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Identification of Metabolic Pathway
Systems
Sepideh Dolatshahi † and Eberhard O. Voit *
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The estimation of parameters in even moderately large biological systems is a

significant challenge. This challenge is greatly exacerbated if the mathematical formats

of appropriate process descriptions are unknown. To address this challenge, the method

of dynamic flux estimation (DFE) was proposed for the analysis of metabolic time series

data. Under ideal conditions, the first phase of DFE yields numerical representations of all

fluxes within a metabolic pathway system, either as values at each time point or as plots

against their substrates and modulators. However, this numerical result does not reveal

the mathematical format of each flux. Thus, the second phase of DFE selects functional

formats that are consistent with the numerical trends obtained from the first phase. While

greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway

system contains as many dependent variables as fluxes. Because most actual systems

contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary

methods have been proposed to alleviate this issue, but they are not general. Here we

propose strategies that extend DFE toward general, slightly underdetermined pathway

systems.

Keywords: dynamic flux estimation (DFE), identifiability, metabolic pathway analysis, parameter estimation,

pathway structure, underdetermined system of fluxes

INTRODUCTION AND BACKGROUND

A Google Scholar search for the keyword “parameter estimation” yields over 3 million hits, which
renders it abundantly evident that the topic is everything but trivial, especially for applications in
biology. The challenges of finding optimal parameter values for biological systems are multifold
and include mathematical, statistical, computational, and even biological aspects. Mathematical
issues include dependencies among parameter values, sloppiness, and different types of exact or
approximate compensation between errors among the equations of the system, within equations,
and even within terms of the equations. Computational challenges are driven by the sheer size of
the often high-dimensional parameter space, the need to solve systems of differential equations
thousands of times, and an error structure between model results and biological data that can be
incredibly rough and contain uncounted local minima where search algorithms can get trapped.
Biological issues include the size and complexity of a system, noisy ormissing data, ill-characterized
processes, and unrealistic parameter values. All these challenges are tightly interwoven and often
create situations where no (good) solutions are obtained, where too many possible solutions can be
identified, or where the exclusive criterion of the quality of the fit is misleading.

Partial help for overcoming some of these complications was provided by the insight that
systems of ordinary differential equations (ODEs) can be estimated in a much simplified manner, at
least to some degree. Namely, if data are available as time series measurements, and if it is possible
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to estimate the slopes of these time courses with some reliability,
then the derivatives on the left-hand sides of the ODEs can
be replaced with estimated slopes at many time points (Varah,
1982; Voit and Savageau, 1982a,b; Voit, 2000; Voit and Almeida,
2004; Chou and Voit, 2009; Jia et al., 2011). Consequently,
each ODE, evaluated at a set of time points, is replaced with a
purely algebraic system of equations, where the fluxes constitute
its unknown variables. Each of these sets can be evaluated
independently of all other sets and does no longer require
numerical integration, which can account for more than 95% of
the computational cost when parameters are directly estimated
for ODEs (Voit and Almeida, 2004). The initial estimation of
slopes from the time course data can be accomplished with a
variety of methods that range from primitive to sophisticated
(e.g., seeWhittaker, 1923; Voit and Savageau, 1982b; Eilers, 2003;
Voit and Almeida, 2004; Vilela, 2007, 2008; Dolatshahi et al., 2014
and discussions therein).

While it certainly simplifies parameter estimation, the slope
estimation and decoupling method is not without its own issues.
In particular, it may “warp” solutions in the direction of time,
so that, for instance, oscillations have a predicted frequency
that is too high or too low (see Chapter 5 of Voit, 2012).
Nonetheless, the method can serve as an effective first stab at
a complicated problem and thereby provide reasonable initial
guesses for standard estimation techniques.

A prerequisite for any parameter estimation effort is
knowledge of the mathematical formats of all involved processes,
or at least a set of reasonable assumptions regarding these
formats, because they obviously dictate the role of each
parameter. However, guidelines regarding optimal formats for
biological process descriptions are not provided by nature.
Linear functions have been very successful in engineering, but
it has become clear that they are inadequate for representing
many biological phenomena. Thus, one needs to resort to non-
linear representations, of which, of course, there are infinitely
many. One could argue that biological systems must satisfy
the laws of physics, but it is usually impossible to deconvolve
biological processes neatly into physical components that can
be represented based on physical theory (Voit et al., 2010; Voit,
2013a). To circumvent this problem, many biological systems
modelers tend to use certain default representations that have
a justification in specific, and often simplified instances but do
certainly not tell the whole truth about a biological system in vivo
or are valid in other contexts (Voit et al., 2015). Arguably the
best studied example is the Michaelis–Menten rate law, which
is approximately true in carefully crafted experiments in vitro,
but whose prerequisites are most certainly violated in actual
biological systems in situ (Savageau, 1992, 1995). Similarly, mass
action functions in biochemistry, SIR models in epidemiology,
and Lotka–Volterra models in ecology may be excellent starting
points for the design of models, but it is quite evident that they
cannot truly capture the full complexity of living systems in all its
details.

One might think that it does not matter too much if the
functional form is not perfect, as long as all data of interest are
fit with sufficient accuracy. This argument may be true if future
predictions and explanations only pertain to the data ranges used

for model parameterization. However, as soon as the model is
extrapolated into new ranges of its state variables, extrapolations
with the wrong model may lead to grossly unsatisfactory results
(Goel et al., 2008). One root cause of such extrapolation problems
is a compensation of errors, which may occur within fluxes,
among fluxes of the same equation, and among fluxes of different
equations. While such compensation can lead to acceptable
residual errors in the original data fit, extrapolations to new
conditions can become rather unreliable; for specific details see
Supplements of Goel et al. (2008).

Faced with this conundrum, the method of dynamic flux
estimation (DFE) was suggested for the analysis of metabolic
time series data (Goel et al., 2008). In principle, DFE could be
applicable to any types of ODE systems, such as gene regulatory
networks that offer similar identification challenges (Siegenthaler
and Gunawan, 2014; Ud-Dean and Gunawan, 2014), but a very
beneficial feature of metabolic systems is the conservation of
mass at each metabolite pool, which has as a consequence that
many fluxes appear in more than one equation. It will become
evident throughout this article that this fact is important for DFE.

DFE consists of two phases, the first of which is model-free
and makes very few assumptions (Figure 1). It includes data
preprocessing, time course smoothing, the estimation of slopes
of the smoothed time courses, and the solution of linear algebraic
systems. Generically, each equation of the ODE is written as

dXi

dt
= Influxi1 + Influxi2 + Influxi3 + . . .

−Effluxi1 − Effluxi2 − . . . (1)

At each time point, the left-hand side is replaced by the
appropriate slope, and the equations are simultaneously valid
for all time points. The ultimate result of this phase consists of
numerical or graphical time series profiles of all fluxes; in other
words, the analysis yields plots of the fluxes in the system against
time or against metabolites and modulators. Importantly, this
phase does not reveal functional formats (Figure 2).

The second phase of DFE is dedicated to the mathematical
characterization and parameterization of each flux profile. This
phase requires the assumption of functional formats, which
are fitted against the numerical flux representations. This step
requires parameter estimation, but it is much simpler than the
estimation of the original ODE systems, because it now targets
explicit functions of one or a few variables in isolation and
with correspondingly few parameters. For instance, the graphical
result in Figure 2A might suggest a Hill or logistic function as
a reasonable format, while appropriate formats for the trends in
Figures 2B,C are not clear. It should be noted that this estimation
of individual fluxes avoids many of the error compensation issues
mentioned before.

Once a mathematical format is chosen for a particular flux,
the data are fitted against this alleged format or against a roster
of candidate functional forms. No generic strategies exist at this
point for selecting candidates or proving their optimality, and
it might be useful to scan through a list of candidate functions;
for a similar approach in statistics, see Sorribas et al. (2000).
Within this list, one may then attempt to identify the best fitting
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FIGURE 1 | DFE is a model characterization strategy and consists of two phases (adapted from Goel et al., 2008). In the first, model-free estimation phase,

it takes time series of concentration data as input and estimates the dynamic flux profiles, which in turn are used as input to phase 2, which consists of a model-based

estimation. In this phase, functional forms and regulatory assumptions are incorporated and parameters are estimated for each flux separately.

FIGURE 2 | Example results of the first phase of DFE. The flux in panel (A) might be representable with a Hill or logistic function. The fluxes in panels (B) and (C)

are adapted from Chou and Voit (2012); their optimal mathematical formats are unknown.

format through regression diagnostics, such as the residual error
and a run test for residuals (Draper and Smith, 1981). The
special case of the power-law format simplifies this step (Savageau
and Voit, 1982), as a logarithmic transformation yields linearity
and thus permits testing of the appropriateness of a functional
form with diagnostic methods of multiple linear regression,
even though one has to consider the distortion of the error
structure due to the transformation. It is possible that several
candidate functions are equally plausible and lead to similar fits.
For instance, a Hill function and a logistic function can have
essentially indistinguishable graphs. It is also possible that no
functional formmay be capable of yielding a reasonable fit, which
may suggest the existence of missing features in the models,

such as regulatory signals that had not been taken into account
in the assumed pathway structure. Such suggestions correspond
to novel hypotheses that are testable with further experiments
and may lead to biological discoveries, as was demonstrated in
Dolatshahi et al. (2016a).

The first phase of DFE mandates that an algebraic system
of fluxes be solved at each time point (see Equation 1). This
process is straightforward if the number of independent fluxes
equals the number of dependent variables for which data exist.
However, if the stoichiometric matrix of the system is not full-
rank, which actually is the most common case, a direct inversion
is not possible, and one needs to resort to auxiliary methods
or mathematical operations that cast the problem in a simpler
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form (Jia et al., 2012; Liu and Gunawan, 2014). Unfortunately,
such methods often necessitate additional biological information
to make the stoichiometric matrix invertible (e.g., Voit, 2009;
Chou and Voit, 2012; Iwata et al., 2013). As a consequence, these
methods are seldom general and often require specific features of
the data.

As an alternative or complementation of these methods,
this article describes a generic flux identification procedure for
slightly underdetermined systems and characterizes the space
of available fluxes. The article furthermore discusses conceptual
strategies for dealing with missing data and proposes mixed
parameter estimation strategies when DFE is only partially
applicable. This section involves the second, model-based phase
of DFE.

In reality, biological data are always noisy and often
incomplete, which adds uncertainty to any estimation or
identification method. Indeed, noise, missing data, and
estimation issues lead to a complicated intermixing of errors that
are difficult to deconvolve. In order to focus exclusively on issues
directly associated with the identification of fluxes, we decided
here to use “ideal” data, which we generated with a published
model (Curien et al., 2009). Many authors have discussed means
of addressing and smoothing noisy data and dealing with less
than ideal data (e.g., Vilela, 2007; Voit, 2011; Dolatshahi et al.,
2014; and references therein), so that we will not revisit this
issue here. However, we note that methods very similar to those
presented here were recently applied to an actual, rather complex
system (Dolatshahi et al., 2016a,b).

CHARACTERIZATION OF METABOLIC
FLUXES FROM TIME SERIES DATA

If a pathway system is underdetermined, DFE cannot directly be
applied. The issue in this case is not the absence of a solution;
rather, the challenge is the existence of an entire space of feasible
solutions and the need to decide which of these solutions are
in some sense “better” than others. One could explore whether
certain normalization or regularization procedures might help,
but it appears that they do not solve the problem here, as
we simply do not know what type of flux distribution nature
considers optimal. For instance, the use of the Moore-Penrose
pseudo-inverse (Penrose, 1955; Albert, 1972) yields a solution,
but some fluxes of this solution are typically negative, which is
often biologically unrealistic. Characterizability analysis (Voit,
2013b) reveals which fluxes within an underdetermined system
can be estimated with DFE without additional information, but
does not suggest further steps toward an optimal solution. The
strategy of the following sections will be to study the entire
set of feasible solutions in a drastically reduced space, whose
dimension equals the number of the degrees of freedom within
the stoichiometric system.

Along with the exploration of the solution space, useful
strategies will be introduced to visualize feasible candidate sets.
Initially, no information about the functional forms and the
contributing metabolites and modulators of each flux is assumed
to be available. Later on, minimal generic features of metabolic

fluxes are suggested as constraints to improve the results. It is
noted, though, that, even with these constraints, the solutions
are not necessarily unique. Finally, solutions in the form of
point-wise numerically defined fluxes will be suggested that
are appropriate, if not optimal, according to certain criteria of
biological reasonableness.

The source code for the following analyses has been
deposited on github (https://github.com/sepidd/Identification-
of-Metabolic-Pathway-Systems) and is also presented in the
Supplementary Material.

Mathematical Formulation of the Problem
A metabolic pathway system as formulated in Equation (1) can
be written in general matrix and vector notation as

dX

dt
= Ẋ = Av. (2)

Here, X denotes a vector of n metabolite concentrations and
v is a vector of m fluxes, i.e., reaction rates, while A is the
stoichiometric matrix. The vectors, but not the matrix, change
with time, and the functional forms governing the fluxes are
functions of their substrates and regulators. They are in general
unknown or based on assumptions that might or might not hold
under the given experimental conditions or in vivo. Moreover,
in certain cases, regulators and cofactors are yet to be discovered
and are therefore falsely omitted. This uncertainty is the reason
to attempt minimizing assumptions while executing the task
of inferring flux profiles from metabolic time series data. At
the same time, DFE provides us in this phase with the option
of testing and challenging some of the prior assumptions and
possibly discovering missing regulatory effects (cf. Dolatshahi
et al., 2016a).

Assuming that data smoothing and slope estimation had been
conducted successfully at each time point ti, we replace the left-
hand side of Equation (2) with the vector of slopes at time
ti, which we call b(ti). Equation (2) can thus be written as a
set of algebraic equations. Specifically, suppose that b (t) =

[Ẋ1(t), . . . , Ẋn(t)]
T
is the vector of slopes of dependent variables

at time t and A is the n × m stoichiometric matrix, which is
constant throughout the time period of any given experiment.
Then we obtain directly the linear algebraic system

Av (t) = b (t) (3)

At a steady state, or when the numerical values of the derivatives
are known, Equation (3) has a solution that can be computed for
every time point by matrix inversion, if the system has full rank.
However, most metabolic systems are under-determined, so that
a unique solution does not exist.

We can thus distinguish three situations. (1) When the system
has maximal rank, the solution is obtained with the regular
inverse, so that v(ti) = A−1

b(ti) is the solution of the
system of equations. (2) When the system is over-determined
and has more equations than unknowns (m < n), the Moore-
Penrose pseudo-inverse A+of matrix A minimizes the sum of
squared errors, arg min(

∥

∥Av(ti)− b(ti)
∥

∥) = A+
b(ti). This
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solution is equivalent to the result of linear regression. Finally,
(3), the case of under-determined systems (m > n) is the
most common situation in metabolic modeling, because most
pathway systems contain more reaction steps than metabolites.
This common occurrence makes the under-determined case
particularly important for the model-free phase of DFE and
suggests that we investigate if the pseudo-inverse solution v(ti) =
A+

b(ti) constitutes a biologically feasible, or even optimal,
solution.

Pseudo-inverses have been used to solve under-determined
systems for a long time. They are characterized by the minimum
L2-normwithin a one- or higher-dimensional space of admissible
solutions, i.e., arg min(

∥

∥Av(ti)− b(ti)
∥

∥). While the best solution,
in terms of the smallest norm, is guaranteed by the pseudo-
inverse, the resulting fluxes are not necessarily positive, and
there is no guarantee that they are biologically meaningful, let
alone optimal. In fact, experience shows that minimum-norm
solutions often include negative values, which are not biologically
feasible as flux values, unless one permits flux inversion, which
is not always realistic. The issue of under-determined systems
in DFE has been known since the inception of the method,
and characterizability analysis, based on pseudo-inverses, was
introduced as an a priori, data-independent check for the
applicability of DFE given a particular pathway system (Voit,
2013b).

A Compact Representation:
Gamma-Space and Gamma-Trajectory
In order to characterize the space of admissible flux sets v (t) =

[v1 (t) , . . . , vm(t)]
T t ∈ [0,∞) in an efficient manner, a more

compact representation is desirable. For pathways with m fluxes
and n dependent variables, where m > n, let d be the number of
degrees of freedom (DOF): d ≥ m−n. Without loss of generality,
we assume that the rank of the system is n. At each time point t,
the space of solutions satisfying Equation (3) can be written as:

v (t) = A+
b (t) +

(

Im − A+A
)

w(t) = A+
b (t)

+null (A) γ (t) (4)

Here, A+ = AT(AAT)
−1

is the Moore-Penrose pseudo-inverse,
A+

b (t) is the minimum-norm flux set at time t, and Im is the
m × m identity matrix. While A+

b (t) is easily computed for
practical applications with software like MATLAB, the result
often contains one or more negative fluxes for some time points,
which is usually undesirable. However, if w(ti) is a vector of
m arbitrary, real-valued elements, then the complete solution
v (ti) = A+

b (ti) +
(

Im − A+A
)

w(ti) represents all possible
solutions and spans the null space of the stoichiometric matrix
A. In numerical evaluations, this null space is readily determined
with the null(A) command in MATLAB.

The columns of null (A) = [vec1, vec2, · · · , vecd] span
the null space of A, and γ (t) = [γ1(t), γ2(t), · · · , γd(t)]

T

is the corresponding vector of coefficients at time t. Each
feasible solution of Equation (3) at time t can thus be uniquely
represented by γ (t). This representation allows us to explore the
d-dimensional Gamma-space instead of the feasible subset of the

m-dimensional space of fluxes, whose visual representation is
much more challenging.

The representations for all time points are now collected
as follows. For each time point t, a feasible flux set v (t)
can be calculated by finding Gamma coefficients that satisfy

vnull (t) = null (A) γ (t) = [v1 (t) , . . . , vm(t)]
T
− A+

b (t).
This equation can be assessed by projecting vnull (t) onto the
vectors vec1, vec2, . . . , vecd, which span the null space of A.
The coefficient vector [γ1(t), . . . , γd(t)] constitutes a point
in the d-dimensional Gamma-space, representing time point
t, and the collection of these points constitutes a trajectory,
which we call the Gamma-trajectory. Each Gamma-trajectory
uniquely represents a feasible flux set traversing all time points,
as long as this trajectory corresponds exclusively to non-negative
fluxes.

As an illustration, let us consider a simple network consisting
of two dependent variables and four fluxes (Figure 3A). Its
stoichiometric representation is

[

1 −1 0 0

0 1 −1 −1

]









v1 (t)
v2 (t)
v3 (t)
v4 (t)









=

[

b1 (t)
b2 (t)

]

(5)

Suppose that metabolite concentrations X1 (t) and X2 (t) have
been measured every 30 s between 0 and 15min. Finding the
slopes of the concentration trends directly yields b1 (t) and
b2 (t) (Figure 3B). The feasible space of solutions, in terms
of fluxes, is a two-dimensional plane within a 4-dimensional
space that is difficult to visualize directly. Figure 3C shows
some representative flux solutions. Even though these are very
different, and several of them in fact have little similarity to
the fluxes in the model used to generate the “data” (black
curves in Figure 3C), all these fluxes satisfy Equation (5)
exactly. The corresponding Gamma-trajectories are depicted in
Figure 3D. The fluxes and Gamma-trajectory with which the
concentration data were originally generated are shown in black
in Figures 3C,D.

The solutions shown in Figure 3 are among the infinitely
many admissible solutions generated by the following procedure,
which actually only yields a small subset of all possible solutions.
Starting at some initial point in the Gamma-space, a phase-
plane trajectory is computed according to a stable linear state-
space model of the form γ̇ (t) = Bγ (t). This is certainly
not the only strategy for creating flux sets, but it constitutes a
simple option that leads to continuous fluxes. A Monte-Carlo
approach is utilized, in which a 2 × 2 matrix B is randomly
generated, but where only those matrices B are retained that
have negative real eigen values and result in non-negative fluxes
for all time points. The resulting set of trajectories yields many
dynamical fluxes with quite different features. Figure 3C shows
some feasible solutions for fluxes v1 through v4 in multiple
colors as thin lines, superimposed on the flux of the actual
model, from which the concentration data were generated
(black line). These fluxes are shifted in Panel (C), so that their
initial values match, in order to facilitate easier comparisons.
Interestingly, the resulting fluxes can possess behaviors ranging
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FIGURE 3 | Illustration example used to demonstrate the core concepts of the flux characterization procedure. The pathway has a very simple structure as

depicted in Panel (A). Panel (B) shows X1 (t) and X2 (t) on the left and the slopes of X1 (t) and X2 (t) estimated from noise-free measurements on the right. Panel (C)

shows seven examples of flux sets vs. time that satisfy Equation (5) exactly; for this illustration, all start at the same point as the original flux set

(v(0) = [6.3271, 3.1588,6.5486,3.5486] corresponding to γ (0)T= [8,5]). The thicker black curves are the fluxes with which the original data were produced. The

corresponding Gamma-trajectories are depicted with the same color scheme in Panel (D). The blurry dot indicates the common start value of these trajectories while

the dotted line represents the true flux, which is known in this artificial example.

from simple shoulder curves to over- and undershoots and
different oscillatory responses. One notes that this Monte-Carlo
strategy does not address issues of noise in the data, but is simply
a means of retrieving diverse solutions that are mathematically
admissible.

Admissible Subset of Gamma-Space: The
Subspace of Non-Negative Fluxes
For biological realism, it is necessary to determine the set of γ ’s
for which the corresponding vector v(t) consists of non-negative
values for all fluxes and all time points. According to Equation
(4), the feasible space, given by v (t) = A+

b (t) + null (A) γ > 0,
is an intersection ofm half-spaces:

A+ (i, :) b (t)+γ1vec1,i+· · ·+γdvecd,i ≥ 0 i = 1, 2, · · · ,m (6)

Here, A+ (i, :) denotes the ith row of the m × n Moore-Penrose
pseudo-inverse matrix. The inequalities are linear and thus
constitute a bounded or unbounded polytope.

Formulating the Problem as an
Optimization Task
According to Equation (6), the solution set is still infinite, thus
raising the question of whether biological constraints could be
evoked to reduce the feasible space of solutions. A possibly
pertinent constraint for the selection of meaningful flux profiles
is the overall minimization of the magnitudes of positive fluxes,
which might be interpreted as a form of metabolic energy
conservation. Minimizing the sum of fluxes at steady state has
been referred to as the parsimonious enzyme effect (Lewis, 2010).
Here, the terminology is slightly different, as the minimization is
done for the sum of all fluxes over all time points. Since the non-
negativity constraints are already in place, this sum of fluxes at all
time points equals the so-called “minimum L1-” or “Manhattan-”
norm, which is defined as min

v≥0
Av=b

‖v‖1 = min
v≥0
Av=b

∑m
i= 1 |vi| =

min
v≥0
Av=b

∑m
i= 1 vi. The optimization problem leading to this result in

terms of γ is shown in Equation (7). The constraint Av = b is
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already taken into account, since the representation in Equation
(4) only allows for fluxes that satisfy this constraint. Thus, the
optimization simplifies to:

min
A+b(t)+null(A)γ (t)≥0

m
∑

i= 1

A+
b (t) + null (A) γ (t)

= min
A+b(t)+null(A)γ (t)≥0

m
∑

i= 1

null (A) γ (t) (7)

The important insight from Equation (7) is that the optimization
problem can be translated into a simpler linear program in
terms of γ (t), which can be solved using algorithms for linear
programming, such as the simplex method. In practice, testing
the corner points of the feasible polyhedron for identifying the
corner with the minimum sum is a very well-established way of
arriving at the optimal solution (Dantzig, 1984).

One should note that DFE and the choice of an objective
function for the identification of biologically reasonable flux
solutions are entirely independent, For instance, as an alternative
optimization approach to minimizing the sum of fluxes for all
time points, we could select the L2-norm of the flux vector at
each point in time. This choice emphasizes and weighs the roles
of the individual fluxes in a different manner. Minimizing the
squared sum of fluxes at steady state has been referred to as
flux optimization (Holzhütter, 2004). Again, our terminology is
slightly different because the minimization pertains to all fluxes
and all time points. This task is described in Equation (8) and
again represents in some sense the minimum-energy flux set.

min
v ≥ 0
Av = b

‖v‖2
2 (8)

The optimization problem in Equation (8) can be reformulated
as the optimization problem of minimizing the L2-norm of the
vector γ (t). Equation (9) shows this reformulation:

min
A+b(t)+null(A)γ (t)≥0

(A+
b (t) + null (A) γ (t))

T
(A+

b (t)

+null (A) γ (t)) = min
A+b(t)+null(A)γ (t)≥0

(A+
b (t))

T
A+

b (t)

+γ (t)Tnull (A)
Tnull (A) γ (t) + γ (t)Tnull (A)

TA+
b (t)

+(A+
b (t))

T
null (A) γ (t) = min

A+b(t)+null(A)γ (t)≥0
γ (t)TImγ (t)

= min
A+b(t)+null(A)γ (t)≥0

‖γ (t)‖2 (9)

Here, null (A)
Tnull (A)=Im is the identity matrix of dimension

m, because the columns of null(A) are orthonormal base
vectors of the null space. Furthermore, the pseudo-inverse
solution A+

b (t) is orthogonal to the null space, so that

null (A)
TA+

b (t) = (A+
b (t))

T
null (A) = 0. Additionally,

(A+
b (t))

T
A+

b (t) does not change with γ (t), so that its removal
from the optimization problem does not change the result. Thus,
it is of note that Equation (9) is equivalent to the quadratic
program of Equation (8).

Other optimization problems could be formulated, but the
interesting challenge is that it is not really known what
“optimality” means for the fluxes in a biological system or
organism. Optimal solutions, with respect to various criteria,
could be suggested, but whether these solutions are compatible
with additional information about the functional form or about
effectors of fluxes needs to be tested for specific problems.
A later section examines the minimum-energy solution for a
realistic biological system and indeed challenges the validity of
this particular solution to some degree. This discussion shows
that optimization, which at this stage does not assume any
functional form for the fluxes, may lead to fluxes that can are
questionable. At the same time, these optimal solutions can be
utilized as starting points for approaching solutions that appear
to be biologically meaningful.

Illustration Example: The Biosynthetic
Pathway of Aspartate-Derived Amino
Acids in the Plant Arabidopsis thaliana
After characterizing a feasible set of fluxes, optimizing the
parameters for these fluxes yields a reasonable default solution.
Nonetheless, accounting additionally for generally expected
features of fluxes can lead to more biologically relevant flux sets.
Such generic features may include knowing that a certain flux
is a function of only one variable, i.e., its substrate. Another
piece of generic information could be that, when a substrate of
a flux is zero, the flux has to equal zero as well. These types of
constraints are illustrated below with a specific example from the
literature, namely the biosynthetic pathway of aspartate-derived
amino acids in the plant Arabidopsis thaliana (Curien et al.,
2009). In reference to the lead author of a model of this system,
we will call it the “Curien” model. Since the complete model
and the fluxes are known, the pathway system constitutes a good
test case. The Gamma-trajectory for the Curien model will be
plotted, the criterion of non-negativity and its implication in
Gamma-space will be investigated and determined, and the result
of optimization will be studied and compared to the original
fluxes. Finally, auxiliary methods of flux improvement will be
suggested.

Identification of Flux Trends
The pathway of biosynthesis of aspartate-derived amino acids
is responsible for the distribution of the carbon influx into
the synthesis of threonine, lysine, methionine, and isoleucine
(Figure 4). The original kinetic model (Curien et al., 2009)
was constructed based on in vitro kinetic measurements,
assuming generalized functional forms of the fluxes in the
tradition of Michaelis and Menten. The model contains seven
dependent variables, namely, X1 = [aspartyl-phosphate], X2 =
[aspartate semialdehyde], X3 = [lysine], X4 = [homoserine], X5 =
[phosphohomoserine], X6 = [threonine], and X7 = [isoleucine].
Additionally we consider the output variable X8 = [threonyl-
tRNA].

This specific example is well-suited as an illustration of
the proposed techniques of flux identification, because it is
representative and of moderate complexity, and because its
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FIGURE 4 | Metabolic reaction network of the biosynthesis of

aspartate-derived amino acids in Arabidopsis thaliana. Asp, L-Aspartate;

AspP, L-Aspartate-4-phosphate; ASA, L-Aspartate-semialdehyde; Lys,

L-Lysine; Hser, Homoserine; PHser, O-Phospho-L-homoserine; AdoMet,

S-Adenosylmethionine, Thr, L-Threonine; Ile, L-Isoleucine; Val, L-Valine.

Lysyl-tRNA and Isoleucyl-tRNA are shown here as end products, but they are

not explicitly included in the model. Adapted from Curien et al. (2009).

details are fully known, which facilitates method development
and multiple diagnoses of problems that are likely to arise.

The equations for the model

dX1

dt
= vAK − vASADH

dX2

dt
= vASADH − vDHDPS − vHSDH

dX3

dt
= vDHDPS − v(Lys)tRNAsth

dX4

dt
= vHSDH − vHSK (10)

dX5

dt
= vHSK − vTS1

dX6

dt
= vTS1 − vTD − v(Thr)tRNAsth

dX7

dt
= vTD − v(Ile)tRNAsth

dX8

dt
= v(Thr)tRNAsth

are directly taken from the original article. The functional forms
of the fluxes are presented in Equation (11):

vAK1 = [AK1] ·
5.65− 1.6[AspP]

1+
(

[Lys]/
(

550
1+[AdoMet]/3.5

))2

vAK2 = [AK2] ·
3.15− 0.86[AspP]

1+
(

[Lys]/22
)1.1

vAKI = [AKI −HSDH I] ·
0.36− 0.15[AspP]

1+
(

[Thr]/124
)2.6

vAKII = [AKII −HSDH II] ·
1.35− 0.22[AspP]

1+
(

[Thr]/109
)2

vAK = vAK1 + vAK2 + vAKI + vAKII

vASADH = [ASADH] ·
(

0.9[AspP]− 0.23[ASA]
)

vHSDH I = [AKI −HSDH I] · 0.84 ·
(

0.14+
0.86

1+
[

Thr
]

/400

)

vHSDH II = [AKII −HSDH II] · 0.64 ·
(

0.25+
0.75

1+
[

Thr
]

/8500

)

vHSDH = vHSDH I + vHSDH II

vDHDPS1 = [DHDPS1] · [ASA] ·
1

1+
(

[Lys]/10
)2

vDHDPS2 = [DHDPS2] [ASA] ·
1

1+
(

[Lys]/33
)2

(11)

vDHDPS = vDHDPS1 + vDHDPS2

v(Lys)tRNAsth = VAaRS ·
[Lys]

25+ [Lys]

vHSK = [HSK] ·
2.8[Hser]

14+ [Hser]

vTS1 = [TS1] ·
(

0.42+3.5[AdoMet]2/73

1+[AdoMet]2/73

)

[PHser]
[

250
(

1+[AdoMet]/0.5
1+[AdoMet]/1.1

)

1+ [AdoMet]2

140

]

(

1+ [Pi]
1000

)

+ [PHser]

v(Thr)tRNAsth = VAaRS ·
[Thr]

100+ [Thr]

vTD = [TD] ·
0.0124[Thr]

1+
(

[Ile]/
(

30+ 74[Val]
610+[Val]

))3

v(Ile)tRNAsth = VAaRS ·
[Ile]

20+ [Ile]

Equation (10) can equivalently be written in vector form as
shown in Equation (7), namely as

dX

dt
= Ẋ = Av (12)

where v and A are the corresponding vector of reaction rates
(i.e., fluxes) and the stoichiometric matrix, respectively. For the
Curien model, they are shown in Equations (13) and (14):

v = [vAK, vASADH, vHSDH, vDHDPS, v(Lys)tRNAsth, vHSK , vTS1,

v(Thr)tRNAsth, vTD, v(Ile)tRNAsth]
T

= {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}
T (13)
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FIGURE 5 | Gamma-trajectory for the Curien model (Curien et al.,

2009). The spacing of arrows shows the progression of time. The steady state

is shown in red.

A =

























1 −1 0 0 0 0 0 0 0 0
0 1 −1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 −1 0
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1 0 0

























(14)

Gamma-Trajectory of the Curien Model
The fluxes and metabolite concentrations for this system are
known, which allows us to plot the “true” Gamma-trajectory in
the Gamma-space representation vs. time:

v (t) = A+
b (t) + null (A) γ (15)

Here,

null (A) = [vec1,vec2]

=

[

0.5374 0.5374 0.1162 0.4212 0.4212 0.1162 0.1162 0 0.1162 0.1162

0.0534 0.0534 0.3914 −0.3380 −0.3380 0.3914 0.3914 0 0.3914 0.3914

]T

spans the null space of A. This solution is easily found,
as null(A) is a MATLAB command that returns these two
orthonormal vectors. γ (t) = [γ1(t), γ2(t)]

T is the vector of
coefficients associated with null(A). With this information, the
two-dimensional Gamma-space can be explored instead of the
feasible subset of the 10-dimensional space of fluxes.

For each time point t, the gamma coefficients can be calculated
by projecting vnull (t) = v(t)− A+

b (t) onto the vectors vec1 and
vec2. The result is equivalent to the dot product of null(A) and
v(t), since A+

b (t) is orthogonal to the null space and the dot
product is zero.

Figure 5 shows the trajectory starting at time zero and ending
at steady state shown with a red dot.

Feasible Solutions
Similar to the introductory example, this model permits an
infinite number of solutions, which may be quite different. Some
of these feasible solutions can be generated with a Monte-Carlo
simulation by starting at some initial point in the Gamma-space
and computing a phase-plane trajectory according to the linear
state-space model of γ̇ (t) = Bγ (t), as before. The resulting
trajectories exhibit a variety of different dynamical characteristics
for the fluxes. Panels 1–9 of Figure 6 show in multiple colors
a selection of feasible solutions for fluxes v1 through v10, with
the exception of the output flow v8. Flux v8 is not shown since
it belongs to the only full rank subset of the system and is
fully determined by numerically differentiating X8. The thin lines
representing these solutions are superimposed on the actual flux
(black), which is known from the model. It is evident that some
of the inferred fluxes are similar to the actual fluxes, but that
many are not even qualitatively of the same shape. In order
to facilitate easier comparisons, the fluxes shown are shifted so
that their initial values match. Interestingly, the inferred fluxes
show different behaviors ranging from monotonic to various
oscillatory shapes. One should note that these feasible solutions
are typical examples if we assume a trajectory from a linear state-
space solution but that they by nomeans represent all the possible
trends.

An interesting observation is that one may add an equal
value to each flux in Set 1 = {v1, v2, v4, v5} and/or
Set 2 = {v1, v2, v3, v6, v7, v9, v10} without a change in
the metabolite concentration profiles. The reason is that these
shifts cancel out in the original differential equations (Equation
10) and Ẋ (t) therefore stays the same. Figure 7A demonstrates
that the shape of the Gamma-trajectory (Figure 5) can be shifted
along the red line if one adds different positive constant amounts
to Set 1 and along the cyan line if one adds different positive
constant amounts to Set 2. Of course, shifts in both directions
are admissible as well. One could also pick negative constant
values as long as the fluxes stay positive. This way, the entire
Gamma-space can be spanned. This is an equivalent, and perhaps
more comprehensible, explanation of the two degrees of freedom
for this pathway. As an alternative to constant shifts, it is even

admissible to add the same function of time to all fluxes in the
sets.

Admissible Subset of the Gamma-Space: the

Subspace of Non-Negative Fluxes
For each time point t, we determine the set of γ ’s for which
the corresponding v(t) consists entirely of non-negative fluxes.
Recalling Equation (6), the feasible space here is an intersection
of 10 half spaces characterized by the following set of inequalities:

A+ (i, :) b (t) + γ1vec1,i + γ2vec2,i ≥ 0 i = 1, 2, · · · , 10 (16)

Here, A+ (i, :) denotes the ith row of the 10 × 8 Moore-Penrose
pseudo-inverse matrix.
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FIGURE 6 | Sets of feasible solutions for each flux v1 to v7 and v9 to v10 is shown in each panel. For visualization purposes, the actual flux from the model is

shifted to have the same initial value as the simulated fluxes and is superimposed as a thick black line for comparison.

In this example, only two out of the total of 10 inequalities
happen to be active inequalities, which results in a feasible
subspace in the shape of an open triangle. One should note,
however, that b(t) changes with time, so that there is a new
open triangle for each time point. Expressed differently, the
feasible region resulting in non-negative flux sets varies with
each time point. Figure 7B exhibits the first seven of these
open triangles in different shades of red. There is one such
triangle for each time point; the triangles are not shown
for the following time points to avoid over-population of
the plot.

The corners of these open triangles are shown as black dots,
which lie on a curve. The blue curve shows the actual Gamma-
trajectory of Figure 5. One interesting observation is that, for the
initial time points, the two curves (“true” and inferred) coincide.
For later time points, the blue curves lie inside the corresponding
open triangle of non-negative solutions.

Any continuous trajectory whose points fall inside these non-
negative open triangles for all time points is a feasible flux
profile.

Minimum-Energy Flux Set
Searching the feasible solutions for the set of flux profiles
that minimize the sum of squared flux norms for all time
points results in the minimum-energy flux. This procedure is
equivalent to solving the quadratic programming of Equation
(9) and results in the same flux profile as solving the linear
programming of Equation (7). For the case of the Curien model,
both of these methods yield the same set of fluxes as the corner
solution introduced in the previous section. This solution is
also equivalent to the result of a non-negative least-squares
optimization problem performed in MATLAB.

Figure 8 shows the minimum energy flux profiles plotted
vs. time (depicted in red) together with the actual fluxes of
the Curien model (blue). The two solutions are quite different,
although they both match the metabolite data perfectly. The next
sections introduce strategies to alleviate this discrepancy. One
should note that the computed solution is actually “cheaper” than
the Curien model, as all fluxes have lower magnitudes; whether
it is “better” or “worse” than the Curien model cannot be said,
because we do not know the correct criteria.

Frontiers in Genetics | www.frontiersin.org 10 February 2016 | Volume 7 | Article 6

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Dolatshahi and Voit Identification of Metabolic Pathway Systems

FIGURE 7 | (A) Adding a constant amount to the fluxes in Set 1 for all time points shifts the Gamma-trajectory along the dark red line without any change in the

concentration profiles for all metabolites. Similarly, adding a constant amount to the fluxes in Set 2 for all time points shift the Gamma-trajectory along the cyan line

without any change in the concentration profiles for all metabolites. (B) The Gamma-trajectory of the Curien model is depicted in blue color. The black arrowheads

shown halfway through the blue curve are equally spaced in time. The open red triangles show the subset of the Gamma-space where the corresponding flux set is

non-negative at each point in time. Only the first seven triangles are shown for illustration purposes. The black doted curve shows the corners of these open triangles

for different time points. We will later see that, for the Curien model example, this curve is the same as the minimum-energy curve as described before. Interestingly

the blue and black curves are overlapping in the beginning but then diverge.

Generally Expected Features Regarding Fluxes Can

Restrict the Feasible Space Further

General expectations regarding metabolic fluxes may constrain
the feasible flux profiles. To assess these expectations, it is
useful to plot the fluxes against their substrates and modulators
rather than against time, as was done before. Figure 9 shows
all actual fluxes plotted against their substrates and effectors in
blue, super-imposed on the min-energy fluxes vs. their substrates
and effectors in red. Fluxes v5, v6, v7, and v10 are known to be
functions solely of their corresponding substrates, while fluxes
v2, v3, v4, and v9 have two substrates/regulators, and v1 has three.
Closer inspection of these plots reveals that the plots of v6 vs. X4

and v7 vs. X5 show a behavior that is not consistent with a true
mathematical function, namely a folding-over (Figure 9A). For
example, if the concentration ofX4 is 1.2µM, flux v6 may take two
values, and therefore cannot be a function in the mathematical
sense. Assuming that we know that no other variables affect this
flux, this folding-over phenomenon is not acceptable.

To ameliorate this problem, one may remove or cut
the folded-over section. Specifically, for the time points
corresponding to folded-over values, we let v6 take values
according to the top branch. This is allowable, as the upper
branch is a feasible solution. Using this technique, v6(t) becomes
uniquely determined and can be considered an identified flux.
Subsequently, a new min-energy response can be computed with
exactly the same methods as before, but with only one degree of
freedom left.

Figure 10 depicts the same plots as in Figure 9 after removing
the folding-over phenomenon. Interestingly, all fluxes in Set 2 =

{v1, v2, v3, v6, v7, v9, v10}, as introduced before, are now
fixed and almost equivalent to the actual fluxes. This means
that the number of degrees of freedom has decreased to 1 after

incorporating the information that one of the fluxes is a function
of one variable only. The discrepancy between fluxes in Set 1 =

{v1, v2, v4, v5} remains unsolved, and there is no other folding-
over among the one-variable fluxes.

A caveat of the strategic step above is our assumption that
some of the fluxes only depend on their substrates. Such an
assumption is of course not always valid, but the more we learn
about metabolism the more we will be able to rely on solid
information. To validate such an assumption, one might use a
step-wise scheme of testing additional variables as modulators
(Marino and Voit, 2006). By the same token, the proposed
methods may actually point to regulatory signals that had been
unknown or overlooked (Dolatshahi et al., 2016a,b). One notes
that this issue is a challenge for any estimation or identification
strategy.

In order to recover the fluxes in Set 1, additional information
is needed. First, one could assume that all fluxes in this set are
shifted by the same value. If this value were chosen as about
0.3, one can imagine from Figure 11 that the fluxes become very
similar to the fluxes in the original model. Second, suppose it
was known that, for instance, v5 is well-modeled as a Michaelis–
Menten rate function and the corresponding kinetic parameters
KM and Vmax could be extracted from the literature. Then
one could find v1, v2, v4 by the following simple procedure:

Determine the shift function fshift(t) =
Vmax X3(t)
km+X3(t)

− v5−min(t)

and add it to the rest of fluxes in Set 1 to find the actual
fluxes; thus, vj (t) = vj−min (t) + fshift (t) , j ∈ {1, 2, 4}.
Indeed, if the Michaelis–Menten function is implemented with
Curien’s parameter values, the entire system is perfectly recouped
(result not shown). Having said that, there is no objective
argument against the fluxes in Figure 11, except possibly that v5
is essentially 0 for the first 250 time units, and then becomes
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FIGURE 8 | Fluxes v1 to v10 with the exception of v8 are plotted vs. time. Curves in red are the min-energy fluxes, while the blue curves show the actual fluxes

of the Curien model. Flux v8 is not shown because it belongs to the full-rank subset of the system and can be recovered exactly from the data.

slightly non-monotonic, which might not be realistic. At the
same time, the computed fluxes are of lower magnitude than
those in the Curien model. As a third alternative, one could
independently determine one of the fluxes in Set 1, for example
as a power-law function, as it was demonstrated elsewhere
(Iwata et al., 2013), and then compute all other fluxes of
the set.

DISCUSSION

Extension of DFE Toward Pathways with
Incomplete Information
In many practical scenarios, some of the data are missing, and/or
some of the fluxes cannot be determined fully even with the
techniques described in the previous sections. If so, the need
arises for additional strategies that make maximal use of DFE’s
capabilities and diagnostic features (Voit, 2009; Chou and Voit,
2012; Iwata et al., 2013), along with random search and global
optimization techniques.

Because data are seldom ideal, this section discusses a
rather generic, multi-step strategy that takes advantage of
the diagnostic and computational benefits that DFE offers,
and augments them with auxiliary methods and global
optimization approaches toward a full-system parameterizations
(Figure 12). These procedures were recently used for the
construction of a complex model of the highly regulated
glycolytic pathway of Lactococcus lactis from NMR data
(Dolatshahi et al., 2016a,b) where, due to missing data and
other features of the data, the estimation of parameters was not
straightforward.

The first step of this strategy consists of identifying full rank
subsets of fluxes within the system (see flux estimation module
in Figure 12), if that is possible. For instance, the Arabidopsis
example allowed us to identify Set 2 as well as the flux v8.

Suppose now that data for one or more of the variables are
missing. If so, the “missing metabolite estimation module” in
Figure 12 is used (see also Voit, 2009). The goal is to infer flux
information from near-by metabolites or at least to constrain the
parameters of this flux for the following steps of a randomized
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FIGURE 9 | Panel (A) shows one-substrate fluxes of the system plotted

against their substrate concentrations. Note that fluxes v6 and v7 exhibit

a folding-over phenomenon. Panel (B) depicts the plots of fluxes that have two

effectors (substrates or regulators) vs. each variable separately. Panel (C)

shows flux v1 vs. its participating variables. In all plots, the actual fluxes, as

known from the original model, are plotted in red, while blue shows the

min-energy fluxes.

search and global full system parameterization. This module
involves an optimization task, which ideally yields valuable
information regarding the likely profile of the missing data.
The first step in this module consists of selecting a metabolite
pool that is close to the missing data, includes a concentration
profile, and has influxes and effluxes that are at least partially
characterized. As an example, assume time series data for lysine
(X3) were missing in the Curien model. The idea is to infer the
missing data from other metabolites and/or identifiable fluxes.
For instance, information regarding lysyl-tRNA could provide
valuable hints regarding V(Lys)tRNAsth: namely, one could assume
a power-law or Michaelis–Menten function to infer X3 from the
data for the accumulation of lysyl-tRNA. In this particular case,
the computation of X3 from V(Lys)tRNAsth at different time points
would actually be quite simple, as both functional formats can be
transformed into linear equations.

If such an inference is not feasible, other biological
information is needed and must be supplied on a case-by-
case basis. For instance, biological arguments may provide
clues regarding amounts that might reasonably be added to
formerly identified flux sets. In some cases, measurements
fall below the detection limit, so that no numerical data are
available, although the biology of the system mandates that
the concentrations are not zero. The detection limit, mass
conservation, and possibly other considerations can serve as
useful constraints for the optimization algorithm. The output of
this module thus consists of substitutes for some of the missing

FIGURE 10 | This figure shows the same plots as in Figure 9 with the

difference that the plots in blue are the min-energy fluxes after fixing

the folding-over problem. Panel (A) shows the one-variable fluxes vs. their

substrates. Panel (B) depicts the plots of fluxes that have two effectors

(substrates or regulators) vs. each variable separately. Panel (C) shows flux v1
vs. its participating variables. In all plots, the actual fluxes, as known from the

original model, are plotted in red, while blue shows the min-energy fluxes after

resolving the folding-over problem.

data profiles, along with their associated parameter values. In
other parts of the workflow, these are treated like experimental
data.

The “validation of functional form and regulation” step
assesses the appropriateness of the functional formats for the
flux representations. A first and obvious criterion is the quality
of the fit, which is necessary, although not sufficient (Voit,
2011). A second criterion is the detection or lack of “runs in
residuals” (Draper and Smith, 1981). If no appropriate format
and parameterization can be found, it is quite probable that
important components of the pathway are missing from the
model. An example is the situation where a flux decreases with
increasing, reasonable substrate concentrations. Such a trend is
counterintuitive and may suggest that a regulator is missing from
the model. If so, DFE can possibly help identify what shape
the dynamic trend of the regulator must have to remedy the
discrepancy. A scan of the dynamics of all variables in the model
may even identify candidates, although such inferences are still to
be tested experimentally. Examples of this situation are presented
elsewhere (Dolatshahi et al., 2016a,b).

Beyond the quality of fit and run test, no true validation
is possible, because the fluxes are unknown. Even so, the
“validation of functional form and regulation” step ensures
reasonableness and flags fluxes that are computed as negative,
exhibit unduly high magnitudes, or are apparently lacking
important contributing variables.
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FIGURE 11 | Fluxes v1 to v10 with the exception of v8 are plotted vs. time. The red curves are the min-energy fluxes after solving the folding-over problem,

while the blue curves show the actual fluxes. It is evident that the fluxes v3, v6, v7, v9, v10 are almost identical and overlapping and that our method has recovered

these fluxes.

Assessment of the Inferred Fluxes and
their Parameters
Once the functional forms and regulations are considered
satisfactory and the corresponding parameters are estimated,
it is necessary to test whether the estimated parameter set is
essentially unique or whether substantially different solutions
exist. This identifiability and sloppinenss step (e.g., Gutenkunst,
2007a,b; Vilela, 2009; Raue, 2013; Villaverde and Banga, 2013;
Tafintseva, 2014; Tönsing et al., 2014) is particularly pertinent
if the data are noisy or some of the data were not measured
but inferred in earlier steps. This global analysis often utilizes
Monte Carlo simulations, in which a large-scale random search
is anchored in the estimated, optimal parameter set {Pi}, which
serves as the starting point for the global optimization. The
differences in the sets of newly estimated parameter values
for each flux and each experiment are collectively used to
determine admissible ranges for the parameters of the system
and starting values for global optimization. This last estimation
step entails a combination of different optimization techniques,

which may begin with evolutionary (genetic) algorithms that
provide coarse solutions and are followed up with steepest
descent algorithms that refine these solutions. The objective
function for this purpose is the usual sum of squared errors
over all time points, metabolites, and datasets, but may also
include a penalty formetabolite concentrations that were inferred
rather than directly measured. The ideal outcome of this step is
either an essentially uniquemodel parameterization or a compact
ensemble of models with parameter values that permit some
flexibility without compromising the data fit.

CONCLUSIONS AND OUTLOOK

The goal of this article was to extend the utility of DFE to the
relatively common scenario where the algebraic system of fluxes
is underdetermined or some time series data are missing or
incomplete.

Initially, the concept of lower-dimensional representation in
the form of a so-called Gamma-space and a Gamma-trajectory
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FIGURE 12 | Step-by-step procedure for the proposed extension of dynamic flux estimation (DFE).

was introduced. This representation is especially useful when
the number of degrees of freedom is low. Reasonable biological
constraints like smoothness over time and non-negativity of
fluxes were taken into account to constrain the feasible space
even further. In particular, a minimum-energy criterion was

considered, and solutions were discarded in which fluxes were
not representable by mathematical functions, due to non-
uniqueness. The concepts were illustrated with a model of
aspartate metabolism in the plant Arabidopsis. The minimum-
energy flux set did not match the actual flux profiles for this
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pathway, even though the metabolite data were recouped with
a set of fluxes that had lower magnitudes than in the original
model. The addition of biologically reasonable constraints
reduced the discrepancies. In particular, it was known that
a certain flux, v6, is a function of only its substrate. This
knowledge helped us reshape the minimum-energy flux, with
the consequence that more than half of the resulting fluxes of
the system became identifiable and indeed matched the original
flux profile. Additional knowledge—or assumptions—about the
fluxes can potentially constrain the feasible space of solutions
further and may recover the original flux set. For example,
knowing (or assuming) that a certain flux follows a specific
functional form can potentially lead to a determination of this
flux and decrease the degrees of freedom by one (cf. Iwata et al.,
2013).

More generically, it is not always clear what optimality
criteria or constraints should be evoked to reduce the feasible
set of solutions, where all fit the concentration data exactly.
Nonetheless, the identification and characterization of feasible
flux sets may lead to a better understanding of the system and
possibly aid the design of additional experiments that could
effectively fill the gap and recover the true fluxes. Ideally, such
experiments should yield data where all (most, or many) variables
cover as much of their relevant substrate ranges as possible.

On a complementary trajectory, incomplete or missing data
render the direct employment of DFE for the task of parameter

estimation impossible. Nonetheless, a mixed strategy of DFE
and optimization may alleviate the problem and lead at least to
subsets of identified fluxes.
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