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Lung diseases are described by a wide variety of developmental mechanisms and clinical

manifestations. Accurate classification and diagnosis of lung diseases are the bases

for development of effective treatments. While extensive studies are conducted toward

characterization of various lung diseases at molecular level, no systematic approach

has been developed so far. Here we have applied a methodology for pathway-centered

mining of high throughput gene expression data to describe a wide range of lung diseases

in the light of shared and specific pathway activity profiles. We have applied an algorithm

combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity

deregulation states in lung diseases and malignancies, and a Self Organizing Maps

algorithm for classification and clustering of the pathway activity profiles. The analysis

results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung

cancers were characterized by pathways implicated in cell proliferation, metabolism,

while non-malignant lung diseases were characterized by deregulations in pathways

involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast

to lung malignancies, chronic lung diseases had relatively heterogeneous pathway

deregulation profiles. We identified three groups of interstitial lung diseases and showed

that the development of characteristic pathological processes, such as fibrosis, can

be initiated by deregulations in different signaling pathways. In conclusion, this paper

describes the pathobiology of lung diseases from systems viewpoint using pathway

centered high-dimensional datamining approach. Our results contribute largely to current

understanding of pathological events in lung cancers and non-malignant lung diseases.

Moreover, this paper provides new insight into molecular mechanisms of a number of

interstitial lung diseases that have been studied to a lesser extent.

Keywords: high-throughput gene expression, biological pathways, pathway signal flow, self-organizing maps,

chronic lung diseases, lung cancers
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INTRODUCTION

High-throughput gene expression profiling has found wide
applications in many areas of lung pathology research,
diagnostics, and treatment (Campbell et al., 2011). It has
been used for development of biomarker panels allowing for
accurate discrimination between diseases, such as chronic
obstructive pulmonary disease (COPD), idiopathic pulmonary
fibrosis (IPF), and lung cancers (Selman et al., 2006; Wang
et al., 2008). The study of gene expression signatures largely
contributed to better understanding of molecular pathology of
lung diseases(Cancer and Atlas, 2012; Thakur et al., 2014), and
to identification of new disease subclasses/entities (Bhattacharjee
et al., 2001; West et al., 2012; Li et al., 2014). It also provided
new approaches to diagnostics (Buettner et al., 2013; DePianto
et al., 2015), and helped to suggest novel therapeutic compounds
(Campbell et al., 2012; Gerber et al., 2015). However, most of
these studies have been performed in a gene centered fashion,
where biological function mining was limited to identification
of differentially expressed genes and to enrichment analysis
of the obtained gene lists in Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) or any other
functional annotation database (Arakelyan et al., 2013). Such
simple functional annotations of differentially expressed genes
might however have overlooked important information, such
as interactions between the components in a biological system
and their functional consequences. In this regard, explicit
assessment of activity regulation in biological pathways by
combining expression data of genes with knowledge about the
interactions between their products would represent a more
straightforward approach. Biological pathways are sequences
of physical molecular interactions that guide information
propagations (also called signal flow) leading to regulatory
consequences for cell function. Pathways are often branched and
have more than one target processes, meaning that activation
of different sets of genes within the same pathway may lead
to different outcomes. Moreover, genes can be involved in
more than one pathway, because different pathways may share
common branches, sources, and sinks (Daigle et al., 2010). It has
been recognized that pathogenesis of diseases usually involve
perturbations occurring at pathways level (Logan and Nusse,
2004; Courtois and Gilmore, 2006). Thus, the explicit analysis
of pathway activity deregulation is expected to lead to better
understanding of molecular pathomechanisms of diseases.

Pathologic characteristics of lung diseases are very complex
due to the involvement of environmental and genetic interactions
(Pouladi et al., 2015) and do not always reflect the underlying
molecular mechanisms. Dysfunction of a single gene may
contribute to multiple lung diseases leading to development of
different phenotypes or, vice versa, similar disease phenotypes
can be caused by dysfunctions of different genes and (Lewis
et al., 2008; Pennings et al., 2008). For example, the WNT

Abbreviations: ANOVA, analysis of variance; FC, Fold Change; FDR, False

Discovery Rate; GEO, Gene Expression Omnibus; GO, Gene Ontology; ICA,

Independent Component Analysis; ILD, Interstitial Lung Disease; KEGG, Kyoto

Encyclopedia of Genes and Genomes; PSF, Pathway Signal Flow; SOM, Self-

Organizing Maps.

signaling pathway has been shown to be oppositely involved in
the pathobiology of COPD and IPF. Despite this difference, both
diseases end up with alveolar senescence and lung “premature
aging” (Chilosi et al., 2012). Contrarily, typical interstitial lung
diseases, such as sarcoidosis and IPF, largely share similarly
deregulated genes, especially in extracellular signaling pathways,
meanwhile demonstrating significant differences in downstream
signaling pathways (Leng et al., 2013).

In this study we have applied a pathway-centered method
for mining high-throughput gene expression data aimed at
extracting knowledge about pathobiology of a wide spectrum of
malignant and chronic lung diseases by providing an extended
systems view on pathway deregulation states. We, used a
previously developed and intensively benchmarked data mining
approach for gene expression analysis using self-organizing maps
machine learning (Wirth et al., 2011) in combination with
the pathway signal flow (PSF) algorithm, which maps gene
expressions to pathway topologies to assess the strength of the
signals that propagate along the pathways (Arakelyan et al.,
2013; Binder et al., 2014; Nersisyan et al., 2015). It allowed
for combining lung diseases into groups of common pathway
perturbations and provided new insights on shared and specific
pathomechanisms of lung diseases.

MATERIALS AND METHODS

Data and Sources
Six datasets on selected lung diseases extracted from the Gene
Expression Omnibus (GEO) public repository were used (Edgar
et al., 2002; Barrett et al., 2011). The datasets were downloaded
from GEO in the form of Series Matrix Files, which contain
metadata about samples, array calibration and normalization
methods and actual normalized data, stored in the form of gene
expression matrices, where probe IDs are rows and samples
are columns (see Supplementary Material Data Sheet 1, Table
S1). From these datasets only samples obtained from untreated
patients were used in downstream analyses. In total, 948 diseased
and normal lung samples constituting 21 disease groups and one
healthy lung tissue were included in the analyses (Table 1). The
analysis workflow is presented in Figure 1. It was performed
using the R-program package oposSOM (Löffler-Wirth et al.,
2015) and a series of stand-alone R-scripts (Supplementary
Material Data Sheet 2).

Data Preprocessing
For each dataset, microarray probe IDs were converted into
Entrez Gene IDs. Microarray probes that did not match any
known Entrez ID were discarded. Multiple probe sets for the
same gene were averaged. Next, gene expression values in
each dataset were inspected for data transformation type (log2,
log10 transformation) using a modified version of the “GEO2R
log autocheck” script (https://www.ncbi.nlm.nih.gov/geo/geo2r/)
and were brought to a linear scale. Then we have converted all
values to fold change (FC) respective to the mean expression
value of the controls (healthy samples) included in the same
dataset. These steps cast the data in all datasets to a common scale
and type.
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TABLE 1 | Lung diseases and sample sizes used in this study.

N Class Lung disease and control

group

Abbreviation Number of

samples

1 Healthy control Healthy Control HC 170

2 Chronic lung

diseases

Tuberculosis TB 5

3 Acute interstitial pneumonia AIP 1

4 Cryptogenic organizing

pneumonia

COP 3

5 Chronic obstructive

pulmonary disease

COPD 220

6 Desquamative interstitial

pneumonia

DIP 4

7 Fibrosis unknown FU 10

8 Hypersensitive pneumonitis HP 30

9 Interstitial lung disease other ILD_OTHER 9

10 Interstitial lung disease

unknown

ILD_UNK 14

11 Nonspecific interstitial

pneumonia

NSIP 14

12 Respiratory

bronchiolitis-interstitial lung

disease

RB-ILD 12

13 Pulmonary sarcoidosis SARC 6

14 Idiopathic pulmonary fibrosis UIP_IPF 157

15 Lung cancers Lung adenocarcinoma ADC 85

16 Lung cancer basaloid BAS 39

17 Lung cancer carcinoid CARCI 24

18 Large cell carcinoma LCC 3

19 Lung cancer large cell

neuroendocrine

LCNE 56

20 Lung cancer other LCO 4

21 Small cell lung carcinoma SCC 21

22 Squamous cell carcinoma SQC 61

Pathway Signal Flow Calculation
Assessment of pathway activity deregulation was performed
using the PSF algorithm described in detail elsewhere (Arakelyan
et al., 2013; Binder et al., 2014; Nersisyan et al., 2015). Briefly, this
algorithm computes the strength of the signal propagated from
the pathway input to the output through interactions of pathway
component genes, based on their fold change expression values.
Human reference pathway maps were retrieved from the KEGG
Pathway database (Kanehisa, 2002). From 291 KEGG Pathways,
138 KEGG metabolic, signaling and organismal pathway maps
were selected by exclusion of disease and drug response specific
pathways, as well as pathways lacking annotated interactions
(for example ko03010, Ribosome). FC values for each gene were
mapped to corresponding pathway nodes, and were averaged if
a node contained more than one gene. After this step an input
signal of unity was applied to the pathway source nodes. Then
PSF values were calculated at the output nodes. PSF algorithm is
calibrated in a way that gene expression of FC = 1 at all nodes
(normal gene expression) produces PSF = 1 values. Values of

PSF less than unity refer to pathway de-activation, while PSF > 1
indicates pathway activation.

Pathways are usually highly branched and can have multiple
inputs and outputs, called sources and sinks, respectively. The
sinks can be associated with defined biological function and
they usually weakly depend on the activity of other sinks in the
same pathway. For example, the B cell receptor (BCR) signaling
pathway gets input signals from ligands and provides output
signals via the sinks Rac, which is associated with Regulation
of actin cytoskeleton pathway, NFAT, AP1, and NFkB, which
lead to expression of genes involved in immune response, and
GSN3B, which is a protein phosphorylating enzyme (Figure 2A).
Different disease-specific expression values of genes involved in
this pathway may lead to different PSF values at the sink nodes
and thus, also to different activities of the associated molecular
processes. For example, the Rac-sink of the B cell receptor
pathway ends up with low activities in lung cancers (red bars
Figure 2B) and high activities in chronic lung diseases (green);
whereas the NFkB-sink shows nearly an anticorrelated activity
profile compared to that of Rac (Figure 2B). In total, for each
sample included in the analyses, we calculated PSF values for 943
sinks in 138 pathways (on average, seven sinks per pathway).

Pathway Signal Flow—Self Organizing
Maps Analysis (PSF-SOM)
The self-organizing maps (SOM) method was developed in the
early 1980’ties by T. Kohonen (Kohonen, 1982). First applications
to microarray gene expression data were published in 1999
(Tamayo et al., 1999; Törönen et al., 1999), to cluster gene
expression profiles into a predefined small number of groups
of similarly expressed genes. A sample-centered clustering
approach was realized shortly after providing a visual identity
of the expression landscapes of each sample (Golub et al., 1999;
Covell et al., 2003; Eichler et al., 2003). Several methodical
improvements of the SOM-technique were developed enabling
more flexible learning and mapping in different applications
(see Binder and Wirth, 2014 and references cited therein).
We pursued a special implementation of SOM that we called
SOM portraying (Wirth et al., 2011; Hopp et al., 2013). It
visualizes the “landscapes” of large scale -omics data in a
comprehensive and intuitive fashion. This method combines
both the sample- and gene-centered perspectives to decode
molecular patterns within a two-dimensional image (Huang
et al., 2005). It emphasizes easy sample-to-sample comparison
and the identification of important characteristics by direct
visual inspection. We amended this method by a sophisticated
analysis workflow for downstream analyses including differential
feature selection, diversity analysis, function mining, and class
discovery in high-dimensional molecular-biological data (Wirth
et al., 2011; Hopp et al., 2013). In a series of case studies
we applied this method to disentangle cancer subtypes (Hopp
et al., 2013), for combined mRNA and miRNA expression
analysis (Wirth et al., 2014), and to analyze proteome (Wirth
et al., 2012b; Binder et al., 2014), genomic (Binder and Wirth,
2014), DNA-methylation (Hopp et al., 2015), and epigenome
(Steiner et al., 2012) landscapes in the context of cancer, healthy
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FIGURE 1 | Workflow of the PSF-SOM method as applied to lung diseases. Expression data were analyzed in terms of pathway signal flows (PSF) in a series of

KEGG canonical pathways. The PSF values of selected sink nodes in the pathways were then clustered using SOM machine learning. This method provides individual

“portraits” of sink-node activities of each disease class. Similarities between them were studied using different clustering methods. For details please refer to the

Methods section of the manuscript.

populations, microorganisms, tissue, and cell experiments.
Strengths of SOM-portraying applications to molecular omics
data are dimensionality-reduction and intuitive visualization of
high-dimensional data, “personalized” views and detection of
outliers and methodical biases in the data and their classification
owing to re-weighting in SOM-space (Binder et al., 2015).
Disadvantages often ascribed to SOM machine learning such
as high computational efforts, loss of resolution, and the
problematic choice and adjustment of parameters defining SOM
space (e.g., size, topology, boundary, and initiating conditions)
and the non-linear data scaling are of minor importance in
our applications to molecular -omics data. In oposSOM package
typical SOM runs require from minutes to, at maximum a few
hours of computer time. SOM-space was optimized in extensive
pre-studies (see Binder and Wirth, 2014 and references cited
therein), performed in a similar and thus comparable way in
a large number of applications. Here we combined the SOM
portraying method with PSF analysis to achieve a pathway-
centered view on pathomechanisms of lung diseases.PSF analysis
generated profiles of PSF values for all 943 sinks of all the
pathways across all the samples studied. The PSF values of each
sink were centralized with respect to the sink-wise global mean
over all samples to focus rather on changes of PSF-values than on
absolute PSF levels.

We used SOM machine learning implemented in “som” R
package as a core for oposSOM package (Löffler-Wirth et al.,
2015) to disentangle the multivariate structure inherent in the

PSF-data (Wirth et al., 2011). The SOM algorithm arranged
PSF profiles onto two-dimensional 50 × 50 grids (maps), where
similar profiles are combined into micro-clusters called meta-
PSFs, by analogy with meta-genes in the original application
of the algorithm to gene expression data. The similarity of
PSF-profiles and SOM node weights was calculated using the
Euclidean distance formula. The SOM learning rate was set to
0.02, the constant in the inverse learning rate function was set to
0.01 and the radius of the neighborhood was 3. SOM was trained
using default parameters implemented in “som” package which
is comprised of 12 training epochs for a complete dataset and
required about 9 h on a personal computer (core-i5, 8 Gb RAM).
This SOM configuration enables the robust identification of spot
modules inherent in the data (Wirth et al., 2011).

PSF landscape of each disease group is described by the
meta-PSF expression values (“personal” SOM portrait). They are
arranged according to the underlying SOM grid and visualized
by an appropriate color gradient. The color patterns emerge
as smooth textures representing the fingerprint of pathway
activity perturbation for each disease. The individual portraits
are mutually comparable. The SOM algorithm arranges similar
meta-PSF profiles in neighboring tiles of the map whereas more
different ones are located more distantly. Meta-PSFs located in
the same spot-like region of the map are concertedly deregulated
across the diseases. Overexpression (underexpression) spots in
each “personal SOM” portrait were determined as clusters of
meta-PSFs, which have values above (below) the predefined
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FIGURE 2 | PSF-profiles of the KEGG B cell signaling (BCR) pathway. (A) Red nodes in the BCR pathway represent pathway sinks. Their PSF values are shown

in part (B) for all disease classes studied (see Table 1 for assignments). PSF values depend on the gene expression of the genes upstream from the sink nodes (green

boxes in the pathway) which change in a disease specific fashion. (C) The location of the sink node genes in the summary SOM map.

threshold (90 percent of meta-PSF extremes), or by applying
K-means or correlation clustering to the meta-PSF profiles as
described in detail elsewhere (Wirth et al., 2011). All spots
detected in the individual portraits are transferred into one
master map to visualize the global spot patterns.

Significance analysis for differential PSF-values use a
shrinkage t-test and false discovery rate (FDR) estimation
for multiple test correction as implemented in oposSOM and
described in detail elsewhere (Wirth et al., 2011, 2012a). This
analysis provided lists of pathway sinks with co-regulated
activities in the lung diseases and healthy controls studied.

A separate part of analyses focused on assessment of pathway
activity changes in lung diseases compared to healthy lungs. For
this, the difference of mean-centered PSF values between diseases
and healthy controls was computed (PSFdisease–PSFhealthy lung),
representing log fold difference of pathway deregulation in
diseased over healthy state. A pathway was considered as
significantly deregulated, if its p value was less than 0.05 and FDR
qvalue was less than 0.2.

Clustering of Diseases Based on the
Pathway Activation States
Similarity analysis of lung diseases was performed based on their
SOM portraits using so-called second level SOM, independent

component analysis (ICA), and hierarchical clustering methods
implemented in oposSOM (Wirth et al., 2011). In addition
we applied graph community search with random walktrap
algorithm implemented in igraph R package using Fruchterman–
Reingold layout (Csardi and Nepusz, 2006).

RESULTS

Pathway Activity Portraits of Lung
Diseases
PSF profiles were evaluated for 138 KEGG metabolic, signaling,
and organismal pathways in 948 diseased and normal lung
samples constituting 21 disease groups and one healthy lung
tissue (Table 1). Each of the samples was characterized by its
state of pathway (de-regulation), which is defined as a set of PSF
values at all 943 pathway sinks. In order to evaluate similarities
and differences between the states of pathway deregulation
of diseased and healthy lungs, we applied machine learning
using self-organizing maps (SOM). This method transforms the
multidimensional PSF data into a series of two-dimensional
images, called “portraits,” which visualize the activities of the
sink nodes in each disease studied (Figure 3). These PSF-activity
portraits show blue and red spot like regions corresponding to
down- and up-regulated sink nodes, respectively. The complete
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FIGURE 3 | Disease specific SOM portraits. Each lung disease and healthy control is characterized by its PSF portrait visualizing the pathway activities. The

diseases are sorted into three groups. The color key for the summary SOM portrait is blue-yellow-red, where blue colors represent lowest values, green-yellow

transition includes intermediate values and the red colors represent highest values. Note the marked difference between groups, especially between cancer and

chronic lung diseases.

list of pathway sinks associated with each spot in each disease
groups in presented in Supplementary Material Data Sheet 3.

It is apparent that healthy lung and non-cancer diseases
have clearly distinct pathway deregulation patterns compared to
lung cancers (Figure 3). Most cancer diseases are characterized
by an upregulated red spot located in the right lower corner,
in combination with a down regulated blue spot in the left
upper corner of the portrait. Non-malignant lung diseases, in
turn, show a distribution of up- and down-regulated spots that
virtually mirror that of cancer diseases. Further, this group of
diseases showed higher variability of their spot distributions
compared to cancers. Here, generally, two different patterns in
portraits can be distinguished. One pattern can be specified by
the presence of an upregulated spot in the bottom left corner
(TB, SARC, COPD, DIP), while the second pattern is defined by
an upregulated spot in the upper left corner (NSIP, FU, UIP/IPF,
COP, ILD_OTHER, ILD_UNK, RB_ILD). Meanwhile, the spot
distribution in HP portrait shows transition between the first
and the second chronic lung disease patterns, while the spot
distribution on the AIP portrait can be considered as a transition
between non-cancer and cancer disease patterns. Finally, it is
worthy to note that FU, UIP/IPF, and ILD_UNK share a down-
regulated spot with lung malignancies at the bottom left corner
of the portraits.

To have a detailed look on pathways involved in formation of
these disease-specific portraits, we referred to the overexpression
summary map in Figure 4A. It integrates spots from all
individual lung disease portraits and thus it provides an overview
of all relevant regions becoming activated in the data set.
The spots represent clusters of correlated and thus concertedly
deregulated pathway sink profiles in one or several diseases.
The overexpression spots (A, B, C, and D) on the corners of

the summary map represent the main features allowing for
distinguishing between non-cancer and malignant lung diseases.
The rest of the spots provide finer structure of pathway activation
states in different diseases. Since the amplitude of meta-PSF
values of these intermediate spots was much lower than that of
the major overexpression spots, we decided to concentrate on the
latter’s in subsequent analyses. Overall, 51 pathways characterized
with at least one deregulated sink have been found to be
associated with these main overexpression spots (Supplementary
Material Data Sheet 1, Table S2). Next, we proceeded to more
thorough functional annotation of all pathway sinks located
in each overexpression spot of the summary map. Because
pathway sinks are gene products directly associated with some
functional event or molecular process, we have performed GO
term enrichment analysis of sink genes in spots usingWebGestalt
(Zhang et al., 2005; Figure 4B). The results showed that pathway
sinks associated with spots A and C (upregulated in non-
cancer diseases) are mainly enriched with GO terms related
to immune/inflammatory response, proliferation, and anti-
apoptosis, while spots B and D (upregulated in cancer diseases)
are linked to cell cycle regulation, apoptosis, and carbohydrate
metabolism. The complete list of GO terms associated with
pathway sinks and the enrichment significance can be found in
the Supplementary Material Data Sheets 4–11.

The pathways “Cytokine-cytokine receptor interaction,”
“MAPK signaling pathway,” “Cell adhesion molecules (CAMs),”
“FoxO signaling pathway” and “Dopaminergic synapse” were
found to be significantly associated with all the overexpression
spots and thus all the investigated lung conditions; however,
with disease-specific molecular processes associated with each
sink in these pathways (for details on these pathways and their
specific sinks, associated with each spot and their significance
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FIGURE 4 | SOM characteristics. (A) The overexpression spot summary map reveals four main “spot-like” regions of high PSF activities of the sink nodes in red

(A–D), three on intermediate level in green (e–g) and one node with low activity in blue (h). (B) Each spot-cluster is characterized by its PSF-profile subsuming about

hundred individual sinks. The color key for the summary SOM portrait is blue-yellow-red, where blue colors represent lowest values, green-yellow transition includes

intermediate values and the red colors represent highest values. Their main biological function and the top three sink nodes are given in the right part of the figure.

values, see to Supplementary Material Data Sheet 1, Table S3).
While pathway sinks associated with immune response were
located in spots A and C and activated mainly in non-malignant
diseases, the cancer-associated spots B and D contained pathway
sinks related to signaling, proliferation, and cancer related cell
communication. These results show that different sink nodes
of a pathway can be located in the same spot or in different
ones reflecting thus correlated, anti-correlated, or non-correlated
profiles. The examples in Figure 5 illustrate two different
situations. Difference of sink profiles in the same pathway
can be caused by multiple inputs, multibranching, existence
of inhibitory interactions, and/or deregulated expression of
intermediate nodes (Figure 5A). On the other hand, unbranched
pathway topologies tend to show more concerted profiles of
their sink nodes, which, in consequence, accumulate in the same
region of the map (Figure 5B).

Clustering of Disease Groups Based on
Pathway Deregulation Activities
Visual inspection of the SOM portraits revealed considerable
similarities among non-cancer, as well as cancer diseases.

Hierarchical cluster analysis of the SOM portraits using either
Pearson correlation or Euclidian distances of meta-PSF values
as similarity metrics revealed two main clusters of diseases.
In both cases, the first cluster grouped lung cancer diseases,
while the second cluster contained non-cancer diseases and
healthy controls (Figures 6A,B). For a higher resolution of the
diversity analysis we applied SOM mapping of the samples
(so-called 2nd level SOM) and ICA as described in Wirth
et al. (2012a). The SOM mapping reveals that especially the
cluster of non-malignant lung diseases further disentangles into
different subclusters labeled 1–3 (Figures 7A,B). Similarly, the
2nd level SOM, ICA, which assumes non-Gaussian distribution
of distances between samples, clearly separates cancer from non-
cancer lung diseases. TB, SARC, and AIP appear as outliers that
are separated from the other diseases.

Pathway Deregulation Profiles in Lung
Diseases Compared to Healthy Controls
In order to assess pathway activity deregulations in lung diseases
compared to healthy state, we calculated differential PSF values
respective to healthy controls. Most of the obtained differential
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FIGURE 5 | Distribution of pathway sinks on the SOM map depending on pathway topology. (A) The sink nodes NFBkB and RAC1 of the BCR pathway are

located in opposite corners of the portrait reflecting their anticorrelated profiles. (B) In contrast, the sinks of the unbranched Hedgehog signaling pathway are located

in the same position on the SOM portrait.

SOM portraits showed similar spot distributions compared to
the original ones (see Supplementary Material Data Sheet 12,
Supplementary Figure 1). Next, we created a graph object
with nodes representing diseases and edges associated with
the number of co-regulated pathways between each pair of
disease nodes. Finally, we performed a graph community search
with random walktrap algorithm in order to identify diseases
sharing maximal similarities in pathway deregulation states.
This algorithm analyzes the graph by random walks to identify
densely connected subgraphs, called communities. In total, we
identified 4 communities (or clusters) containing three or more
diseases (Figure 8 and Table 2, clusters 1–4). Each multi-disease
community is specifically described by shared pathway sinks,
similarly deregulated in all members of a given community
(Table 2). Particularly, we observed that diseases in the cancer
cluster contained 14 shared pathway deregulation states, while
chronic lung disease clusters showed less number of shared states
(between three and five).

The first community (Cluster 1—red) of non-cancer lung
diseases contained COPD, sarcoidosis (SARC), and tubercolosis
(TB). Numerous experimental studies, including our own,
implicated immune/inflammatory pathways such as Toll-like
receptor signaling, phagocytosis, and chemokine signaling in
sarcoidosis, tuberculosis, and COPD (Arakelyan et al., 2009;
Haspel and Choi, 2011; Kriegova et al., 2011; An et al., 2012;
Maertzdorf et al., 2012; Pabst et al., 2013; Pugazhendhi et al.,
2013). Moreover, differential gene expression as well as gene
polymorphisms associated with these diseases demonstrated
considerable mutual overlap (Arakelyan et al., 2009; Haspel and
Choi, 2011). Furthermore, the pathophysiology of TB, SARC, and
COPD is very similar, often making them hard to distinguish

(Maertzdorf et al., 2012). Thus, our findings are in line with
previous findings confirming the presence of shared deregulation
of immune system pathways in these diseases.

The second community (Cluster 2—orange) joined
respiratory bronchiolitis interstitial lung disease (RB-ILD)
(Leslie, 2009; Meyer et al., 2012), hypersensitivity pneumonia
(HP), and cryptogenic organizing pneumonia (COP). The
molecular pathways involved in the development of these
diseases are poorly understood and there is not much data on
gene expression changes in these disorders. Nevertheless, the
clustering of RB-ILD, HP, and COP together based on global gene
expression has also been described previously (Cho et al., 2011;
Lee and Yang, 2013). Our results showed that, these diseases
were characterized by shared downregulation of anti-apoptotic
and proinflammatory branches of Hippo signaling pathway.
This pathway is an important regulator of tissue growth. It has
been studied largely in tumor development, while results on
non-cancer lung diseases are mostly limited to animal models
(Gomez et al., 2014). It has been shown that the activation of
Hippo signaling pathway in non-cancer diseases is beneficial
because it promotes tissue regeneration through proliferation
and inhibition of apoptosis (Halder and Johnson, 2011). By
contrast, inhibition of Hippo signaling can promote substitution
of healthy tissues with fibrotic tissue during cardiac remodeling
(Xin et al., 2013). Thus, we can speculate that this pathway may
be implicated in progression of fibrosis in these diseases.

The third and the biggest community of interstitial
lung diseases (Cluster 3—light green) included interstitial
pneumonias, such as UIP/IFP, NSIP, and unclassified interstitial
lung diseases (ILDs). This cluster was characterized by
activation of various cytokine-cytokine receptor interactions,
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FIGURE 6 | Clustering of lung diseases and healthy controls. Clustering was performed with (A) Pearson correlation and (B) Euclidean distance metrics. In both

cases we observed two main clusters collecting mainly cancer and non-cancer samples, respectively (see the color bars which assign the samples to the diseases

according to color code legend in Figure 2).

and upregulation of WNT signaling pathway. Moreover, it
has been noticed that this cluster serves as a link between
cancer and other ILD diseases (Archontogeorgis et al., 2012;
Vancheri, 2013). The observed association between ILD, and
especially UIP/IPF with cancer, has been reported previously
(reviewed in Archontogeorgis et al., 2012; Vancheri, 2013). It
has been noted that IPF and lung malignancies share molecular
pathomechanisms, including epigenetic changes, delayed
apoptosis and changes in cell-cell interactions (Vancheri, 2013).
Our results demonstrated that the link can be realized through
common upregulation in cell cycle related pathways (Hippo,
p53), signal transduction (cytokine, thyroid hormone), and
metabolism of nucleic acids (purines and pyrimidines).

Finally, cancer diseases (Cluster 4—green) were clustered
into one highly homogeneous community characterized by
downregulation of immune system related pathways and
upregulation of cell cycle, proliferation, and metabolism
pathways, as expected (Han et al., 2014; Domagala-Kulawik,
2015). From all lung cancer types included in our dataset, the
lung carcinoid tumor (CARCI) demonstrated a different pathway
deregulation profile (Anbazhagan et al., 1999), which may
indicate its neuroendocrine origin (Rekhtman, 2010). Indeed, our
data shows that it shares considerable amount of similarities with
large cell neuroendocrine cancer (Figure 8).

Besides the multi-disease communities, we observed the
presence of “linker” disease nodes (DIP, CARCI, and AIP) in the
similarity graph. Though they are not included in any cluster,
they provide links between different clusters.

The community detection analysis confirmed the diverse
nature of cancer and non-malignant lung diseases, but it also
provided additional information that wasn’t obvious using other
similarity analysis methods, such as clustering, second level SOM
or ICA. The main advantage here was that the graph object

allowed for direct assessment of similarly deregulated pathways
between all pairs of studied diseases, with reference to the healthy
state.We have noticed that pathway deregulation states in fibrotic
diseases (cluster 3) serve as a central hub that shares considerable
similarities with inflammatory (cluster 1, 2) and cancer diseases
(cluster 4). Moreover, our results suggest that interstitial lung
diseases seem to constitute a more heterogeneous group of
diseases in terms of molecular mechanisms underlying their
pathology. Even if it is well known that inflammation and fibrosis
are the main characteristics of interstitial lung diseases (Bourke,
2006), our data suggested that the drivers of these processes
are different and are associated with perturbations in different
pathways.

DISCUSSION

Using our novel PSF-SOMmethod we have evaluated similarities
of pathway deregulation profiles in a large spectrum of lung
pathologies by mining high-dimensional gene expression data
and topologies of signaling and metabolic pathways. We pursued
a systems biology view to identify most prominent properties
of groups of lung diseases in terms of pathway deregulation
patterns. Our results revealed considerable differences in
pathway deregulations implicated in cancer and non-cancer lung
diseases. While lung cancers were characterized by pathways
implicated in cell proliferation, metabolism, non-malignant
lung diseases were characterized by deregulations in pathways
involved in immune/inflammatory response and fibrotic tissue
remodeling. Moreover, we observed considerable heterogeneity
in terms of pathway deregulation in interstitial lung diseases
(ILD). We were able to identify three groups of ILDs and showed
that the development of characteristic pathological processes
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FIGURE 7 | Diversity analysis of lung diseases. (A) The sample-diversity SOM projects the multidimensional diversity landscape into a two-dimensional plot. Each

disease class is visualized by its sample portraits. Borders between the clusters 1–4 serve as guides for the visual inspection. (B) The three dimensional ICA plot

shows that independent component 3 (IC3) mainly separates lung cancers from chronic lung diseases.

FIGURE 8 | Community detection in the lung disease graph. Each color represents one community, which gathers diseases with the highest pairwise similarity in

pathway deregulation states (see also Table 2). The graph layout is generated with Fruchterman–Reingold algorithm where edge length is inversely correlated with

node connectivity.
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TABLE 2 | Assessment of pathway common deregulation profiles in lung disease communities.

Community

(color*)

Diseases Deregulated pathway Sink

(GeneID/Symbol)

Associated molecular process

Cluster 1

(Red)

SARC

TB

COPD

B cell receptor signaling pathway FOS/2353 Immune response (UP)

Chemokine signaling pathway WAS/7454 Regulation of cytoskeleton (UP)

NF-kappa B signaling pathway CCL19/6363 Lymphoid-tissue homing (UP)

Toll-like receptor signaling pathway CCL3L3/414062 Chemotactic effect (UP)

Cluster 2

(Orange)

RB-ILD

HP

COP

Hippo signaling pathway SERPINE1/5054 Antiapoptosis (DN)

Cluster 3

(Light green)

UIP_IPF

ILD_OTHER

ILD_UNK

NSIP

FU

Cytokine-cytokine receptor interaction TNFRSF17/608 TNF Family (UP)

Cytokine-cytokine receptor interaction CXCR5/643 CXC Family (UP)

Wnt signaling pathway MMP7/4316 Cell cycle (UP)

Cluster 4

(Green)

ADC

SQC

LCC

LCO

BAS

LCNE

SCC

Alanine, aspartate, and glutamate

metabolism

GFPT1/2673 Amino sugar metabolism (UP)

Alanine, aspartate, and glutamate

metabolism

ASPA/443 L-aspartate (UP)

Glycine, serine, and threonine

metabolism

AOC2/314 Methylglyoxal (DN)

Glycolysis/Gluconeogenesis PGK1/5230 Glycerate1,3P (UP)

Purine metabolism PGM1/5236 Ribose-5P (UP)

Purine metabolism GDA/9615 Guanine (UP)

Pyrimidine metabolism TK1/7083 dUMP(UP)

Adrenergic signaling in

cardiomyocytes

AKT3/10000 Apoptosis (DN)

p53 signaling pathway IGF1/3479 Apoptosis (DN)

p53 signaling pathway GTSE1/51512 DNA damage prevention & repair (UP)

Progesterone-mediated oocyte

maturation

ANAPC10/10393 Metaphase arrest (DN)

Progesterone-mediated oocyte

maturation

CDK1/983 Cell cycle (UP)

*DIP, CARCI, and AIP formed separate single member communities; UP, up-regulation; DN, downregulation.

such as fibrosis can be initiated by deregulations in different
signaling pathways. These results raise a question whether it
is appropriate to combine ILDs into single group of diseases.
Finally, we also detected substantial similarities between cancers
and a subset of interstitial lung diseases characterized by fibrosis
development, which suggests the presence of shared molecular
mechanisms involved in their pathogenesis.

Our results replicate existing knowledge on pathological
processes in lungs. The inflammation and fibrosis related
pathways identified to be deregulated in non-malignant chronic
lung diseases considerably overlapped with the ones reported by
Cho et al. (2011) using gene-centered analysis approaches (see
Additional File 1 of Cho et al., 2011). Moreover, deregulations
of metabolic activities and cell cycle control have also been
reported previously in lung cancers (Cantor and Sabatini, 2012).

Furthermore, our findings are in line with the results of recent
publication by Kim et al. (Cantor and Sabatini, 2012) on
interstitial disease subgrouping based in molecular phenotypes.
However, we believe that our study has a number of important
differences compared to the previously reported results. In their
paper, authors used ANOVA significance value cut-offs for
identification of differentially expressed genes and have applied
topology free enrichment analysis for functional assessment of
biological processes implicated in lung diseases. Consequently,
all the criticism we have mentioned in the Introduction, also
applies here. In contrast, our results directly extend current
understanding of molecular events associated with various
aspects of lung pathology. We did not limit our study with
obstructive or interstitial lung diseases only, but aggregated lung
cancers, chronic non-cancer lung diseases and, especially, a wide
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spectrum of interstitial lung diseases. Moreover, we have directly
evaluated pathway activity deregulation states for each ILD type
separately, rather than obtaining results about interstitial diseases
in general. This is a special feature of this work and our data may
provide additional insight into pathobiology of these frequently
neglected diseases, which are often difficult to diagnose and treat.

From methodological point of view this paper demonstrates
the power of our pathway centered analysis. While usual
gene-centered studies provide lists of genes and associated
functional categories, our approach more closely refers to
systems level definitions and provides a rich outlook on actual
molecular events associated with studied conditions. We have
combined PSF and SOM algorithms that previously have been
extensively benchmarked (Wirth et al., 2011, 2012a; Binder
et al., 2014; Löffler-Wirth et al., 2015; Nersisyan et al., 2015).
The PSF algorithm integrates pathway knowledge and topology
information with gene expression data to identify deregulated
branches of pathways. On the other hand, SOM analysis allows
for mining for pathways with similar deregulation patterns across
datasets.

This study has a number of limitations that is worth
to discuss here. First, the data analyzed in this study refer
to endpoint pathologies, and not to initial steps of disease
development. While the latter is important for assessing the
causes of a disease, the former describes the state at which
most therapeutic interventions are targeted. Thus, assessment of
disease similarities based on end-point phenotypes is not suited
to study initiation and early genesis of lung diseases. Second,
our study was limited to KEGG pathways that contain previously
curated information (Ogata et al., 1999). This approach does not
allow for identification of new gene interactions or pathways

implicated in lung diseases. On the other hand, it provides

the advantage of using “gold standard” pathway topologies,
which are enriched with information about known functional
outcomes.

In conclusion, this paper describes the pathobiology of lung
diseases from systems viewpoint using a pathway centered
high-dimensional data mining approach. Our results largely
contribute to current understanding of pathological events in
lung cancers and non-malignant lung diseases. Moreover, our
results provide new insight into molecular mechanisms of a
number of interstitial lung diseases that have been studied to a
lesser extent compared to interstitial pulmonary fibrosis, COPD,
and sarcoidosis.
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