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A fundamental result in metabolic pathway analysis states that every flux mode can

be decomposed into a sum of elementary modes. However, only a decomposition

without cancelations is biochemically meaningful, since a reversible reaction cannot have

different directions in the contributing elementary modes. This essential requirement

has been largely overlooked by the metabolic pathway community. Indeed, every flux

mode can be decomposed into elementary modes without cancelations. The result

is an immediate consequence of a theorem by Rockafellar which states that every

element of a linear subspace is a conformal sum (a sum without cancelations) of

elementary vectors (support-minimal vectors). In this work, we extend the theorem, first

to “subspace cones” and then to general polyhedral cones and polyhedra. Thereby, we

refine Minkowski’s and Carathéodory’s theorems, two fundamental results in polyhedral

geometry. We note that, in general, elementary vectors need not be support-minimal; in

fact, they are conformally non-decomposable and form a uniqueminimal set of conformal

generators. Our treatment is mathematically rigorous, but suitable for systems biologists,

since we give self-contained proofs for our results and use concepts motivated by

metabolic pathway analysis. In particular, we study cones defined by linear subspaces

and nonnegativity conditions — like the flux cone — and use them to analyze general

polyhedral cones and polyhedra. Finally, we review applications of elementary vectors

and conformal sums in metabolic pathway analysis.

Keywords: Minkowski’s theorem, Carathéodory’s theorem, s-cone, polyhedral cone, polyhedron, conformal

generators

1. INTRODUCTION

Cellular metabolism is the set of biochemical reactions which transform nutrients from the
environment into all the biomolecules a living cell consists of. Most metabolic reactions are
catalyzed by enzymes, the expression and activity of which is controlled by gene and allosteric
regulation, respectively.

A metabolic network together with enzymatic reaction rates gives rise to a nonlinear dynamical
system for the metabolite concentrations. However, for genome-scale networks, quantitative
knowledge of the underlying kinetics is not available, and amathematical analysis is not practicable.
Instead, one considers only stoichiometric information and studies the system of linear equalities
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and inequalities for the fluxes (net reaction rates), arising
from the pseudo steady-state assumption and irreversibility
constraints.

A metabolic network is given by n internal metabolites, r
reactions, and the corresponding stoichiometric matrix N ∈

R
n×r , which contains the net stoichiometric coefficients of each

metabolite in each reaction. The set of irreversible reactions is
given by I ⊆ {1, . . . , r}. One is interested in the flux cone

C = {f ∈ R
r | Nf = 0 and fi ≥ 0 for i ∈ I},

which is a polyhedral cone defined by the null-space of the
stoichiometric matrix and nonnegativity conditions. Its elements
are called flux modes.

As a running example, we consider a small network, taken
from Schuster et al. (2002), the corresponding stoichiometric
matrix, and the resulting flux cone:

∗
1 // X1

2 //
OO

4

��

X2
3 // ∗

∗

N =

(

1 −1 0 −1
0 1 −1 0

)

,

C = {f ∈ R
4 | Nf = 0 and f1, f2, f3 ≥ 0}.

The network consists of two internal metabolites X1,X2 and four
chemical reactions. Reaction 1 imports X1 from the environment
(indicated by the symbol ∗) which yields the first column (1, 0)T

of the stoichiometric matrix N. Reaction 2 transforms X1 into
X2 which gives the column (−1, 1)T , and reaction 3 exports
X2 which gives (0,−1)T . The first three reactions are assumed
to be irreversible which yields the nonnegativity constraints
f1, f2, f3 ≥ 0 in the definition of the flux coneC. Finally, reaction 4
is reversible and exports/imports X1.

Metabolic pathway analysis aims to identify biochemically/
biologically/biotechnologically meaningful routes in a network,
in particular, the smallest routes. Several definitions for minimal
metabolic pathways have been given in the literature, with
elementary modes (EMs) being the fundamental concept both
biologically and mathematically Klamt and Stelling (2003);
Llaneras and Picó (2010). Formally, EMs are defined as support-
minimal (or, equivalently, support-wise non-decomposable) flux
modes Schuster and Hilgetag (1994); Schuster et al. (2002).
Clearly, a positive multiple of an EM is also an EM since it fulfills
the steady-state condition and the irreversibility constraints.

In the example, the EMs are given by e1 = (1, 0, 0, 1)T , e2 =

(0, 1, 1,−1)T , e3 = (1, 1, 1, 0)T , and their positive multiples. It
is easy to check that e1, e2, and e3 are flux modes (elements of the
flux cone) and support-minimal. Note that e3 = e1 + e2.

A fundamental result in metabolic pathway analysis states
that every flux mode can be decomposed into a sum of
EMs Schuster et al. (2002). However, only a decomposition
without cancelations is biochemically meaningful, since a
reversible reaction cannot have different directions in the

contributing EMs. This essential requirement has been largely
overlooked by the metabolic pathway community. Indeed, as we
will show in this work, every flux mode can be decomposed into
EMs without cancelations, that is,

(0) if a component of the flux mode is zero, then this
component is zero in the contributing EMs,

(+) if a component of the flux mode is positive, then this
component is positive or zero in the contributing EMs,

(−) if a component of the flux mode is negative, then this
component is negative or zero in the contributing EMs.

In mathematical terms, every nonzero element of a “subspace
cone” (defined by a linear subspace and nonnegativity
conditions) is a conformal sum of elementary vectors, cf.
Theorem 3. The result is stated in Urbanczik and Wagner (2005)
and Urbanczik (2007); part (0) has been shown in Schuster et al.
(2002) and guarantees a decomposition without cancelations in a
weaker sense Llaneras and Picó (2010); Zanghellini et al. (2013).

In the example, the flux mode f = (2, 1, 1, 1)T can be
decomposed into EMs in two ways:

f =









2
1
1
1









= 2 e1 + e2 =









2
0
0
2









+









0
1
1
−1









= e1 + e3 =









1
0
0
1









+









1
1
1
0









.

The first sum involves a cancelation in the last component of
the flux. The last reaction is reversible, however, it cannot have
a net rate in different directions at the same time. Hence, only
the second sum is biochemically meaningful. As stated above, a
decomposition without cancelations is always possible.

In convex analysis, elementary vectors of a linear subspace
were introduced as support-minimal vectors by Rockafellar
in 1969. He proves that every vector is a conformal sum
(originally called harmonious superposition) of elementary
vectors (Rockafellar, 1969, Theorem 1). For proofs and
generalizations in the settings of polyhedral geometry and
oriented matroids (see Ziegler, 1995, Lemma 6.7) and (Bachem
and Kern, 1992, Theorem 5.36). Rockafellar points out that
this result is easily shown to be equivalent to Minkowski’s
theorem Minkowski (1896) for pointed polyhedral cones, stating
that every nonzero vector is a nonnegative linear combination
of extreme vectors. Moreover, the result immediately implies
Carathéodory’s theorem Carathéodory (1911), stating that the
number of extreme vectors in such a nonnegative linear
combination need not exceed the dimension of the cone. In fact,
Rockafellar writes: “This is even a convenient route for attaining
various important facts about polyhedral convex cones, since the
direct proof [...] for Theorem 1 is so elementary.”

In metabolic pathway analysis, decompositions without
cancelations were introduced by Urbanczik and Wagner (2005).
The corresponding elementary vectors are defined by intersecting
a polyhedral cone with all closed orthants of maximal dimension.
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By applying Minkowski’s theorem for pointed polyhedral cones,
every vector is a sum of extreme vectors without cancelations.
Urbanczik further extended this approach to polyhedra arising
from flux cones and inhomogeneous constraints Urbanczik
(2007).

In polyhedral geometry, it seems that conformal
decompositions of general cones and polyhedra have not yet
been studied. In this work, following Rockafellar, we first extend
his result to cones defined by linear subspaces and nonnegativity
conditions (Theorem 3). For subspace cones, support-minimality
is equivalent to conformal non-decomposability. As it turns
out, for general polyhedral cones, elementary vectors have to be
defined as conformally non-decomposable vectors. However,
these are in one-to-one correspondence with elementary
vectors of a higher-dimensional subspace cone, and, by our
result for subspace cones, we obtain a conformal refinement
of Minkowski’s and Carathéodory’s theorems for polyhedral
cones (Theorem 8). In particular, there is an upper bound
on the number of elementary vectors needed in a conformal
decomposition of a vector. Finally, by taking into account
vertices and conformal convex combinations, we further extend
our result to polyhedra (Theorem 13). We note that elementary
vectors do not form a minimal generating set (of an s-cone, a
general polyhedral cone, or a polyhedron). However, they form a
unique minimal set of conformal generators (Proposition 17).

2. DEFINITIONS

We denote the nonnegative real numbers by R≥. For x ∈ R
n, we

write x ≥ 0 if x ∈ R
n
≥. Further, we denote the support of a vector

x ∈ R
n by supp(x) = {i | xi 6= 0}.

2.1. Sign Vectors
For x ∈ R

n, we define the sign vector sign(x) ∈ {−, 0,+}n by
applying the sign function component-wise, that is, sign(x)i =

sign(xi) for i = 1, . . . , n. The relations 0 < − and 0 < + induce
a partial order on {−, 0,+}n: for X,Y ∈ {−, 0,+}n, we write
X ≤ Y if the inequality holds component-wise. For x, y ∈ R

n,
we say that x conforms to y, if sign(x) ≤ sign(y). For example, let
x = (−1, 0, 2)T and y = (−2,−1, 1). Then,

sign





−1
0
2



 =





−

0
+



 ≤





−

−

+



 = sign





−2
−1
1



 ,

that is, sign(x) ≤ sign(y), and x conforms to y. Let X ∈

{−, 0,+}n. The corresponding closed orthant O ⊂ R
n is defined

as O = {x | sign(x) ≤ X}.

2.2. Convex Cones
A nonempty subset C of a vector space is a convex cone, if

x, y ∈ C and µ, ν > 0 imply µx+ νy ∈ C,

or, equivalently, if

λC = C for all λ > 0 and C + C = C.

A convex cone C is called pointed if C∩−C = {0}. It is polyhedral
if

C = {x | Ax ≥ 0} for some A ∈ R
m×r,

that is, if it is defined by finitely many homogeneous inequalities.
Hence, a polyhedral cone is pointed if and only if ker(A) = {0}.

2.3. Special Vectors
We recall the definitions of support-minimal vectors and
extreme vectors, which play an important role in both
polyhedral geometry and metabolic pathway analysis. We
also introduce support-wise non-decomposable vectors, which
serve as elementary modes for flux cones (in the original
definition), and conformally non-decomposable vectors, which
serve as elementary vectors for general polyhedral cones (see
Subsection 3.2).

Let C be a convex cone. A nonzero vector x ∈ C is called

• support-minimal, if

for all nonzero x′ ∈ C,

supp(x′) ⊆ supp(x) implies supp(x′) = supp(x), (SM)

• support-wise non-decomposable, if

for all nonzero x1, x2 ∈ C with supp(x1), supp(x2) ⊆ supp(x),

x = x1 + x2 implies supp(x1) = supp(x2), (swND)

• conformally non-decomposable, if

for all nonzero x1, x2 ∈ C with sign(x1), sign(x2) ≤ sign(x),

x = x1 + x2 implies x1 = λx2 with λ > 0, (cND)

• and extreme, if

for all nonzero x1, x2 ∈ C,

x = x1 + x2 implies x1 = λx2 with λ > 0. (EX)

From the definitions, we have the implications

SM ⇒ swND ⇐ EX ⇒ cND.

If x ∈ C is extreme, then {λx | λ > 0} is called an extreme ray
of C. In fact, C has an extreme ray if and only if C is pointed. If C
is contained in a closed orthant (and hence pointed), we have the
equivalence cND ⇔ EX.

3. MATHEMATICAL RESULTS

We start by extending a result on conformal decompositions
into elementary vectors from linear subspaces to special cases
of polyhedral cones, including flux cones in metabolic pathway
analysis.
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3.1. Linear Subspaces and S-cones
We consider linear subspaces with optional nonnegativity
constraints as special cases of polyhedral cones. Let S ⊆ R

r be
a linear subspace and 0 ≤ d ≤ r. We define the resulting s-cone
(subspace cone, special cone) as

C(S, d) = {
( x
y

)

∈ R
(r−d)+d |

( x
y

)

∈ S, y ≥ 0}.

Clearly, C(S, 0) = S and C(S, r) = S ∩ R
r
≥.

Definition 1. Let C(S, d) be an s-cone. A vector e ∈ C(S, d) is
called elementary if it is support-minimal.

For linear subspaces, the definition of elementary vectors
(EVs) as SM vectors was given in Rockafellar (1969). For
flux cones, where S = ker(N), the definition of elementary
modes (EMs) as SM vectors was given in Schuster et al. (2002).
Interestingly, the choice of the same adjective for the closely
related concepts of elementary vectors and elementary modes
was coincidental Schuster (2015).

In the proofs of Theorem 3 and Propositions 4 and 5, we use
the following argument.

Lemma 2. Let C(S, d) be an s-cone and x, x′ ∈ C(S, d) be nonzero
vectors which are not proportional. If supp(x′) ⊆ supp(x), then
there exists a nonzero vector

x′′ = x− λx′ ∈ C(S, d) with λ ∈ R

such that

sign(x′′) ≤ sign(x) and supp(x′′) ⊂ supp(x).

If sign(x′) ≤ sign(x), then λ > 0 in x′′.

Proof. Clearly, x′′ = x−λx′ is nonzero for all λ ∈ R. There exists
a largest λ > 0 (in case sign(−x′) ≤ sign(x) a smallest λ < 0)
such that sign(x′′) ≤ sign(x). For this λ, x′′ ∈ C(S, d) and
supp(x′′) ⊂ supp(x).

For linear subspaces, the following fundamental result was
proved in Rockafellar (1969 Theorem 1). We extend it to s-cones.

Theorem 3. Let C(S, d) be an s-cone. Every nonzero vector x ∈

C(S, d) is a conformal sum of EVs. That is, there exists a finite set
E ⊆ C(S, d) of EVs such that

x =
∑

e∈E

e with sign(e) ≤ sign(x).

The set E can be chosen such that its elements are linearly
independent, in particular, they can be ordered such that every
e ∈ E has a component which is nonzero in e, but zero in its
predecessors (in the ordered set). Then, |E| ≤ dim(S) and |E| ≤
| supp(x)|.

Proof. We proceed by induction on the cardinality of supp(x).
Either, x is SM (and E = {x}) or there exists a nonzero vector

x′ ∈ C(S, d) with supp(x′) ⊂ supp(x), but not necessarily with
sign(x′) ≤ sign(x). However, by Lemma 2, there exists a nonzero
vector x′′ ∈ C(S, d) with sign(x′′) ≤ sign(x) and supp(x′′) ⊂

supp(x). By the induction hypothesis, there exists a SM vector
e∗ with sign(e∗) ≤ sign(x′′) and hence sign(e∗) ≤ sign(x). By
Lemma 2 again, there exists a nonzero vector

x∗ = x− λe∗ ∈ C(S, d) with λ > 0

such that sign(x∗) ≤ sign(x) and supp(x∗) ⊂ supp(x). By the
induction hypothesis, there exists a finite set E∗ of SM vectors
such that

x∗ =
∑

e∈E∗

e with sign(e) ≤ sign(x∗)

and hence sign(e) ≤ sign(x). We have constructed a finite set
E = E∗ ∪ {λe∗} of SM vectors such that

x = x∗ + λe∗ =
∑

e∈E∗

e+ λe∗ =
∑

e∈E

e with sign(e) ≤ sign(x).

By the induction hypothesis, the set E∗ can be chosen such that
its elements are linearly independent and ordered such that every
e ∈ E∗ has a component which is nonzero in e, but zero in all
its predecessors. By construction, λe∗ has a component which is
nonzero, but zero in x∗ and hence in all e ∈ E∗. Obviously, the
elements of E = E∗ ∪ {λe∗} are linearly independent and can be
ordered accordingly.

The statement about the support of the EVs was too strong in
Rockafellar (1969, Theorem 1). It was claimed that every EV has
a nonzero component which is zero in all other EVs.∗

Theorem 3 is a conformal refinement of Minkowski’s and
Carathéodory’s theorems for s-cones. In fact, it remains to show
that there are finitely many EVs.

Proposition 4. Let C(S, d) be an s-cone. If two SM vectors x, x′ ∈
C(S, d) have the same sign vector, sign(x) = sign(x′), then x = λx′

with λ > 0. As a consequence, there are finitely many SM vectors
up to positive scalar multiples.

Proof. Assume there are two SM vectors with the same sign
vector which are not proportional. Then, by Lemma 2, there
exists a vector with smaller support.

∗ For a counterexample, consider the subspace S = ker(1,−1,−1, 1) ⊆ R
4. Its

nonnegative EVs are

e1 =









1
1
0
0









, e2 =









1
0
1
0









, e3 =









0
1
0
1









, e4 =









0
0
1
1









,

and their positive multiples. Then x = (1, 2, 3, 4)T is not a conformal sum of
EVs with the claimed property. (Every conformal decomposition of x consists of at
least 3 EVs, and every set of 3 EVs contains 1 EV which does not have a nonzero
component which is zero in the other EVs.)
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We conclude by showing that, for s-cones, EVs can be
equivalently defined as SM, swND, or cND vectors.

Proposition 5. For an s-cone, support-minimality, support-wise
non-decomposability, and conformal non-decomposability are
equivalent. That is,

s-cone : SM ⇔ swND ⇔ cND.

Proof. SM ⇒ swND: By definition.
swND ⇒ cND: Let C(S, d) be an s-cone and assume that

x ∈ C(S, d) is conformally decomposable, that is, x = x1 + x2

with nonzero x1, x2 ∈ C(S, d), sign(x1), sign(x2) ≤ sign(x),
and x1, x2 being not proportional. By Lemma 2, there exists a
nonzero x′ = x − λx1 ∈ C(S, d) such that supp(x′) ⊂ supp(x).
Hence supp(x′) 6= supp(x1), and x = x′ + λx1 is support-wise
decomposable.

cND ⇒ SM: Let C(S, d) be an s-cone and assume that x ∈

C(S, d) is not SM, that is, there exists a nonzero x′ ∈ C(S, d) with
supp(x′) ⊂ supp(x). Then, there exists a largest λ > 0 such that
x1 = 1

2x + λx′ and x2 = 1
2x − λx′ fulfill sign(x1), sign(x2) ≤

sign(x). For this λ, either supp(x1) ⊂ supp(x) or supp(x2) ⊂

supp(x); in any case, x1, x2 ∈ C(S, d) and supp(x1) 6= supp(x2).
Hence, x = x1 + x2 is conformally decomposable.

If an s-cone is contained in a closed orthant, then further
cND ⇔ EX, and all definitions of special vectors are equivalent.

3.2. General Polyhedral Cones
Let C be a polyhedral cone, that is,

C = {x ∈ R
r | Ax ≥ 0} for some A ∈ R

m×r .

For s-cones, we defined elementary vectors (EVs) via support-
minimality which, in this case, turned out to be equivalent to
conformal non-decomposability. For general polyhedral cones,
only the latter concept allows to extend Theorem 3.

Definition 6. Let C be a polyhedral cone. A vector e ∈ C is called
elementary if it is conformally non-decomposable.

In order to apply Theorem 3, we define an s-cone related to a
polyhedral cone C. We introduce the subspace

S̃ = {
(

x
Ax

)

∈ R
r+m | x ∈ span(C)}

with dim(S̃) = dim(C) and the s-cone

C̃ = C(S̃,m)

= {
(

x
Ax

)

∈ R
r+m | x ∈ span(C) and Ax ≥ 0}

= {
(

x
Ax

)

∈ R
r+m | x ∈ C}.

Hence,

x ∈ C ⇔
(

x
Ax

)

∈ C̃.

Moreover, the cND vectors of C and C̃ are in one-to-one
correspondence.

Lemma 7. Let C = {x | Ax ≥ 0} be a polyhedral cone and
C̃ = {

(

x
Ax

)

| Ax ≥ 0} the related s-cone. Then,

x ∈ C is cND ⇔
(

x
Ax

)

∈ C̃ is cND.

Proof. First, we show the equivalence of the premises in the
definitions of conformal non-decomposability for C and C̃.
Indeed,

x = x1 + x2 with x1, x2 ∈ C

⇔
(

x
Ax

)

=
(

x1

Ax1

)

+
(

x2

Ax2

)

with
(

x1

Ax1

)

,

(

x2

Ax2

)

∈ C̃.

Assuming x = x1+x2 with x1, x2 ∈ C (and henceAx1,Ax2,Ax ≥

0), we have

sign(x1), sign(x2) ≤ sign(x)

⇔

sign
(

x1

Ax1

)

, sign
(

x2

Ax2

)

≤ sign
(

x
Ax

)

.

It remains to show the equivalence of the conclusions in the two
definitions. In fact,

x1 = λx2 with λ > 0 ⇔
(

x1

Ax1

)

= λ

(

x2

Ax2

)

with λ > 0.

Now, we can extend Theorem 3 to general polyhedral cones.

Theorem 8. Let C = {x | Ax ≥ 0} be a polyhedral cone. Every
nonzero vector x ∈ C is a conformal sum of EVs. That is, there
exists a finite set E ⊆ C of EVs such that

x =
∑

e∈E

e with sign(e) ≤ sign(x).

The set E can be chosen such that |E| ≤ dim(C) and |E| ≤

| supp(x)| + | supp(Ax)|.

Proof. Let A ∈ R
m×r . Define the subspace

S̃ = {
(

x
Ax

)

∈ R
r+m | x ∈ span(C)}

and the s-cone

C̃ = {
(

x
Ax

)

∈ R
r+m | x ∈ C}.

Let x ∈ C be nonzero. By Theorem 3,
(

x
Ax

)

∈ C̃ is a conformal

sum of EVs. That is, there exists a finite set Ẽ ⊆ C̃ of EVs such
that

(

x
Ax

)

=
∑

( e
Ae

)

∈Ẽ

(

e
Ae

)

with sign
(

e
Ae

)

≤ sign
(

x
Ax

)

.

By Lemma 7, the EVs of C and C̃ are in one-to-one
correspondence. Hence, there exists a finite set E = {e |

(

e
Ae

)

∈

Ẽ} ⊆ C of EVs such that

x =
∑

e∈E

e with sign(e) ≤ sign(x).
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The set Ẽ (and hence E) can be chosen such that |E| = |Ẽ| ≤

dim(S̃) = dim(C) and |E| = |Ẽ| ≤ | supp
(

x
Ax

)

| = | supp(x)| +
| supp(Ax)|.

Theorem 8 is a conformal refinement of Minkowski’s and
Carathéodory’s theorems for polyhedral cones. In fact, it remains
to show that there are finitely many EVs.

Proposition 9. For a polyhedral cone, there are finitely many
cND vectors up to positive scalar multiples.

Proof. Let C be a polyhedral cone and C̃ the related s-cone.
By Lemma 7, the cND vectors of C and C̃ are in one-to-one
correspondence. By Proposition 5, the cND and SM vectors of
C̃ coincide, and by Proposition 4, there are finitely many SM
vectors.

In Urbanczik and Wagner (2005), EVs of a polyhedral cone
C were equivalently defined as extreme vectors of intersections
of C with closed orthants of maximal dimension. Indeed, the
following equivalence holds for closed orthants, not necessarily
of maximal dimension.

Proposition 10. Let C ⊆ R
r be a polyhedral cone, x ∈ C, and

O ⊂ R
r a closed orthant with x ∈ O. Then,

x ∈ C is cND ⇔ x ∈ C ∩ O is EX.

Proof. We show the equivalence of the premises in the
definitions of conformal non-decomposability for C and
extremity for C ∩ O. (The conclusions are identical.) Indeed,
assuming x = x1 + x2, we have

x1, x2 ∈ C with sign(x1), sign(x2) ≤ sign(x)

⇔

x1, x2 ∈ C ∩ O.

3.3. Polyhedra
Let P be a polyhedron, that is,

P = {x ∈ R
r | Ax ≥ b} for some A ∈ R

m×r and b ∈ R
m.

In order to extend Theorem 3 to polyhedra, we introduce
corresponding special vectors.

3.3.1. Special Vectors

Let P be a polyhedron. A vector x ∈ P is called

• a vertex, if

for all x1, x2 ∈ P and 0 < λ < 1,

x = λx1 + (1− λ)x2 implies x1 = x2, (VE)

• and convex-conformally non-decomposable, if

for all x1, x2 ∈ P with sign(x1), sign(x2) ≤ sign(x) and

0 < λ < 1, x = λx1 + (1− λ)x2 implies x1 = x2. (ccND)

From the definitions, we have

VE ⇒ ccND.

For a polyhedral cone, we defined elementary vectors (EVs) via
conformal non-decomposability. For a polyhedron, we require
two sorts of EVs: convex-conformally non-decomposable vectors
of the polyhedron and conformally non-decomposable vectors of
its recession cone.

Definition 11. Let P = {x ∈ R
r | Ax ≥ b} be a polyhedron

and Cr = {x ∈ R
r | Ax ≥ 0} its recession cone. A vector

e ∈ Cr ∪ P is called an elementary vector of P if either e ∈ Cr

is conformally non-decomposable or e ∈ P is convex-conformally
non-decomposable.

In order to apply Theorem 3, we define an s-cone related to
a polyhedron P = {x ∈ R

r | Ax ≥ b}. We introduce the
homogenization

Ch = {
( x

ξ

)

∈ R
r+1 | ξ ≥ 0 and Ax− ξb ≥ 0}

of the polyhedron, the subspace

S̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ span(Ch)}

with dim(S̃) = dim(Ch) = dim(P)+ 1, and the s-cone

C̃ = C(S̃, 1+m)

= {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ span(Ch), ξ ≥ 0, and

Ax− ξb ≥ 0}

= {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ Ch}.

Hence,

( x
ξ

)

∈ Ch ⇔

(

x
ξ

Ax−ξ b

)

∈ C̃.

Moreover, the cND vectors of Cr and the ccND vectors of P (as
the cND vectors of Ch) are in one-to-one correspondence with
the cND vectors of C̃.

Lemma 12. Let P = {x | Ax ≥ b} be a polyhedron, Cr = {x |

Ax ≥ 0} its recession cone, and

C̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m | ξ ≥ 0 and Ax− ξb ≥ 0}

the related s-cone. Then,

x ∈ Cr is cND ⇔
(

x
0
Ax

)

∈ C̃ is cND

and

x ∈ P is ccND ⇔
( x

1
Ax−b

)

∈ C̃ is cND.
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Proof. See Appendix.

Now, we can extend Theorem 3 to polyhedra.

Theorem 13. Let P = {x | Ax ≥ b} be a polyhedron and
Cr = {x | Ax ≥ 0} its recession cone. Every vector x ∈ P is a
conformal sum of EVs. That is, there exist finite sets E0 ⊆ Cr and
E1 ⊆ P of EVs such that

x =
∑

e∈E0

e+
∑

e∈E1

λee with sign(e) ≤ sign(x),

λe ≥ 0, and
∑

e∈E1
λe = 1. (Hence, |E1| ≥ 1.)

The set E = E0 ∪ E1 can be chosen such that |E| ≤ dim(P)+ 1
and |E| ≤ | supp(x)| + | supp(Ax)| + 1.

Proof. By defining an s-cone related to P, applying Theorem 3,
and using Lemma 12. See Appendix.

Theorem 13 is a conformal refinement of Minkowski’s and
Carathéodory’s theorems for polyhedra. In fact, it remains to
show that there are finitely many EVs.

Proposition 14. For a polyhedron, there are finitely many ccND
vectors.

Proof. Let P be a polyhedron and C̃ the related s-cone.
By Lemma 12, the ccND vectors of P are in one-to-
one correspondence with a subset of cND vectors of
C̃. By Proposition 5, the cND and SM vectors of C̃
coincide, and by Proposition 4, there are finitely many SM
vectors.

EVs of a polyhedron P can be equivalently defined as vertices
of intersections of P with closed orthants.

Proposition 15. Let P ⊆ R
r be a polyhedron, x ∈ P, and O ⊂ R

r

a closed orthant with x ∈ O. Then,

x ∈ P is ccND ⇔ x ∈ P ∩ O is VE.

Proof. We show the equivalence of the premises in the
definitions of convex-conformal non-decomposability for P and
of a vertex for P ∩ O. (The conclusions are identical.) Indeed,
assuming x = λx1 + (1− λ)x2 with 0 < λ < 1, we have

x1, x2 ∈ P with sign(x1), sign(x2) ≤ sign(x)

⇔

x1, x2 ∈ P ∩ O.

We conclude by noting that Theorem 8 is a special case
of Theorem 13. If a polyhedron is also a cone, then
P = Cr , E1 = {0}, and

∑

e∈E1
λee = 0. However, we do

not use Theorem 8 to prove Theorem 13. In classical proofs
of Minkowski’s and Carathéodory’s theorems, one first studies
polyhedral cones and then extends the results to polyhedra
by a method called homogenization/dehomogenization; (see
e.g., Ziegler, 1995).

3.4. Minimal Generating Sets
For a pointed polyhedral cone, the extreme rays form a minimal
set of generators with respect to addition. The set is minimal
in the sense that no proper subset forms a generating set and
minimal in the even stronger sense that it is contained in every
other generating set. Hence, the extreme rays form a unique
minimal set of generators.

For a general polyhedral cone, there are minimal sets of
generators (minimal in the sense that no proper subset forms a
generating set), but there is no unique minimal generating set.
However, there is a unique minimal set of conformal generators,
namely the set of elementary vectors.

Recall that elementary vectors of a polyhedral cone are
defined as conformally non-decomposable vectors. Indeed, every
nonzero element of a polyhedral cone is a conformal sum of
elementary vectors (Theorem 8), and every elementary vector is
contained in a set of conformal generators.

We make the above argument more formal.

Definition 16. Let C be a polyhedral cone. A subset G ⊆ C is
called a conformal generating set if (i) every nonzero vector x ∈ C
is a conformal sum of vectors in G, that is, if there exists a finite set
Gx ⊂ G such that

x =
∑

g∈Gx

g with sign(g) ≤ sign(x),

and (ii) if λG = G for all λ > 0.

Proposition 17. Let C be a polyhedral cone, E ⊆ C the set of
elementary vectors, and G ⊆ C a conformal generating set. Then,
E ⊆ G.

Proof. Let e ∈ C be an elementary vector. Since G is a conformal
generating set, we have

e = g∗ + h with sign(g∗), sign(h) ≤ sign(x),

where we choose a nonzero g∗ ∈ Ge ⊂ G and write h =
∑

g∈Ge\{g∗}
g ∈ C. If |Ge| = 1, then h = 0 and e = g∗ ∈ G.

Otherwise, since e is an elementary vector (a cND vector), we
have h = λg∗ with λ > 0 and hence e = (1+ λ)g∗ ∈ G.

Analogously, for a polyhedron, there is a unique minimal set
of conformal generators, namely the set of elementary vectors.

3.5. Examples
We illustrate our results by examples of polyhedral cones and
polyhedra in two dimensions, and we return to the running
example from the introduction.

Example 1. The s-cone C = {x | x1 ≥ 0, x2 ≥ 0}.
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x1

x2

r1

r2

Its EVs (SM vectors) are elements of the rays r1 = {x | x1 >

0, x2 = 0} and r2 = {x | x1 = 0, x2 > 0} (indicated by arrows).
Every nonzero vector x ∈ C is a conformal sum of EVs. That is,

x = e1 + e2,

where e1 ∈ r1 and e2 ∈ r2.

Example 2. The general polyhedral cone

C = {x |

(

3 1
−1 1

) (

x1
x2

)

≥ 0}.

x1

x2

r1 r2 r3

Its EVs (cND vectors) are elements of the rays r1, r2, and r3. Note
that r2 is not an extreme ray of C, but an extreme ray of C ∩ R

2
≥,

the intersection of the cone with the nonnegative orthant. Every
nonzero vector x ∈ C is a conformal sum of EVs. In particular, if
x ∈ C ∩ R

2
≥, then

x = e2 + e3,

where e2 ∈ r2 and e3 ∈ r3.

Example 3. The polyhedron

P = {x |





3 1
−3 3
0 2





(

x1
x2

)

≥





1
−1
1



}.

x1

x2

r1 r2 r3

e4

e5 e6

Its EVs are elements of the rays r1, r2, and r3 (cND vectors of the
recession cone) and the vectors e4, e5, and e6 (ccND vectors of the
polyhedron). Note that e4 is not a vertex of P, but a vertex of P∩R

2
≥,

the intersection of the polyhedron with the nonnegative orthant.
Every vector x ∈ P is a conformal sum of EVs. In particular, if
x ∈ P ∩ R

2
≥, then

x = (e2 + e3)+ (λ4e
4 + λ5e

5 + λ6e
6),

where e2 ∈ r2, e3 ∈ r3 and λ4, λ5, λ6 ≥ 0 with λ4 + λ5 + λ6 = 1.

Finally, we return to the running example from the
introduction. We restate the underlying network, the
corresponding stoichiometric matrix and the resulting flux
cone:

∗
1 // X1

2 //
OO

4

��

X2
3 // ∗

∗

N =

(

1 −1 0 −1
0 1 −1 0

)

,

C = {f ∈ R
4 | Nf = 0 and f1, f2, f3 ≥ 0}.

Its EVs (SM vectors) are

e1 =









1
0
0
1









, e2 =









0
1
1
−1









, e3 =









1
1
1
0









,

and their positive multiples. In other words, the EVs are elements
of the rays r1 = {λ e1 | λ > 0}, r2 = {λ e2 | λ > 0}, and
r3 = {λ e3 | λ > 0}.

The flux cone is defined by the stoichiometric matrix and the
set of irreversible reactions. If additionally lower/upper bounds
for the fluxes through certain reactions are known, then one is
interested in the resulting flux polyhedron. In the example, we
add an upper bound for the flux through reaction 1, in particular,
we require f1 ≤ 2 and obtain the flux polyhedron

P = {f ∈ R
4 | Nf = 0, f1, f2, f3 ≥ 0, and f1 ≤ 2}.
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Its EVs are elements of the ray r2 = {λ e2 | λ > 0} (cND vectors
of the recession cone) and the vectors e1, e3, e4 (ccND vectors of
the polyhedron), where

e1 =









2
0
0
2









, e2 =









0
1
1
−1









, e3 =









2
2
2
0









, e4 =









0
0
0
0









.

Note that e3 is not a vertex of P, but a vertex of P ∩ R
4
≥, the

intersection of the polyhedron with the nonnegative orthant.
Every vector x ∈ P is a conformal sum of EVs. In particular, if
x ∈ P ∩ R

4
≥, then

x = λ1e
1 + λ3e

3 + λ4e
4,

where λ1, λ3, λ4 ≥ 0 with λ1 + λ3 + λ4 = 1. In other words, the
polyhedron P ∩ R

4
≥ is a polytope.

In applications such as computational strain design, the set of
EVs (the unique minimal set of conformal generators) is often
more useful than a minimal set of generators. In the example, the
set of EVs includes e3 which is a ccND vector, but not a vertex of
P. If we delete reaction 4 by gene knockout, the new set of EVs
consists of e3 and e4 (having zero flux through reaction 4), and
the resulting flux polyhedron is the polytope generated by e3 and
e4. Most importantly, we obtain the result without recalculating
the set of generators (after deleting reaction 4).

4. DISCUSSION

Metabolic pathway analysis aims to identify meaningful routes
in a network, in particular, to decompose fluxes into minimal
metabolic pathways. However, only a decomposition without
cancelations is biochemically meaningful, since a reversible
reaction cannot have a flux in different directions at the same
time.

In mathematical terms, one is interested in a conformal
decomposition of the flux cone and of general polyhedral cones
and polyhedra. In this work, we first study s-cones (like the
flux cone) arising from a linear subspace and nonnegativity
conditions. Then, we analyze general polyhedral cones and
polyhedra via corresponding higher-dimensional s-cones.
Without assuming previous knowledge of polyhedral geometry,
we provide an elementary proof of a conformal refinement
of Minkowski’s and Carathéodory’s theorems (Theorems 3, 8,
and 13): Every vector (of an s-cone, a general polyhedral cone,
or a polyhedron) is a conformal sum of elementary vectors
(conformally non-decomposable vectors), and there is an
upper bound on the number of elementary vectors needed in a
conformal decomposition (in terms of the dimension of the cone
or polyhedron).

As a natural next question, one may ask: what is a minimal
generating set of a polyhedral cone that allows a conformal

decomposition of every vector? Clearly, such a set must contain
all conformally non-decomposable vectors. Indeed, we show that
the elementary vectors form a unique minimal set of conformal
generators (Proposition 17). In metabolic pathway analysis,
the question is: what is a minimal generating set of the flux
cone that allows a biochemically meaningful decomposition of
every flux mode? In this case, the elementary modes form a
unique minimal set of generators without cancelations. This
property distinguishes elementary modes as a fundamental
concept in metabolic pathway analysis and may serve as a
definition.

The correspondence of general polyhedral cones and
polyhedra to higher-dimensional s-cones has also important
consequences for the computation of elementary vectors. In
particular, it allows to use efficient algorithms and software
developed for elementary modes (see e.g., Zanghellini et al., 2013
and the references therein) for computing elementary vectors of
general polyhedral cones and polyhedra.

In applications, decompositions without cancelations were
first used in the study of the conversion cone Urbanczik and
Wagner (2005), a general polyhedral cone obtained by flux cone
projection Marashi et al. (2012). The approach was extended
to polyhedra arising from the flux cone and inhomogeneous
constraints, in particular, to describe the solution set of
linear optimization problems encountered in flux balance
analysis Urbanczik (2007). In analogy to s-cones, these sets could
be called s-polyhedra. Recently, elementary vectors have been
used to describe such polyhedra in the study of growth-coupled
product synthesis Klamt and Mahadevan (2015). Interestingly,
conformal decompositions of the flux cone itself appeared
rather late. In fact, they have been used to characterize optimal
solutions of enzyme allocation problems in kinetic metabolic
networks Müller et al. (2014).

Minkowski’s and Carathéodory’s theorems (and their
conformal refinements) are fundamental results in polyhedral
geometry with important applications in metabolic pathway
analysis. In subsequent work, we plan to revisit other results from
polyhedral geometry and oriented matroids (like Farkas’ lemma)
and investigate their consequences for metabolic pathway
analysis.
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APPENDIX

We prove the main results for polyhedra, Lemma 12 and
Theorem 13.

Proof of Lemma 12. To prove the first equivalence, we note that
(

x
0
Ax

)

∈ C̃ is cND if and only if
(

x
Ax

)

∈ C′ is cND, where

C′ = {
(

x
Ax

)

∈ R
r+m | Ax ≥ 0}, and apply Lemma 7.

To prove the second equivalence, we show the two
implications separately:
(⇒)We assume that x ∈ P is ccND and first consider a conformal
sum of the form

( x
1

Ax−b

)

=

(

x1

1
Ax1−b

)

+

(

x2

0
Ax2

)

with x1 ∈ P, nonzero x2 ∈ Cr , and sign(x1), sign(x2) ≤

sign(x). Indeed, we also have x = 1
2x

1 + 1
2 (x

1 + 2x2)
with x1, x1 + 2x2 ∈ P and sign(x1), sign(x1 + 2x2) ≤

sign(x). By the assumption, x1 = x1 + 2x2, that is,
x2 = 0, and it remains to consider a conformal sum of the
form

( x
1

Ax−b

)

= λ

(

x1

1
Ax1−b

)

+ (1− λ)

(

x2

1
Ax2−b

)

(+)

with x1, x2 ∈ P, sign(x1), sign(x2) ≤ sign(x), and 0 < λ < 1.
By the assumption, x1 = x2, and the first vector in the sum is a
positive multiple of the second. That is,

λ

(

x1

1
Ax1−b

)

= µ (1− λ)

(

x2

1
Ax2−b

)

(∗)

with µ > 0. Hence,
( x

1
Ax−b

)

∈ C̃ is cND.

(⇐) We assume that
( x

1
Ax−b

)

∈ C̃ is cND and consider the

convex-conformal sum

x = λx1 + (1− λ)x2

with x1, x2 ∈ P, sign(x1), sign(x2) ≤ sign(x), and 0 < λ < 1.
Hence, we also have the conformal sum (+). By the assumption,

we have equation (∗) which implies x1 = x2. Hence, x ∈ P is
ccND.

Proof of Theorem 13. Let A ∈ R
m×r and b ∈ R

m. Define the
homogenization

Ch = {
( x

ξ

)

∈ R
r+1 | ξ ≥ 0 and Ax− ξb ≥ 0},

the subspace

S̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ span(Ch)}

and the s-cone

C̃ = {

(

x
ξ

Ax−ξ b

)

∈ R
r+1+m |

( x
ξ

)

∈ Ch}.

Let x ∈ P. By Theorem 3,
( x

1
Ax−b

)

∈ C̃ is a conformal sum of

EVs. That is, there exist finite sets Ẽ0, Ẽ1 ⊆ C̃ of (normalized)
EVs such that

( x
1

Ax−b

)

=
∑

( e
0
Ae

)

∈Ẽ0

( e
0
Ae

)

+
∑

( e
1

Ae−b

)

∈Ẽ1

λe

( e
1

Ae−b

)

with

sign
( e

0
Ae

)

, sign
( e

1
Ae−b

)

≤ sign
( x

1
Ax−b

)

,

λe ≥ 0, and
∑

e∈E1
λe = 1. By Lemma 12, the EVs of P are in

one-to-one correspondence with the EVs of C̃. Hence, there exist

finite sets E0 = {e |
( e

0
Ae

)

∈ Ẽ0} ⊆ Cr and E1 = {e |
( e

1
Ae−b

)

∈

Ẽ1} ⊆ P of EVs such that

x =
∑

e∈E0

e+
∑

e∈E1

λee with sign(e) ≤ sign(x).

The set Ẽ = Ẽ0 ∪ Ẽ1 (and hence E = E0 ∪ E1) can be chosen
such that |E| = |Ẽ| ≤ dim(S̃) = dim(P) + 1 and |E| = |Ẽ| ≤

| supp
( x

1
Ax−b

)

| = | supp(x)| + 1+ | supp(Ax− b)|.
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