007), protein half-lives (Christiano et al., 2014),
as well as protein fold-index (Prilusky et al., 2005), which
predicts intrinsically unfolded proteins (Gsponer et al., 2008).
AnGeLi also stores interaction data from BioGrid (Breitkreutz
et al., 2008), including protein–protein and genetic interactions
identified in fission yeast, and inferred interactions based on

orthologs in budding yeast (Wood, 2006). AnGeLi may thus
facilitate the discovery of protein complexes, network ‘hubs’, or
enrichment of specific pathways among the query genes.

AnGeLi’s output is grouped in themes capturing different
biological aspects: GO categories, Gene Expression (differentially
regulated genes under different conditions), Gene Features (e.g.,
intron number, chromosomal position, and genetic diversity),
Genetic and Physical Interactions (based on BioGRID),
Phenotypes (based on FYPO), Phenotypic Profiles (genes
identified in mutant screens), Protein Domains (based on Pfam),
Protein Features (e.g., amino-acid composition, conservation,
and cellular copy numbers), Protein Localizations (based on
ORFeome), and Transcript Features (e.g., RNA length and type,
ribosome occupancy, and cellular copy numbers). This grouping
into themes facilitates an overview of the results but is not used
for any higher-level analysis.

Statistical Framework for Gene
Enrichment Analyses
To determinewhether a feature is significantly enriched or under-
enriched in the query gene list, AnGeLi automatically selects from
three statistical tests depending on the data type. Categorical
data are countable (i.e., number of overlapping genes between
the query list A and categorical set C), and AnGeLi applies a
widely used test for gene set enrichment, the 2-tailed Fisher’s
exact test (Rivals et al., 2007). AnGeLi thus determines whether
the proportion of genes from set C found in the query list A is
significantly higher or lower than the proportion of genes from
set C in the entire background gene population. The statistics
therefore is affected by the background gene population, which
can be adjusted to best match the analysis (see below). Metric
data are continuous (e.g., transcript length, copy numbers), and
AnGeLi performs a 2-sided Wilcoxon rank-sum test to assess
whether the values of metric feature M associated with the genes
in query list A are significantly higher or lower than the values of
feature M associated with the genes not present in list A. Pairwise
data are assessed by a permutation test (Good, 2000) to reveal any
enrichments of protein–protein or genetic interactions within the
query list. Briefly, a random set of genes (of same gene number
as list A) is iteratively drawn from a pool of genes not found in
list A and evaluated for protein–protein or genetic interactions in
pairwise gene set P; the number of permutations is determined
by the user (default is 1000), while the p-value is derived from
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the number of times the random set achieved a greater sum of
interactions in set P than the sum of interactions in query list A.
Owing to the large increase in analysis time, AnGeLi does not
analyze pairwise as a default.

Under default settings, the query list is tested against 7554
features simultaneously (7505 binary and 49 metric features,
excluding user-defined gene sets); thus, the probability of
false positive enrichments is quite high. To account for this
multiple testing problem, AnGeLi provides three approaches
for P-value correction. The Bonferroni method (Shaffer, 1995)
is conservative and simply multiplies the original p-value by
the total number of tests performed to derive the corrected
p-value. The Holm (1979) method of correction reduces false
negatives, but is still conservative; in brief, the p-values are
ranked in an ascending order, and the first p-value is multiplied
by the total number of tests, while each sequential p-value
is multiplied by a decreasing number of the remaining tests
(i.e., p-value1 x ‘t’ [total number of tests], p-value2 x [‘t’ – 1],
etc.). The FDR (Benjamini and Hochberg, 1995) is used as the
default option by AnGeLi. FDR is less conservative because it
controls the number of false positives in the reported list of
significant features. Again, the p-values are ranked in ascending
order and the corrected p-value is equal to the rank divided
by the total number of tests performed, multiplied by the
accepted false positive threshold chosen by the user. At an
FDR of 0.01, we expect 1% false positives among the reported
significant features. Note that for the pairwise data type, the
p-value is highly dependent on the number of permutations
set by the user, which in turn dictates the analysis time (see
Materials and Methods). When the number of permutations is
relatively low (e.g., 1000), even the lowest p-value will not be
sufficient to pass multiple testing corrections; AnGeLi therefore
provides the option to increase the number of permutations
at the expense of analysis time. Furthermore, AnGeLi permits
deselecting categories that are not of interest, which in turn
will increase the statistical power and enhance identification
of subtle enrichments, and is therefore recommended if
applicable.

AnGeLi provides the ability to choose a background gene
population as a reference for the statistical analyses based on
the query gene list. This option allows tailoring of the analysis
to the context of the gene list of interest, which can greatly
increase the accuracy and sensitivity of the analysis. For example,
a query list from an experiment which has only considered
protein-coding genes should be analyzed with the protein-coding
gene background. As another example, query genes derived from
phenotypic screens with the deletion mutant library will all
be non-essential, which would skew the statistics if all genes
were used as background. AnGeLi offers six pre-set background
options, covering all common scenarios: protein-coding genes
(default), all annotated genes, non-coding RNA genes, genes
with associated GO terms, genes with associated phenotypes,
and non-essential genes. In addition, users can provide their
own bespoke background gene list to tailor the analysis to
their particular requirements. An overview of AnGeLi’s steps for
data entry, statistical tests and data processing is presented in
Figure 1.

Comparison to Other Tools and
Applications
The breath of AnGeLi offers several advantages over existing
tools that are based on only one or two data types such as GO
categories or pathways. We compared AnGeLi’s performance
to two other tools that support GO enrichment analysis for
fission yeast, GeneCodis (Carmona-Saez et al., 2007) and GO
Term Finder (Boyle et al., 2004). We assembled a list of 100
protein-coding genes containing 50 cell cycle-regulated genes
(Rustici et al., 2004) and 50 random genes (Supplementary Table
S2). This list was analyzed with all three tools using FDR as
the multiple-testing correction method, with a cutoff of <0.01,
using all genes with GO terms as background and Biological
Process as category. Surprisingly, GeneCodis did not identify any
enrichment in the list, even after disabling the multiple-testing
correction option. The GeneCodis database for fission yeast was
last updated in December 2011, which could partially explain the
lack of any enrichment. On the other hand, the results obtained
from AnGeLi and GO Term Finder corresponded very well, with
only minor differences (Supplementary Tables S3 and S4): of the
17 enrichments found by AnGeLi, 15 were also found by GO
Term Finder which reported numerous additional enrichments
with lower significance. These differences between the two tools
largely arise from differences in statistical tests and thresholds.
AnGeLi actually did find all enrichments presented by GO Term
Finder after relaxing the FDR to <0.08.

Importantly, AnGeLi offers a uniquely broad analysis tailored
to fission yeast, far beyond GO term enrichments. Enrichments
for several informative features are exclusive to AnGeLi, like
gene expression signatures and phenotype annotations; the
absolute number of phenotype annotations exceeds the number
of GO annotations and is currently increasing at a rate of
∼1000 per year. When analyzing the test list of 100 genes
with AnGeLi using default settings, rich additional biological
insights were provided (Supplementary Table S5). For example,
the analysis revealed enrichment in target genes for specific
transcription factors that control gene expression during distinct
phases of the cell cycle. As another example, the list was
associated with abnormal cell-cycle phenotypes, like aberrant
mitosis and cell division, and was also enriched for cell surface
proteins. AnGeLi has served our group and collaborators very
well in numerous studies to obtain biologically meaningful
insights from large gene lists. As recent examples, the tool
has uncovered helpful functional enrichments, besides GO
categories, among lifespan and growth mutants (Sideri et al.,
2014) and among the targets of RNA-binding proteins (Cotobal
et al., 2015).

AnGeLi provides additional advantages compared to other
enrichment tools. It is easily configurable for additional data sets,
and users can incorporate their own gene sets. It also provides
a broad choice for statistical analyses. Moreover, because of its
link with PomBase, users can be assured that AnGeLi remains
updated and uses current data. On the other hand, AnGeLi is
organism specific and therefore its application is narrower than
for other tools, but other organism communities may benefit
from similar tools which are configured as a one-stop resource
for datasets of specific interest.
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FIGURE 1 | Workflows in AnGeLi. (Top – blue) Data entry: the user pastes a query gene list and has the option to add user-defined gene sets and/or select the
background gene set (default = PC; protein-coding genes). If no additional gene sets are added, under default settings, 7554 features of the AnGeLi knowledgebase
will be analyzed (7505 binary, and 49 metric features), because 1277 GO Molecular Function, 797 GO Cellular Component, and 4 Genetic and Physical Interactions
(BioGRID) features are excluded by default (9632 features in total). If any user-defined gene sets are added, the database is augmented accordingly. (Middle –
green) Statistical parameter settings: the user selects GO category (default = BP; Biological Process), a method for multiple testing correction (default = FDR) and
the desired p-value threshold (default = 0.01). The users can also specify whether to perform the pairwise interaction enrichment analysis (default = No), set the
desired number of permutations accordingly (default = 1000), and adjust the p-value to account for multiple testing. (Bottom – red) Data processing: AnGeLi
performs gene list enrichment analysis based on user input and reports any significant functional enriched features, along with associated information.
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User Interface
AnGeLi offers an intuitive online interface: www.bahlerlab.info/
AnGeLi. The user supplies a query gene list (systematic names
only), and sets the statistical parameters and background gene
list. In addition, users can provide additional gene sets in tab-
delimited format. AnGeLi’s output is organized into different
themes and include hyperlinks to the corresponding resource or
the publication from which the data derive. AnGeLi allows the
user to de-select any pre-defined themes; in the extreme case,
AnGeLi’s statistical framework could just be used to analyze a
query list against a user-defined gene set.

Once analysis is completed, AnGeLi reports a summary of
all tests performed, including color-coded tables where over-
and under-represented sets and features are highlighted in red
and green, respectively. For each theme, enrichments are ranked
by their p-values, with expected vs. observed gene overlaps
provided for categorical data, average values for metric data, and
the number of interactions for pairwise data. Only gene sets
or features that show any enrichments or under-enrichments
are listed. An explain button next to each over- or under-
represented gene set or feature provides a detailed summary
for the corresponding enrichment. The user can export the
results page in tab-delimited format, which also includes the
corresponding external database identifiers as well as the actual
intersection between the gene sets. A detailed Help Page is also
provided (Link ‘Help’).

To further extend the data types available in AnGeLi,
users are encouraged to submit published gene lists through
a straightforward submission form. AnGeLi’s database will
be updated monthly via synchronization with the annmap
annotation package (Yates et al., 2008). The database could
be downloaded via a link from the website (Link ‘Download
Database’). Furthermore, user feedback will be monitored via the
GitHub issue-tracking utility to allow continuous improvement
(Link ’Report a bug’).

MATERIALS AND METHODS

Database Construction and Resources
AnGeLi utilizes the S. pombe Ensembl annotation database
(version 27) as the source for gene features (Kersey et al., 2010),
which is based on PomBase (McDowall et al., 2015) and is
implemented in the annmap core Bioconductor/R package
(Gentleman et al., 2004; Yates et al., 2008). The database was
used to derive the following: list of genes, exons, proteins, and
their chromosomal positions as well as transcript biotypes (i.e.,
protein-coding, ncRNA, etc.). Applying customized R and Perl
scripts, these data were used to compute relative and absolute
distances from centromere and telomeres. Similarly, these data
were used to compute intron locations, intron number per gene,
average intron length and total transcript length. The GC content
of the first intron was computed using the ‘geecee’ function
within the EMBOSS (Rice et al., 2000). The protein sequence
data was downloaded from PomBase (McDowall et al., 2015),
and protein features such as molecular weight, isoelectric point,
charge, and number of amino acids were also calculated using

the EMBOSS suite (pepstats function). Amino acid compositions
were calculated using a customized Perl script. The fold-index
for each fission yeast protein was computed using a modified
Perl script available from http://bip.weizmann.ac.il/fldbin/findex
(Prilusky et al., 2005). S. pombe GO annotations and the generic
GO OBO flat file were downloaded from ftp://ftp.geneontology.
org. A recursive algorithm was used to map genes to all
corresponding ancestor terms in the ontology. Pfam domains
(Finn et al., 2014) were retrieved from the xmapcore database
(Yates et al., 2008). For phenotype mappings (Harris et al., 2013),
we used the phenotype annotation ‘phaf ’ file available from
ftp://ftp.ebi.ac.uk/pub/databases/pombase/pombe/Phenotype_
annotations/phenotype_annotations.pombase.phaf.gz, fypo OBO
file available from https://cdn.rawgit.com/pombase/fypo/master/
release/fypo.obo. We only considered GO terms, Pfam domains
and phenotypes that were associated with at least two genes.
The manually curated human and budding yeast orthologs
of fission yeast proteins (Wood, 2006) were retrieved from
ftp://ftp.ebi.ac.uk/pub/databases/pombase/pombe/orthologs/
cerevisiae-orthologs.txt. Physical and genetic interaction data
were downloaded from BioGRID (Breitkreutz et al., 2008) and
processed using customized Perl scripts. All binary and metric
data were combined into a single table using an R script (similar
to Table 1) prior to conversion into Perl associative array data
structures. Pairwise relationships were stored directly in Perl
data structures.

Implementation of Statistical Tests
All statistical tests and multiple testing correction functions
were implemented in Perl. For Fisher’s exact test, the
Text::NSP::Measures::2D::Fisher::twotailed module was used
(available from http://search.cpan.org), where the 2 × 2
contingency table was constructed using the following values:
(row1) genes found in input list ‘A’ and in gene set ‘G’, genes
found in gene set ‘G’ but not in input list ‘A’, (row2) genes found
in input list ‘A’ but not in gene set ‘G’ and genes not found in
input list ‘A’ and not in gene set ‘G’.

The core of the Wilcoxon rank sum test implemented in Perl
was adopted from http://www.fon.hum.uva.nl/rob/SignedRank/.
In this script, a normal approximation with a continuity
correction or an exact test is used, depending on the number
of permutations (‘k’ out of ‘n’) and estimation of the p-value.
AnGeLi displays a warning for small gene lists (below 10 genes),
for permutations ≥2500 or for p≥ 0.25. Genes with no values are
ignored throughout.

The pairwise permutation test repeatedly draws a random set
of genes from a pool of genes not found in the query list, while
the number of permutations is set by the user and the size of
the random set is equal to the size of the query list. However,
the pool of genes has to be at least twice as large as the query
list, otherwise AnGeLi will display a warning that the query list
is too large and p-values cannot be computed. The running time
of the permutation test is quadratic, therefore pairwise analysis is
excluded by default and, if selected, permutations are set to 1000.
The p-value is equal to the number of times the random set has a
greater sumof interactions compared to the real set divided by the
total number of permutations and multiplied by 2 (i.e., pairwise).
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For example, in the best-case scenario, where the sum of random
interactions equals 0 or 1 following 1000 permutations, the
p-value will be equal to (1/1000)∗2 = 0.002. This relatively high
p-value is unlikely to be significant following correction for
multiple testing (7554 tests: 7505 binary, 49metric, and 4 pairwise
features), and a higher number of permutations at the expense of
analysis time should be set.

CONCLUSION

AnGeLi offers a unique and flexible statistical framework for
the analysis of gene lists derived from S. pombe, using a rich
catalog of annotated features, published information and gene
sets that span multiple and diverse biological aspects. The
analyses can be tailored to the query gene lists and enhanced
by the addition of user-defined gene sets. With respect to
published gene sets, the current content of AnGeLi’s database
is somewhat arbitrary and far from complete. We encourage
a community-wide effort to further increase the usefulness
of AnGeLi by contributing additional published gene lists via
its data submission feature. Such community submissions will
enhance the visibility and citations of the papers reporting the
submitted lists, and will help to unleash the full power of genomic
data sets.
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