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Through elegant studies in fungal cells and complex organisms, we propose a unifying
paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate
with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate
telomere structure and function. Four critical factors are involved. First, TBPs that
commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-
stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding
proteins. Each contributes independently or, in some cases, cooperatively, to provide
a minimum level of telomere function. As a result of these minimal requirements and the
great abundance of homologs of these motifs in the proteome, DNA telomere-binding
activity may be generated more easily than expected. Second, telomere dysfunction
gives rise to genome instability, through the elevation of recombination rates, genome
ploidy, and the frequency of gene mutations. The formation of paralogs that diverge
from their progenitor proteins ultimately can form a high frequency of altered TBPs
with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian
shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor
in the evolution of TBP complexes is the formation of mutually compatible interaction
surfaces amongst the TBPs. These factors may have different degrees of importance in
the evolution of different phyla, illustrated by the apparently simpler telomeres in complex
plants. Selective pressures that can utilize the mechanisms of paralog formation and
mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic
changes.

Keywords: telomeres, evolution, non-LTR reverse transcription, telomerase, models, stress response

INTRODUCTION

Telomeres, the DNA-RNP structures present at the termini of all eukaryotic chromosomes, are
essential for genome stability and function. The telomere serves two functions that are fundamental
for viability. The first is to provide a solution to the end-replication problem. This problem refers
to the inability of the lagging strand DNA of semi-conservative replication to maintain its terminal
RNA primer at the 5′ end of any replicating linear molecule (Levy et al., 1992). The leading
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stand, in contrast, creates a blunt ended telomere at the other
terminus. The lagging strand will form one 3′ overhang terminus
(Kazda et al., 2012; Bonetti et al., 2013; Ghodke and Muniyappa,
2013). Continuing rounds of semi-conservative replication will
result in the loss of DNA primers, leading to attrition and
chromosome loss. The processing of the blunt-ended telomere is
variable in different organisms (Kazda et al., 2012; Bonetti et al.,
2013). Regardless, the loss of a terminal DNA primer predicts the
inevitable attrition of terminal sequence, and, ultimately, cellular
inviability.

The solution to this problem is based on the terminal
3′ overhang that serves as a substrate for recombination or
telomerase. Telomerase is the RNP-reverse transcriptase that
adds G + T-rich simple sequence onto the 3′ terminus using
the RNA as a template. The core enzyme rate and processivity
are regulated by a multiplicity of holoenzyme components and
telomere binding proteins (TBPs; Tucey and Lundblad, 2014;
Vogan and Collins, 2015). Telomerase can catalyze addition in
a processive or a distributive mechanism. The repeats added are
most often identical, but, in some organisms (e.g., fungal systems)
can add inexact repeats. The irregular repeat is thought to be
formed by misalignment of DNA on the RNA template (Petrov
et al., 1998; Forstemann and Lingner, 2001). As an example
of holoenzyme regulation, the budding yeast Cdc13 protein
associates with and recruits the auxiliary protein, Est1. Est1, in
turn, recruits the telomere reverse transcriptase (TERT, Est2 in
yeast) and the complex with the RNA subunit (TR) finally recruits
the Est3 subunit (Tucey and Lundblad, 2014).

The second function of a telomere is to overcome the end-
protection problem (de Lange, 2009). That is, the telomere must
not be accessible to non-specific enzymes, including nucleases,
ligases, and recombinases that may lose, destabilize, or rearrange
the telomere, respectively. In this sense, the telomere is a
cap against activities that lead to genomic dysfunction, while
allowing the access of positive and negative regulators of telomere
addition.

One protective function is the feedback regulation of telomere
size that is present in all organisms, although the mechanisms
may vary (Evans and Lundblad, 2000). In yeast, a competition
between negative and positive regulators of telomerase form a
steady state using the ATM pathway (Lustig and Petes, 1986;
Bianchi and Shore, 2007; Sabourin et al., 2007; Hirano et al.,
2009; Martina et al., 2012; Ribeyre and Shore, 2012). ATM (Tel1)
normally arrests cells, in response to double strand break, in
the G2 phase of the cell cycle, until repair of DSBs is complete
(Usui et al., 2001). However, the telomeric DSB is protected from
both repair and genomic instability in part by this equilibrium
creating an “anti-checkpoint,” a part of the telomeric cap function
(Carneiro et al., 2010).

In duplex DNA, the telomeric protein Rap1 forms the basic
telomeric chromatin in yeast (Wright et al., 1992). Some of the
major TBPs (e.g., in yeast Rap1 and the yKu70/80 heterodimer)
protect the telomere from non-homologous end joining and
inhibit end fusion (Frank-Vaillant and Marcand, 2002; Pardo
and Marcand, 2005). Another cap structure, the Cst1/Stn1/Ten1
(CST) complex, also serves as a physical cap. Telomerase also
appears to have the ability to block the end of the telomere

(Blackburn et al., 2000). Finally, in ciliates, Hoogsteen base-
paired G4 structures, such as the G-quartet, associate with
TBPs and telomerase to both act as a cap and as a regulator
of telomerase addition in vitro and in vivo (Fang and Cech,
1993a; Oganesian et al., 2006). Taken together, the activities of
homeostatic factors, telomerase, capping proteins, and G4 DNA
TBPs control telomere size in context of the cell cycle.

The ATR pathway, however, is another part of the telomeric
DNA checkpoint control. If telomerase does not add a
compensatory amount of G + T repeats, cells will begin to
senesce (Abdallah et al., 2009). If the telomere shortens beyond
a threshold size, the cells will undergo a G2 arrest and a further
loss of telomere sequences mediated by both recombinational
and replicative DNA damage, leading to inviability. Ultimately,
survivors use either a break-induced recombination or a rapid
telomere elongation process to form elongated telomeres (Lustig,
2003; Pickett et al., 2011; Pickett and Reddel, 2012). The
mechanistic details may differ along the evolutionary spectrum
of organisms, but the basic paradigm remains unchanged. In this
theoretical perspective, we will focus on the TBPs that associate
with telomerase generated telomeres.

THE DIVERSITY OF TELOMERE BINDING
PROTEINS

Evolutionary biologists and telomere researchers have long
tried to explain the wide diversity of many proteins involved
in telomere function and structure (Linger and Price, 2009).
Models for the evolution of different modes of telomere
maintenance are beginning to show promise. The major modes
of telomere addition are telomerase and non-LTR reverse
transcriptases. Telomerase may have formed from non-LTR
reverse transcriptases with a specificity high in G + T content
(Garavis et al., 2013). In contrast, reverse transcriptase possibly
continued to be used when target site sequence bias is absent.
These may well be the primary ancestral mechanisms of telomere
formation, although the ancestral origin is, by definition, a matter
of speculation. Evolution may at times repeat previously used
mechanisms. For example,Drosophila arose long after primordial
telomeres, yet uses telomeric non-LTR retrotransposons that are
(telomere specific, Villasante et al., 2008). The mechanism used
in Drosophila may lend insights in an evolutionary context,
with some caution that Drosophila may use a variation on a
theme.

Most non-LTR retrotransposons appear to have formed
degenerate heterochromatin that was subsequently maintained
by recombinational mechanisms (Villasante et al., 2007).
Recombinational activity is used in extant organisms as an
alternative telomere pathway in the absence of telomerase
(Louis and Haber, 1990; Preiszner et al., 1994; Mizuno et al.,
2008; Li et al., 2009; Torres et al., 2011). Investigators have
observed rolling circle replication, unequal sister chromatid
exchange, and mechanisms of simple sequence elongation
(Tomaska et al., 2004a, 2009; Torres et al., 2011). We cannot
exclude these uncharacterized mechanisms in ancestral telomere
formation.
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The mechanisms of telomere elongation are presented to
provide context. Our focus, however, will be on the exploration
of the curious rapid evolution of the TBPs in the telomerase-
based systems. These data are not consistent with either a simple
movement toward complexity or simplicity during evolution
(Gould, 1996; de Lange, 2015). The complexity of the plant
genome and its sophistication in development do not explain
the simplicity of its telomere with little difference between
complex plants and algae. We feel that rapid TBP evolution
can be explained by a set of basic principles that governs
diversity.

A Model for the Conservation and
Diversity of TBF
Orthologs and Parologs
The major molecular biological means of describing closely
related protein sequences is homology. However, the
evolutionary significance of homology can be misinterpreted
without a comparison among organisms of differing complexity.
The significance of partial homology is difficult to interpret
when applied to evolution. A protein having partial homology
throughout all kingdoms and phyla tells us little about the
directionality of inheritance during evolution. Homology and
partial homology are anathema to many evolutionary biologists,
providing information only about sequence identity, rather than
evolutionary patterns.

The initial insights into evolutionary patterns were
remarkable, having arisen independently of any knowledge
of DNA. These theoretical and mathematical principles
were based on abstract evolutionary concepts. The strongest
hypotheses have weathered time to the genomic era.
The field is finally in a position to test specific questions
regarding the blueprints for telomere evolution at a molecular
level.

Some specific terms that were last seen by most of us
in a textbook require review. Two types of evolutionary
relationships, orthologs and paralogs, are central to the
outline of much of evolutionary change. The inheritance
patterns and relative homology of proteins argue for a
vertical process (as in an evolutionary tree) in evolution.
In this way, a single ancestral progenitor can be envisioned
by the orthologs among different organisms (Koonin,
2005).

Paralogs, on the other hand, are protein products of DNA
or genomic duplication that lead to horizontal evolution;
particularly two duplicate proteins, one of which evolves from
the progenitor in a unique direction under strong selective
conditions (Figure 1). Sometimes, both paralogs evolve into
new products. Ultimately, sequence and evolutionary analysis
are required to provide more evidence for the existence of a
paralog. This paralog can subsequently become an ortholog of a
long line of species. Examples of telomeric paralogs are shown in
Table 1.We propose that telomere dysfunction creates a variety of
stress responses and selection pressures that use elevated paralog
formation and mutagenesis that lead to an exceedingly high rate
of TBP evolution.

FIGURE 1 | Paralog formation and mutagenesis of a single ORF1.
Under conditions of stress response and high selectivity, recombination and
mutagenesis increase the frequency of paralog formation during evolution. In
this process, recombination results in duplication of the ORF1 coding
sequence. The first copy, when separated by recombination, remains stable
as ORF1. Under selection, the paralog undergoes an elevated level of
mutagenesis caused by stress in response to dysfunctional telomeres.
Unknown multiple rounds of mutagenesis take place in evolutionary time to
ultimately give rise to a unique functional protein, ORF2. In the ORC1
example, paralog formation gives rise to Sir3, a protein involved in silencing of
genes and the structure of telomeres in several yeast strains.

The Conserved Elements of TBP
There is great diversity among proteins that bind to telomeric
DNA and that associate with other telomeric proteins or G4
structures. However, there is a subclass of proteins and DNA
structures that are present in most organisms and serve a
conserved function. Since these are important in any analysis, we
will first discuss the highly conserved telomere capping proteins
and DNA structures.

The Conserved MR (X/N) Complex
The primary roles of MRX in the signaling and processing of
DSBs are a major part of the highly conserved ATM checkpoint
pathway (Foster et al., 2006; Dimitrova and de Lange, 2009;
Amiard et al., 2011). However, the telomeres of extant organisms
use ATM-MRX/N (The yeast Xrs2 is replaced with NBS in
all other organisms). The genetic characterization of telomere
homeostasis in Saccharomyces cerevisiae led to the discovery of
ATM-mediated anti-checkpoints. Similar schemes are likely to be
present in most organisms, including Drosophila (Ciapponi et al.,
2004; Gao et al., 2009).

In yeast, the ATM ortholog, Tel1 (Lustig and Petes, 1986;
Greenwell et al., 1995), coupled with MRX, associate exclusively
to short telomeres (Chang et al., 2007; Sabourin et al.,
2007). These associations lead to telomerase activation. The
counteracting inhibitory activities, Rif1 and Rif2, are recruited
to longer telomeres. Rif1 acts to displace the Tel1 molecule,
while Rif2 inhibits Tel1 binding to telomeric DNA (Martina
et al., 2012). This feedback cycle continues whenever telomeres
fall into a range that is sensed by an unknown mechanism to
be too short or too long, creating a telomere size homeostasis.
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TABLE 1 | Examples of likely Tbp paralogs.

Paralog1 Paralog 2 Paralog 3 Paralog 4

S. cerevisiae ORC1 SIR3 Liaw and Lustig, 2006

EST1 EBS1 Zhou et al., 2000; Luke et al., 2007

SIR2 HST1 HST2 HST3 SGD

STN1∗ RPA2 Sun et al., 2009

TEN1∗ RPA3∗ Sun et al., 2009

Arabidopsis TRFL1 TRFL2 TRFL4 TRF4 Fulcher and Riha, 2015

TRB1 TRP1 TRF9

PARP1 PARP2 PARP3 Boltz et al., 2014

POT1a POT1b Cifuentes-Rojas et al., 2010

Rodentia POT1a POT1b Hockemeyer et al., 2006

PARP1 PARP2 Cook et al., 2002

TRF1∗ TRF2∗

Humans EST1a EST1b EST1c

TRF1∗ TRF2∗ Broccoli et al., 1997

STN1∗ RPA2∗ Bryan et al., 2013

TEN1∗ RPA3∗ Bryan et al., 2013

∗ Paralog was formed in an ancestor and subsequently maintained. Others appear to have formed in a particular species. Rodentia refers to mice and rat species. This is
not a complete list and database homologies indicate that there are likely to be more TBF paralogs.

Such an equilibrium between mechanisms of telomere attrition
and deletion and mechanisms of telomere elongation is present
in both normal and oncogenic cells (Lustig, 2003; Pickett
et al., 2011; Pickett and Reddel, 2012). Details of this model
are far more complex (Sreesankar et al., 2012). For example,
Rif1 and Tel1 operate by altering the timing of replication
(Peace et al., 2014; Sridhar et al., 2014) and, very likely, TBP
binding is regulated temporally within the context of the cell
cycle.

The NHEJ Protein Ku Complex Obstructs the
Formation of Telomere Fusions
The third conserved feature of telomeres is terminal capping. One
of these complexes is the Ku70/Ku80 heterodimer (Polotnianka
et al., 1998; Baumann and Cech, 2000). Ku, paradoxically, plays
a vital role in non-homologous recombination of blunt-ended
DNA damage. However, Ku can also act as an inhibitor of
ligation at telomeres. Indeed, Ku70/Ku80 acts to prevent the
deleterious ligation of two telomeres. Inhibiting the formation
of dicentric chromosomes (Polotnianka et al., 1998; Williams
and Lustig, 2003). Dicentric chromosomes undergo a series
of breakage-fusion-breakage cycles, as observed in maize
(McClintock, 1942). While higher plants tolerate this damage
during mitosis, very few other organisms are resistant to this
process. Dicentric chromosomes in most organisms fail in
meiosis.

CST, the Telomeric RPA Complex?
The terminal CST capping complex mimics the structure
of Replication Factor A (RPA). However, their activities are
functionally distinct (Wellinger, 2009). CST, as RPA, acts at
multiple genomic sites (Miyake et al., 2009). However, rather
than acting as a telomeric cap, RPA stabilizes single-stranded
DNA at the telomere and elsewhere (Price et al., 2010; Chen
et al., 2012; Wang et al., 2012). Both RPA and CST form complex

trimeric structures but only contain small patches of sequence
homology. However, crystal structure analyses have shown that
the RPA2 and STN1 subunits of RPA and CST, respectively,
have very similar structures, as do RPA3 and TEN1 (Sun et al.,
2009). The maintenance of protein structure is also responsible
for interaction in the absence of extensive homology. Given the
prevalence of both CST and RPA in all eukaryotes, ancestral RPA
subunits may have formed paralogs that subsequently diverged
in primary sequence, while maintaining the structure of the RPA
and CST subunits. In reality, this is probably often the case,
but is usually reflected in the primary sequence. Hence, these
“structural” paralogs can be missed in the absence of extensive
sequence homology.

Telomeric Repeat-Containing RNA (TERRA) and
T-Loops: Conserved Nucleic Acids
Several nucleic acids play important structural roles at many
telomeres. First, t-loop structures, the result of intrachromatid
invasion of the telomeric terminus intomore proximal sequences,
remain stable and may hide the single strand from telomere
addition. It may also act as either a structural block or part
of the telomere replication process (de Lange, 2002; Luke-
Glaser et al., 2012). Second, in most organisms, unique telomeric
repeat-containing RNA (TERRA) transcripts are initiated within
a subtelomeric element and proceeds in a 5′ to 3′ direction
toward the terminus. Very little is known about the function
of TERRA at the telomere. (Maicher et al., 2014). However,
in exciting new research, G4 DNA acts synergistically with
TERRA to form complex structures, some of which could
extend or shorten the telomere (Xu, 2012). TERRA also
appears to regulate the very short and elongated telomeres
of the alternative pathway of telomere addition (Arora and
Azzalin, 2015). TERRA may protect the telomere and regulate
telomerase addition, as well as participate in non-telomeric
functions.
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The Conservation of G4 DNA In Vivo
G4 DNA consists of non-canonical Hoogsteen base paired
structures present in the high G + T content of the telomere.
The formation of these structures has been postulated to be a
conserved element in the evolution of telomeres. The evidence
for the presence of G4 DNA is its ability DNA to bind unique
ligands and clear histones from promoter regions.

G4 DNA can form at both regular and irregular repeated
telomere sequences (such as yeast) in vitro. There is strong
evidence for the function of G4 DNA at the telomere in vivo. In
general, G4 DNA has a protective function, albeit redundant with
other overlapping functions. G4 DNA also has a high binding
affinity for Mre11. For example, in the absence of the normal
capping mechanisms, G4 DNA can block exonuclease function
(Smith et al., 2011). Both findings are consistent with the view
that G4 DNA served as an initial cap early in evolution (Garavis
et al., 2013). In some contexts, G4 structures alone can have
a deleterious effect. For example, in yeast, the coating of the
single-strand overhang with RFA prevents the interference of G4
structures with lagging strand semi-conservative DNA synthesis
(Audry et al., 2015). Cdc13 has also been implicated as a G4 TBP,
given the simultaneous loss of a G4 DNA cap function only in
cdc13-1 cells (Smith et al., 2011).

Both positive and negative G4 functions at the telomere have
been substantiated in the context of a vast number of other
studies. Studies in the ciliate Oxytricha provide the best evidence
for a positive function of G4 DNA in vivo. Under a complex
set of interactions between the major two telomere proteins,
TEBF alpha and TEBP beta, TEBP beta coupled with G4 DNA
structures can facilitate telomere elongation (Oganesian et al.,
2006). Indeed, the G4 structure may serve as a primer for
telomerase. These studies recapitulate earlier in vitro findings
(Fang and Cech, 1993b). Similarly, G4 DNA in humans acts as
a positive regulator of telomere elongation (Moye et al., 2015).

As noted, the presence of G4 DNA is not restricted to
the telomere, but has activity in other regions. These regions
include chromatin enriched for rDNA and promoters of genes
encoding both transcriptional regulators and telomeric proteins
(Paeschke et al., 2005). Indeed, Sgs1 helicase is required for
transcriptional activation, suggesting that unwinding of the G4
DNA is needed for activation (Hershman et al., 2008). Supporting
this view, multiple experiments in yeast and humans have shown
that both Sgs1 and Pif1 helicases bind to and unwind the G4
DNA conformation (Han et al., 2000; Budhathoki et al., 2015;
Duan et al., 2015). G4 DNA binding proteins (G4BP) are also
likely to be regulators of telomeres through their action at
promoters. Hence, the telomere may be influenced either directly
through G4BP binding or indirectly through the regulation of
the transcription of a TBP. Telomeric imperfect repeats can also
form G4 structures that are thermodynamically distinct (Lustig,
1992). What is not known is what type of Hoogsteen base paired
structures forms in vivo.

The Minimal Modular TBP
Previous investigators have postulated the least number of
modules for a common functional TBP (Linger and Price, 2009).
These modules consist of at least a c-myb (dsDNA) and/or an OB

(dsDNA) binding motif. In plants, a c-myb/histone H1 binding
domain is a frequent telomere-binding element (Hwang and Cho,
2007). Hence, the combination of the DNA binding domains and
G4 structures should be considered as an in cis telomere motif
that has an essential role at the telomere. Many proteins that
play widely different cellular roles can associate with one or more
modules (Figure 2).

This modular structure helps to explain the finding that
primary ciliate TBP (TEBF beta), the yeast Cst1 (Cdc13), and the
human PPT1 TBP bind both to single-stranded DNA via OB-
folds. Analogously, TEBF alpha shares homology with POT1 and
binding to single-stranded DNA (Xin et al., 2007). G4 structures
recruit MRX in yeast, thereby providing a source for homeostasis
and a telomeric cap (Ghosal andMuniyappa, 2005). Whether this
is a common phenomenon is not yet known.

The Diverse and Variable TBP: The Role
of Stress Response and High Selection
Pressure in Diversity
Stress response at the level of the cell cycle may initiate
selection over an evolutionary time scale. In the context of
the cell cycle, cells carrying a non-functional TBP may lead to
dysfunctional telomeres that respond through a cellular stress
mechanism. Results from the Lundblad lab suggest that after
telomere loss, but before significant telomere loss, pathways
with differential dependencies on telomeric regulators produce
differing pathways of senescence (Ballew and Lundblad, 2013).
Moreover, microarray studies reveal a major reprogramming of
global gene expression after the loss of telomerase (Nautiyal
et al., 2002), We have also generated evidence that argues for
two pathways that retard the rate of senescence in vivo: the
DSB and replicative repair pathways. The attempts to repair
continue even under senescent conditions. These pathways
may also be required in wild type cells. These data argue for
multiple senescence-specific telomere loss pathways (Gao et al.,
2014).

The physiological states that have conferred known cellular
stress responses include replication stress response, heat shock
stress response, and the oxidative stress response pathway. The
oxidative response, for example, induces pathways that prevent
the damage created by free radicals to a multiplicity of substrates.
One of the response factors is the Ogg1 DNA glycosylase
that catalyzes the repair of base excision damage induced by
oxidation (Lu and Liu, 2010). Interestingly, ogg1 mutants confer
elongated telomeres, raising a possibility of a link between
oxidative stress and telomeres (Akerfelt et al., 2010; Lushchak,
2011). In bacteria, the SOS response to massive DNA damage
includes the activation of recA that coats single-stranded DNA
and allows DNA repair (Witkin, 1991). The recA response clearly
shows that stress response are common in all phyla (Jin et al.,
2015).

We propose a stress response for telomere dysfunction
that acts over an evolutionary level time frame. The telomere
dysfunction would lead to a more continuous period of
enhanced recombination and mutagenesis. In this context,
cellular stress would bemaintained throughmultiple generations.
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FIGURE 2 | Minimal function cis-acting elements at the telomere. A minimal telomere consists of different combinations of modular domains. (A) MR, referring
to the MRX and MRN (duplex binding) complexes and the CTC complex that binds to single-stranded are required telomeric DNA binding proteins that are common
to the DNA of most telomeres. Both proteins will result in far greater stability. (B) In the second module, the DNA duplex binding is mediated by c-myb binding
sequences. TBP will also bind to G4DNA structures. Of course combinations of these modules are possible and in both cases MR binding to duplex DNA and the
Cst1/Stn1/Ten1 (CST) binding to single stranded DNA will increase stability. Green indicates c-myb. This model is similar to the one proposed by Linger and Price
(2009). Each modular protein can mutate or recombine with other modules to give rise to the possibility of modular based mutagenesis. (C) In plants, a different
module is found. A single essential structure is formed that contains the c-myb domain with histone H1 folds to bind duplex DNA. Also, TBP associates with
G4DNA. Other proteins that are present in plants and bind to ends include the MR and CTC complexes as in animal and fungal species. Ultimately the MR structure
provides equilibrium of telomere sizes that serve to protect the end from double-strand break processing enzymes, resulting in the anti-checkpoint.

Several investigators have provided evidence for an elevation
in recombination and mutagenesis in response to telomere
replicative DNA stress (Shor et al., 2013; Meena et al., 2015).
There is also evidence for TERRA-mediated replicative stress
(Lopez de Silanes et al., 2014). Specifically, TERRA might
participate in DNA-RNA G4 structures at telomeres and, at
Watson-Crick based paired R-loops, forming G-loops (Duquette
et al., 2004) The possibility of a G4 R-loop that could impede
replication has also been a topic of speculation (Xu and
Komiyama, 2012).

The induction of recombination under telomere stress could
give rise to additional duplication events. One member of
this pair would encode the progenitor protein of a telomere-
independent nuclear chromatin protein (such as Orc1) that is
maintained under selection. The second copy would be free to
diverge into a TBP from Orc1. Alternatively, duplicated DNA
encoding two diverged TBPs may alter their telomeric roles.
We also propose an elevated rate of mutagenesis allowing rapid
sequence divergence. In some situations, only a few essential
residues may be necessary to form a distinct protein function.
Following multiple generations under stress, partially stable
proteins can attain incremental changes in protein function.

What might be a signal for a stress response that initiates
the rapid evolution of TBP? For a signal to be effective, cells
must be acutely sensitive to multiple indicators of telomere

function. These indicators must measure parameters including
(a) the state of the leading and lagging strands of semi-
conservative replication, (b) the activity of telomerase, (c) the
non-nucleosomal telomeric chromatin structure, (d) telomere
size changes, (e) the nucleosomal subtelomeric heterochromatic
state, (f) telomeric G2 cohesion, and (g) non-disjunction. We
believe that the unique integration of telomeres into many
cellular processes that contribute to and are influenced by
telomere function may increase the rate of TBP evolution. The
degree of telomeric damage cannot be so severe that the defect
induces a cell checkpoint pathway within a single cell cycle.
Rather, subtler defects may induce a response that leads to the
formation of paralogs and novel factors that can resolve the stress
over evolution.

Different modules may also respond differentially to stress
response or selective pressure. An intramolecular recombination
event with a homolog may lead to exon shuffling among the
TBP. An additional class of paralogs may have domains that are
differentially influenced bymutations (see Sir3 discussion below).

In addition to paralog formation and high levels of
mutagenesis, rapid alterations in proteins can result in simple
substitutions of other known proteins as well as protein loss. The
data that support the former viewpoint has arisen from close
examination and experimentation of the primeval yeast whole-
genome duplication (WGD; Hufton and Panopoulou, 2009).
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According to one Bayesian analysis of paralogs, WGD tends to be
involved in generating paralogs of a similar function (Guan et al.,
2007). However, a recent study has revealed that paralogs formed
after yeast WGD undergo a wide range of divergence (Soria et al.,
2014).

EVIDENCE FOR ELEVATED PARALOG
AND MUTATIONS IN THE RAPID
EVOLUTION OF TBP-A YEAST CASE
STUDY

Gene Duplication and Divergence of One
Paralog
Orc1 Paralog Formation with Sir3 in Budding Yeast
The yeast WGD serves as an outstanding model system for the
study of the processes that lead to paralogs of differing function
(Soria et al., 2014). An example (Figure 3) that has been examined
inmultiple fungal species (Capaldi and Berger, 2004) is the Origin
of Replication Subunit 1 (Orc1). One of the paralogs of Orc1 in
S. cerevisiae [and very closely related species (e.g., S. byanus)]
is the Silencer Information Regulator 3 (Sir3; Liaw and Lustig,
2006).

Sir3 is a unique nuclear chromatin protein that functions
in mating type and telomere silencing protein. In its mating-
type silencing role, Sir3 maintain two of the three cassettes of
mating-type information in a silent state, leaving only one of
the cassettes in an expressed state (Lustig, 1998). Sir3 is essential
for maintaining, but not establishing, the silencing of HML
alpha and HMR a, present close to the left and right telomeres
of chromosome III, respectively. Studies are conducted in the
absence of mating type switching by using strains that lack the
homothallic switching: gene,HO. In ho cells, incapable of mating
type switching, only one mating type allele is expressed in haploid
cells in the presence of the Sir3-dependent silent cassettes. The
mating of ho haploids of different mating types produces diploids,
permitting meiotic analyses. Meiosis is, of course, a significant
selective force in evolution.

Sir3 is also essential for the silencing of ectopic telomere-
adjacent genes associated with heterochromatic regions, a process
termed telomere position effect (TPE; Gottschling et al., 1990). It
is unlikely, however, that TPE plays a large role in cells lacking the
ectopic silencing marker. Rather TPE is a quantitative read-out
of the magnitude of heterochromatin formation in subtelomeric
regions. In that regard, Sir3-dependent fold-back structures form
at the subtelomeric/telomeric junction during maintenance of
heterochromatin, a conclusion based on genetic and biochemical
studies (Hecht et al., 1996) The fold-back structures resulted in
homodimerization and heterodimerization of Sir3 and Sir4 in
the telomeric regions and between telomeric and subtelomeric
regions. At these sites, the heterochromatic proteins Sir3 and
Sir4 interact with the C-terminal domain of the telomeric Rap1,
and with N-termini of histones H3 and H4 (Kitada et al., 2012).
Sir3 may also be important for the deletion of potential t-loops
that may serve a sizing and protective functions (Bucholc et al.,
2001)

Both the paralog Sir3 and the Sir4 protein associate with
heterochromatic condensed chromatin and are necessary for
maintenance, but not the establishment of silencing and
heterochromatin. At higher concentrations, Sir3 has the unique
property of spreading heterochromatin over an increasing
distance from the telomere, a classic feature of eukaryotic
heterochromatin (Buchberger et al., 2008)

The yeast Orc1 protein is a 914 amino acid (aa) protein
with strong overall homology to other fungal Orc1 species. Orc1
contains the bromodomain adjacent homology (BAH) domain,
an AAA ATP activity, and a Cdc6 winged helix domain (Wang
et al., 1999; Capaldi and Berger, 2004). Orc1 has many of the
features that are required to associate with the chromatin present
during the initiation of DNA replication (Jiang et al., 2007;
Prasanth et al., 2010; Thomae et al., 2011; Figure 3). Sir3 has 50%
amino acids identity or similarity with these domains of Orc1.
The most diverged portion of Sir3 primary sequence from Orc1
sequence is the 145aa C-terminal domain (CTD) present in Sir3.
We have defined the CTD by the terminal sequences and the
silencing activity displayed when the CTD is tethered to a specific
chromosome (tethered silencing) and does not refer intrinsically
to any structure (Liaw and Lustig, 2006; Figure 3).

The CTD has been investigated by (a) a tethered silencing
assay of the domain containing Sir3 in trans, (b) CTD
crystallization, (c) CTD mutational analysis, and (d) a study of
the CTD in context of the full length protein (Liaw and Lustig,
2006; Oppikofer et al., 2013). Two major conclusions can be
drawn from these studies. First, the CTD contains a dimerization
domain composed of a winged helix structure. Second, the CTD
has amutation of unknown function that is likely to be redundant
within the full length Sir3. This structure is likely to be required
for the assembly of histones and Sir gene products (Liaw and
Lustig, 2006). In addition, Both Orc1 and Cdc6 maintain residual
function in tethered silencing assays, suggesting a significant, but
insufficient, role of the Orc1 and Cdc6 winged helix in silencing
(Liaw and Lustig, 2006). Cdc6 can also physically associate with
Orc1, but not with Sir3 (Figure 4).

A close relative of S. cerevisiae, S. byanus can substitute
for ScSir3 in a mating assay, despite its minimal CTD
homology to ScSir3. We would predict that that domain of
CTD also forms a winged helix domain, although this is
uninvestigated. Such a rapid change in residues, however, may
be due to a neutral effect of indels (mobile integrants) after
the high levels of mutagenesis during the evolution of Sir3
(Figure 5).

Orc1/Sir3 Paralog Formation in Other Fungi
Our current studies show that a different form of Sir3 present
in the Orc1 progenitor results in a pathogenic relative of
S. cerevisiae, Candida glabrata. While ScSir3 behaves as a
silencing protein (Liaw and Lustig, 2006), Cg Sir3 functions
in a more elaborate silencing of many of the eicosapentaenoic
acid (EPA) adherens. The adherens are under both positive and
negative control for pathogenicity (Rosas-Hernandez et al., 2008;
Halliwell et al., 2012).

Interestingly, the adheren silencer is very close to the
telomere, implicating functional involvement (Liaw and Lustig,
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2006). Pathogenicity is also dependent upon other telomeric
proteins, including Ku and Rif1. Each telomere of C. glabrata
behaves differently in the context of silencing. The cgSir3
CTD is divergent from ScOrc1 or ScSir3 (Figures 6 and
7). We analyzed the Sir3 phylogenetic tree using Phylome
DB (www.phylomedb.org) (Huerta-Cepas et al., 2008; Huerta-
Cepas et al., 2014; Figure 7). Curiously, C. glabrata and
the closely related pathogen Nakaseomyces delphensis have
very similar CTD domains, but both are highly diverged
from S. cerevisiae Sir3 CTD to the level of insignificance
(Lustig, unpublished data). We therefore have operationally
termed this region the CTD2 region. The altered CTD2
function undoubtedly responds to a different set of selective
pressures, the expression of EPA adherens that are necessary
for pathogenicity (Ielasi et al., 2012). The C. glabrata obligate
haploid also has three mating type cassettes, reminiscent of
ScSir3, but not involved in mating type identity. Nonetheless,
one of these near the telomere is also is under the control
of Sir3 at a transcriptional level, remnants of a system that
may be in the process of evolving into a new function
(Yanez-Carrillo et al., 2014). Additional selection pressures,
yet to be deduced, may be present to influence CgSir3.
The functional residues of CTD2 have not been studied
(Figure 7). Study of this region also suggests that CgSir3
in S. cerevisiae and S. glabrata have an ancient common
ancestor.

The CTD, in this case, would not be expected to be highly
sensitive to mutagenesis, since the function of active sites
can be perturbed by only a few single mutations. However,
CTD2 may be similar to CTD1 in providing a mutational
buffer against functional change. Both types of Sir3 diverged
from Orc1 after whole genome duplication. Alternatively,
although remote, Orc 1 may act independently but at high
levels in paralog formation. In either case, the two forms
of Sir3 may have diverged rapidly to produce the extant
unique proteins (Fabre et al., 2005). Heterochromatin proteins
in other organisms (Sugiyama et al., 2005), such as HP1 of
S. pombe, share homology and function between centromere and

telomere heterochromatin but have no evolutionary relationship
to Sir3.

Thus, the Orc1/Sir3 system appears to be capable of two
functional changes via the Sir3 CTD domain. Although
a micro-evolutionary case, the paralogs are well suited
examples of proteins with differing function. We propose
that the elevation of paralog formation and mutagenesis
at an evolutionary scale can promote rapid deviations in
the related strains. Indeed, the divergence in CTD1 and
CTD2 supports such an enhanced level of mutagenesis.
Finally, we propose that this rate of adaptation is likely due
to a yeast stress response that elevates recombination and
mutagenesis.

The Separation of Two Telomeric
Functions by Gene Duplication:
Est1/Ebs1
Sir3 is not the only example of a paralog that can lead to
altered activity after WGD. Est1, a part of the telomerase
holoenzyme, has a paralog, Ebs1 (Zhou et al., 2000; Luke
et al., 2007). Ebs1 is a component of the non-sense-mediated
mRNA decay pathways. Indeed, non-sense-mediated mRNA
decay reduces telomere size (Lew et al., 1998). Ebs1 shares only
27% homology with Est1 throughout the protein, so that the
conserved domain involved in size control remains ambiguous.
Ebs1 is also present in a single Est1/Ebs1 protein in the more
distant pre-WGD Kluyveromyces lactis (Hsu et al., 2012). This
fusion protein is likely to be closer to the common ancestral
precursor protein. The precursor must have produced paralogs
during or after WGD, diverging into separate ScEbs2 and
ScEst1.

What Happened to RAP1? The Argument
in Favor of Hypomorphs!
Most Rap1 molecules share the Rap1 C-terminal (RCT) domain
(Chen et al., 2011). Rap1, in yeast, serves as the major
functional yeast TBP that also is a DNA binding protein

FIGURE 3 | Domain structure of Orc1 and Sir3. The paralog, SIR3, shares the highly conserved Bromo adjacent homology (BAH) domain associated with
transcriptional regulation, the AAA-type ATPase, and Cdc6 site. The sequence homology of ORC1 ends at amino acid 738 out of 914 residues. The Orc1 gaps are
amino acids that differ between Orc1 and Sir3. The CTD of Sir3 (amino acids 820–978) is predicted to have a winged helical structure similar to Cdc6. The winged
helix motif plays a role in DNA binding and protein/binding recognition, including the associations of histones H3 and H4. The numbered amino acid sequence refers
to Orc1 amino acid number.
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FIGURE 4 | Proteomic view of Association of Cdc6 with both Orc1 and Sir3 Protein-based associations are present between Orc1 and other yeast
nuclear factors. We conducted an SGD search for physical interactions between Orc1 or Sir3 and other cellular proteins using at least four experiments. Orc1 is
capable of associating with Cdc6 while Sir3 is not. In no experiment was Cdc6/Sir3 binding observed. One genetic interaction between Orc3 and Orc6 is also shown
in this figure.

FIGURE 5 | Sequence Homology of CTD (CTT) in differing Saccharomyces species. The lines (from top to bottom) display Sir3 from Saccharomyces
cerevisiae sequence, S. byanus, S. milkatae a, S. paradoxis, an independent S. byanus, S. castilli, and S. kudriavzevii. Yellow refers to identity, pink to high similarity,
and green to statistical similarity.

and a transcriptional activator of glycolytic and ribosomal
protein genes (Shore, 1994; Park et al., 2002). A great deal of
evidence has amassed for the function of mammalian RAP1
through multiple assays (Li and de Lange, 2003; O’Connor
et al., 2004; Bae and Baumann, 2007; Bombarde et al., 2010;
Chen et al., 2011; Arat and Griffith, 2012) and is the most
conserved protein at the telomere (Yang et al., 2011; Martinez
et al., 2013; Yeung et al., 2013). However, recent data revealed

the unexpected result that loss of RAP1 in both mice and
humans had no functional impacts at telomeres, but only in
transcription (Martinez et al., 2010; Kabir et al., 2014). This
could be the result of a requirement for the role in promoter
activation in a limited number of transcripts (Bae and Baumann,
2007; Bombarde et al., 2010; Arat and Griffith, 2012) or the
presence of a redundant telomere Rap1-like protein. Rap1may
be present then at human telomeres as an artifact of the
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FIGURE 6 | The fungal phylogenetic tree shows the two pathogenic species. On the left is shown the phylogenetic map for fungi showing the point of WGD
for clarity. On the right is a tree rooted in similarity to S. cerevisiae Sir3 that is discussed in the text. Green indicates the S. cerevisiae Sir3 and S. byanus. Two lines
below are depicted by the orange star are the Candida glabrata and Nakaseomyces delphensis strains. All strains are part of the ancestral WGD.

FIGURE 7 | High sequence similarity is present between C. glabrata (Cg) and N. delphensis (Nr). The two different CTD sequences are shown in two close
pathogenic species related to Candida. Red nucleotides shown identity and orange residues show similarities.

conserved heterodimer, TRF2/Rap1, at some promoters (Kabir
et al., 2014).

How could RAP1 make such an evolutionary leap? Is this
really due to a lack of function at telomeres? There are two other
possible considerations. First, the RCT domain that is similar to
the fission yeas S. pombe associates with the TRF2-like protein,
Taz1, where deletionmutants have shown a high level of telomere
involvement (Park et al., 2002). It seems unlikely that the lack of
nucleosomes in S. pombe telomeric chromatin and its presence

in human telomeres governs this loss of Rap1 activity, Rap1
binding occurs via Taz1 and can function transcriptionally on
nucleosomal DNA in mice or human cells (Wright et al., 1992;
Park et al., 2002; Tomaska et al., 2004b; Galati et al., 2012).

We propose a number of solutions to this odd situation.
The first, functional redundancy, is unattractive in its simplest
form, since its presence would mask the phenotypes of
rap1 mutants. Rather, we make a second proposal, albeit
speculative, based on the inability to explain conservation
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FIGURE 8 | Selected stress responses and surface interactions. Selective Stress (A–D) shows the proposed effect of stress responses over evolutionary time.
(A) The initial modular telomere with a TBP (red). (B) Duplication of DNA (orange) encoding the protein. (C) Separation and mutagenesis (purple) of the two DNAs
and the altered protein (orange and purple box. (D) The final telomere, bound by the mutated protein. Protein Legend: c-myb containing protein: green, G4 DNA
binding protein (star), and OB-fold protein (yellow). Protein interfaces. In example (E), protein (blue) associated with the c-myb protein with an unfavorable surface
interaction shown by the x. (F) Protein interfaces that interact favorably with a second protein (red) to form a stable structure as indicated by the +. A simplified
minimal modular telomere is shown just for reference.

in the absence of selection. Similarly, the transcriptional
function in human cells do not appear extensive enough
to induce such a strong selection. We therefore suggest
differences intrinsic to hypomorphic and null alleles. In the
presence of a horrendous telomeric damage event, viable
cells could produce a “defect response system,” not unlike
many of the responses to serious cellular defects. A previous
observation noted that a loss of RAP1 led to an increase in
recombination (Sfeir et al., 2010), consistent with this idea.
As noted, in the yeast S. cerevisiae, there is some evidence
for rapid effects on recombination and mutagenesis in the
face of telomere disaster (Shor et al., 2013; Meena et al.,
2015). Recombinational induction has also been observed
rapidly in yeast without the expected DNA damage response
pathway (Lustig, unpublished data), consistent with effect
found in human cells. We would like to propose that there
is a telomere response system that is distinct from the
DNA damage response pathway that can sense (through an
unknown signal) an alteration in essential chromatin structure.
A null allele might simply place too much stress on the
cell, promoting the induction of specific proteins, one of
which may have some functions of RAP1. Possibly, more
information would be gained by the use of hypomorphic
mutations that retains partial Rap1 function that may not be
susceptible to this putative response. Under these hypothetical,
conditions, the telomere damage may be below the sensitivity
of detection, circumventing the effect of the response system.
Under non-null conditions, the true effects of Rap1may be
better determined, one way or another. This issue may
be raised for a number of observations that seem to be
signaling effects, rather than the original transient effect of the
mutation

COMPLEX TELOMERES: SPECULATION
ON THE FLEXIBLE DYNAMICS OF
SHELTERIN

We normally think of shelterin an ordered set of proteins
that are invariant in humans (de Lange, 2005). Shelterin is
an outstanding model system to discuss the numerous ways
of attaining a broader level of control. The conservation
of shelterin function is likely to be a consequence of the
interaction between the functional subunits (de Lange, 2005)
that contain common motifs such as c-myb, OB, and G4
modules. Also, it is likely to involve the formation of only
a subset of protein/protein junctions that are sterically and
thermodynamically permissible. In addition, a subgroup
of chromatin-associated proteins, TRF1, TRF2, and POT1
has probably evolved through a paralog-related process. So
the overall constraints of variable TBPs include geometry,
protein/protein interfaces, and the presence of proteins
having truly unique functions. This set of constraints will
vary through evolution in species having a multi-subunit
shelterin-like structures. The nature and frequency of the
multi-subunit protein interfaces would select for only steric
and thermodynamic limitations, based on protein folding
structures that fit the geometric and functional needs of the
telomere.

When honing in on vertebrates (or mammals), it is
clear that TRF1 is the ancestral protein to vertebrate
TRF1 and TRF2 paralogs (Horvath, 2008). Similarly,
TRF2, a paralog of TRF1, has become substantially
specialized. TRF2 plays multiple roles in telomere
maintenance and dynamics that are due to the unique
chromatin structure (Broccoli et al., 1997). However, the
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TRF1-nucleated class may have been derived by a TRF1 ortholog
precursor to the major telomere proteins present throughout
vertebrates (Horvath, 2008). Therefore, previous studies may not
solve the telomere function in all complex vertebrates (except in
mammals), but demonstrate one of many possible solutions that
exist in extant organisms.

Paralog functions do play a role in some shelterin complex
telomeres such as in the formation of Pot1a and Pot1b in
rodents (Hockemeyer et al., 2006), but also in other organisms
that have simpler telomeres, such as Arabidopsis, green algae,
and the ciliate Tetrahymena. Pot1 forms homologs Pot1a and
Pot1b in several species that are distant evolutionary, such as
Tetrahymena (Jacob et al., 2007; Shakirov et al., 2009). The
maintenance of the POT1 class of proteins is critical for shelterin
function. POT1 plays a predominant role in the accessibility
to and modulation of telomerase. Tankyrase, the protein that
is responsible for the loading of TRF1 in vertebrates, also
plays a role in plants. Importantly, this is a class of proteins
with similar structure, but differing function, another possible
outcome of paralog formation that both play a role at the
telomere (Cook et al., 2002). In plants, tankyrases do not act
as a TRF1 loading factors. That is not surprising given the
evidence that TRF proteins are not functional in Arabidopsis
(Boltz et al., 2014; Fulcher and Riha, 2015). A resolution of
whether the tankyrases in plants are true paralogs and the
nature of their specific function at telomeres will require future
investigation. Telomerase holoenzyme also undergoes species-
dependent paralog formation, particularly in Est1 and Pot1
(e.g., Est1a, b, c Pot1a, Pot1b). Est1a complements senescence
in yeast and performs the telomerase function. The function
of Est1b and Est1c are unclear (Sealey et al., 2011). Paralogs
of Est1 are exclusively observed in humans. As expected, the
conserved TBP components discussed in section “The Conserved
Elements of TBP” are also present at human telomeres in
addition to shelterin. This model coupling paralog formation
and interface compatibility in the presence of a minimal number
of conserved proteins is a proposal that tries to explain the
rapid evolution of TBPs. Other ideas involving the cooperativity
of processes are in no way mutually exclusive from our
considerations.

Hence, the plethora of proteins present in a given cell type
is likely to overcome a major thermodynamic barrier to the
formation of shelterin. The formation of shelterin-like complexes
may be the consequence of a trial and error process that may
require sub-complexes. The shelterin complexes that are present
in more complex organisms are under, as yet, uncharacterized
selection pressures.

A MODEL FOR THE RAPID EVOLUTION
OF TELOMERE BINDING PROTEINS

We propose five central principles that serve as the foundation
for the rapid evolution of telomere-binding proteins. First,
paralog formation seems to be a primary driving force in rapid

evolution rather than ortholog formation. Second, telomere-
binding proteins consist of a limited number of conserved
motifs such as c-myb, OB, and G4 domains, which can initiate
a minimal level of protection. Third, stress response at the
evolutionary levelmay occur as the result of telomere dysfunction
that increases the rate of recombination and mutagenesis.
Fourth, the major limiting function in complex shelterins is the
number of protein/protein interfaces needed to form a multi-
subunit complex-as least at the structural level. Specific required
functions may be under additional selection pressure. Fifth,
some complexes provide novel functions (e.g., Pot2 access to
telomerase) and the transducing of signals over a large portion
of the telomere that may have effects that are greater than the
sum of individual protein species. These five principles serve
as the basis of any attempt to create a coherent evolutionary
model.

We believe that the vastly different organismal requirements
may alter selection patterns. For example, the abundance of
telomeres, the cell cycle control of replication, the coordination of
telomere and semi-conservative replication may have profound
effects on the nature of telomere change (Horvath, 2008).

We propose, therefore, that the phenomenon of “rapid
evolution” is the consequence of the high level of paralogs,
producing distinct functional proteins through the induction
of telomere stress response. While telomere evolution is
clearly not the only case in which paralogs may evolve to
form other functions, alterations in TBPs must be driven
by the need for rapid response to physiological change
(Figure 8).

A large number of experimental studies serve as the basis
of these models. A complete solution to the patterns observed
will require a greater knowledge of telomere protein/protein
interactions and telomere protein domain structure. This level of
understanding requires a collaborative effort to characterize more
organisms for genetic analysis.
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