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Gene selection has become a common task in most gene expression studies. The

objective of such research is often to identify the smallest possible set of genes that

can still achieve good predictive performance. To do so, many of the recently proposed

classification methods require some form of dimension-reduction of the problem which

finally provide a single model as an output and, in most cases, rely on the likelihood

function in order to achieve variable selection. We propose a new prediction-based

objective function that can be tailored to the requirements of practitioners and can be

used to assess and interpret a given problem. Based on cross-validation techniques and

the idea of importance sampling, our proposal scans low-dimensional models under the

assumption of sparsity and, for each of them, estimates their objective function to assess

their predictive power in order to select. Two applications on cancer data sets and a

simulation study show that the proposal compares favorably with competing alternatives

such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed

method not only selects smaller models for better, or at least comparable, classification

errors but also provides a set of selected models instead of a single one, allowing to

construct a network of possible models for a target prediction accuracy level.

Keywords: biomarker selection, genomic networks, disease classification, breast cancer, acute leukemia, model

averaging

1. INTRODUCTION

Gene selection has become a common task in most gene expression studies. The problem of
assigning tumors to a known class is an example that is of particular importance and has received
considerable attention in the last 10 years. Conventional class prediction methods of leukemia
or other cancers are in general based on microscopical examination of stained tissue specimens.
However, suchmethods require highly trained specialists and are subjective (Tibshirani et al., 2002).

To avoid these drawbacks, many automatic selection methods have been proposed recently. The
goal of these methods is often to identify the smallest possible set of genes that can still achieve
good predictive performance (Díaz-Uriarte and De Andres, 2006), although this is not necessarily
the only criterion based on which model (gene) selection is carried out (see for example Leng
et al., 2006). However, these methods have the advantage of being objective and have improved
the correct classification rate in various cases. Among the different methodologies brought forward
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in this context we can find those proposed by Tibshirani et al.
(2002), Dudoit et al. (2002), Zhu and Hastie (2004), and Zou and
Hastie (2005). See also Díaz-Uriarte and De Andres (2006) and
the references therein for other approaches.

Nonetheless, many of these methods do not necessarily
respond to the needs of practitioners and researchers when they
approach the gene selection process. First of all, many of them
have to rely on some form of size reduction and often require
a subjective input to determine the dimension of the problem.
Also, many of these methods often provide a single model
as an output whereas genes interact inside biological systems
and can be interchangeable in explaining a specific response.
The idea of interchangeability of genes in explaining responses
appears for instance in Kristensen et al. (2012). These authors
use the PARADIGM algorithm of Vaske et al. (2010) to combine
mRNA expression and DNA copy number in order to construct
clusters of patients that provide the best predictive value. The
resulting clusters can be seen as being characterized by different
significantly expressed genes and we can refer to their interactive
structure as paradigmatic networks.

Another issue of most existing gene selection methods
is their reliance on the likelihood function, or a penalized
version of it, as a means to develop a selection criterion.
However, the likelihood function may not necessarily be the
quantity that users are interested in as they may want to
target some other kind of loss function such as, for example,
the classification error. Of course, maximizing the likelihood
function is not typically the same as minimizing a particular loss
function. Moreover, adapting these methods to handle missing
or contaminated data is not straightforward. This has limited the
applicability and reliability of these methods in many practical
cases.

To eliminate the limitations of the gene selection procedures
described above, this paper proposes an objective function
for out-of-sample predictions that can be tailored to the
requirements of practitioners and researchers. This is achieved by
enabling them to select a criterion according to which they would
like to assess and/or interpret a given problem. However, the
optimization of such a criterion function is typically not an easy
task since the function can be discontinuous, non-convex and
would require computationally intensive techniques. To tackle
this issue, we propose a solution using a different approach based
on a procedure that resembles importance sampling. This new
approach provides a general and flexible framework for gene
selection as well as for other model selection problems.

The advantages of this proposal are multiple:

• Flexibility: It allows the users to specify a criterion that
can be tailored to the specific problem setting. It is able to
handle different kinds of responses, problems of missing and
contaminated data, multicollinearity, etc.

• Prediction Power: The result of the procedure is a set of
models with high predictive power with respect to the specified
criterion. It is especially suitable in selecting genes and models
to achieve accurate predictions.

• Dimension-reduction: It can provide an assessment of the
dimension of the problem because it greatly reduces the

number of necessary covariates and eases the interpretation
without requiring any preliminary size reduction.

• Network-building: With the reduced model size, it preserves
the capacity to build gene-networks to provide a more general
view of the potential paradigmatic structures of the genetic
information.

This last aspect is of great interest for gene selection since this
list can provide insight into the complex mechanisms behind
different biological phenomena. Different cases, some of which
can be found in Section 4, indicate that this method appears
to outperform other methods in terms of criteria minimization
while, at the same time, selects models of considerably smaller
dimension which allow improved interpretation of the results.
The set of selected models can naturally be viewed as a network
of possible structures of genetic information. We call this a
paradigmatic network. In Section 4 we give an example of a
graphical representation of such networks based on the analysis
of one of two cancer data sets which are discussed therein.

In this paper we first describe and formalize the proposed
approach within the model selection statistical framework in
Section 2. In Section 3 we illustrate the techniques and algorithms
used to address the criterion minimization problem highlighted
in Section 2. The performance of our approach is then illustrated
on two data sets concerning leukemia classification (Golub et al.,
1999) and breast cancer classification (Chin et al., 2006), and in
simulation study, in Section 4 and Section 5 respectively. We
conclude the paper in Section 6 by summarizing the benefits of
the new approach and providing an outlook on other potential
applications that can benefit from this methodology.

2. APPROACH

To introduce the proposed method, let us first define some
notation which will be used throughout this paper:

1. Let Jf =
{
1, 2, ..., p

}
be the set of indices for p potential

covariates included in the n × p matrix X. We allow X to
include a vector of 1s.

2. LetJ = P(Jf )\∅, |J | = 2p−1, be the power set including all
possible models that can be constructed with the p covariates
excluding the empty set.

3. Let  ∈ J be a model belonging to the above mentioned
power set.

4. Let β ∈ R
p be the parameter vector for model  , i.e.,

β


k
=

{
βk if k ∈ 

0 if k 6∈ 

where β


k
, βk are respectively the kth element of β and β ,

with β = (β1, . . . ,βp)
T ∈ B ⊆ R

p.

Keeping this notation in mind, for a given model  ∈ J we have
that

E[Y|X] = g(X,β ), (1)
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whereE[·] is the expectation operator and g(·, ·) is a link function
known up to the parameter vector β ∈ R

p. Models of the form
(1) are very general and include all parametric models and a large
class of semiparametric models when g(·, ·) is not completely
known.

We assume that for a fixed  , based on a specific choice for
model (1) with corresponding parameter vector β and given
a new covariate vector X0, the user can construct a prediction
Ŷ(X0,β

 ). To assess the quality of this prediction we assume
that we have a divergence measure available which we denote
as D{Ŷ(X0,β

 ),Y0}. The only requirement imposed on the
divergence measure is that it satisfies the property of positiveness,
i.e.,

D(u, v) > 0 for u 6= v

D(u, v) = 0 for u = v.

With this property being respected, the divergence measure can
arbitrarily be specified by the user according to the interest in the
problem. Examples of such divergence measures include the L1
loss function

D{Ŷ(X0,β
 ),Y0} = |Ŷ(X0,β

 )− Y0|

or an asymmetric classification error

D{Ŷ(X0,β
 ),Y0} = I{Ŷ(X0,β

 ) = 1,Y0 = 0}w1

+ I{Ŷ(X0,β
 ) = 0,Y0 = 1}w2.

where w1,w2 ≥ 0. The latter is for a Bernoulli response
and is typically an interesting divergence measure when
asymmetric classification errors have to be considered. Indeed,
in most clinical situations, the consequences of classification
errors are not equivalent with respect to the direction of the
misclassification. For instance, the prognosis and the treatment
of Estrogen Receptor (ER) positive Breast Cancers (BC) are quite
different from those of ER negative ones. Indeed, if a patient
with ER negative is treated with therapies designed for patients
with ER positive, the consequence is much more severe than if
this were done the other way round because of the excessive
toxicities and potentially severe side effects. It therefore makes
sense to give different values to w1 and w2. By defining w1 > w2

we would take these risks into account, where w1 would be the
weight for a misclassification from ER negative to ER positive
BC and w2 for the opposite direction. Weight values can be
modulated according to the current medical knowledge and the
clinical intuition of the physicians.

Considering this divergence measure D(·, ·), we are
consequently interested in finding the best models within
the general class given in Equation (1). To do so, we would
ideally aim at solving the following risk minimization problem :

β̂

∈ B ≡ argmin

∈J

argmin
β

E0

[
D

{
Ŷ(X0,β

 ),Y0

}]
, (2)

where E0 denotes the expectation on the new observation
(Y0,X0). Let 0 denote the models with the smallest cardinality
among all β̂


∈ B. Note that there could be more than one model

with the same prediction property and of the same size, hence
0 could contain more than one model. Let us define the models
corresponding to 0 as the “true” models. Thus, our “true” models
are essentially the most parsimonious models that minimize the
expected prediction error.

The optimization problem in Equation (2) is typically very
difficult to solve. First of all, supposing we do not consider
interaction terms, the outer minimization would require to
compare a total of 2p − 1 results, each a result of the inner
minimization problem. In addition, each of the 2p − 1 inner
minimization problems is also very hard to solve, even if the
risk E0[D{Ŷ(X0,β

 ),Y0}] were a known function of β . Indeed,
the inner minimization problem is in general non-convex and
could be combinatorial, implying that the minimizer might
not be unique. For example, when D(·, ·) is the classification
error, this problem is combinatorial by nature. In practice, the
computational challenge is even greater because the risk function
E0[D{Ŷ(X0,β

 ),Y0}] is a function of βJ without explicit form
and needs to be approximated.

We propose to estimate E0[D{Ŷ(X0,β
 ),Y0}] via an m-fold

cross-validation (typically m = 10) repeated K times. More
specifically, for a sample of size n, at the kth repetition we
randomly split the data into m subsets Ik,l of size nl for l =

1, . . . ,m. Given this, the estimated risk is

Ê0

[
D

{
Ŷ(X0,β

 ),Y0

}]
=

1

mK

K∑

k= 1

m∑

l= 1

1

nl

∑

i∈Ik,l

D{Ŷ(Xi,β
 ),Yi}.

(3)
Having approximated the expectation E0, the minimization
problem in Equation (2) becomes

argmin
∈J

argmin
β

Ê0

[
D

{
Ŷ(X0,β

 ),Y0

}]
. (4)

Despite the above approximation, the minimization problem
remains complicated for the reasons mentioned earlier. Thus, we
further eliminate the inner minimization problem in Equation
(4) by inserting an estimator β̂


obtained independently from

the minimization procedure. More specifically, we assume that

an estimator of β , say β̂
,k

, is available based on model (1) and
“training” observations containing all the observations except
those in Ik,l. This estimator can be any available estimator, for
example, the maximum likelihood estimator (MLE), a moment
based estimator, or a quantile regression based estimator, etc.
(see for example, Azzalini, 1996; Hall, 2005; Koenker, 2005). We
then replace the inner minimization in Equation (4) directly

with the approximate expectation evaluated at β̂
,k

’s and simplify
Equation (4) to

argmin
∈J

1

mK

K∑

k=1

m∑

l=1

1

nl

∑

i∈Ik,l

D{Ŷ(Xi, β̂
,k

),Yi}. (5)
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The intuition of replacing the inner minimization in Equation
(4) with a sample average evaluated at an arbitrary estimator is
due to the fact that this estimator, under a fixed “true” model
and regardless of whether this estimator is a standard MLE or a
minimizer of the divergence measureD(·, ·), is an approximation
to the “true” parameter. This means that, consequently, different
estimators are “close” to each other. As a consequence, the
minimization problem in Equation (5) can be considered to be
a close approximation to minβ E0

[
D

{
Ŷ(X0,β

 ),Y0

}]
. In fact,

using an informal law of large numbers argument, as nl → ∞,

then we have that β̂
 p
→ β . If in addition m → ∞ then, under

some regularity conditions on D(·, ·), the averages tend to the
desired expectation. On the other hand, if instead we consider
m as fixed, we would have an unbiased estimator of the expected
risk. A thorough development of these arguments goes beyond
the scope of this paper.

We now have an optimization problem in Equation (5) which
requires a comparison of 2p−1 values and is much easier to solve.
To further reduce the number of comparisons, the following
section describes some procedures and algorithms allowing to
solve this problem in a more efficient manner.

3. HEURISTIC PROCEDURE

To solve the optimization problem in Equation (5), we propose
an approach designed to have the following three features:

1. Identify a set of models that carry large predictive power
instead of a single “best” model;

2. Find this set of models within a reasonable time, without
having to explore all possible models;

3. This set achieves sparsity, i.e., most of the parameters in β will
be fixed at zero in each of the models in the set.

Note that the last feature above reflects the belief that most of
the covariates are irrelevant for the problem under consideration
and should be excluded. Indeed, our method is designed to
work effectively if such a sparsity assumption holds, putting it
on the same level of almost all variable selection procedures in
the literature. Moreover, we require the method to have the first
feature in order to increase flexibility in terms of interpretation.
Indeed, in many domains such as gene selection, for example,
the aim may not be to find a single model but a set of variables
(genes) that can be inserted in a paradigmatic structure to
better understand the contribution of each of them via their
interactions.

Given this goal, assume that we have at our disposal an
estimate of the measure of interest D(·, ·) for all possible 2p − 1
models. In this case, our interest would be to select a set of “best”
models by simply keeping the set of models that have a low
discrepancy measure D(·, ·). It is of course unrealistic to obtain
a discrepancy measure for all models in most practical cases
because this would require a considerable amount of time for
computation. Therefore, in order to achieve the second feature,
instead of examining all possible models, we can randomly
sample covariates from J . The random sampling needs to
be carefully devised because in practice, for example in gene

selection problems, the number of covariates p can easily reach
thousands or tens of thousands (see examples in Section 4, where
p = 7129 and p = 22, 215 respectively). In such situations, 2p−1
is an extremely large number and the probability of randomly
sampling a “good” set of variables from the 2p − 1 variables
is very small. Using the sparsity property of the problem, we
propose to start with the set of variables M0 (typically an empty
set) and increase the model complexity stepwise. Throughout
this procedure, we ensure that at step k, the most promising
covariates based on the evaluation at step k − 1 are given higher
probabilities of being randomly drawn. The last idea is in the
spirit of “importance sampling” in the sense that covariates with
more importance based on the previous step are “encouraged”
to be selected in the current step. Note that by construction we
achieve sparsity if we stop the stepwise search at models of size
dmax ≪ p.

More formally, let us first define the set of all possible models
of size d as

Sd = {(i1, . . . , id) | i1, . . . , id ∈ Jf ; i1 < . . . < id}.

We then define the set of promising models, S∗
d
, as the ones with

an estimated out-of-sample divergence measure D(·, ·) below
a certain estimated α-quantile. The value of α is user-defined
depending on the problem at hand, and is typically a small value
such as α = 1%. The formal definition of this set would then be

S
∗
d = { |  ∈ Sd ; D̂ ≤ q̂d(α)},

where

D̂ ≡
1

mK

K∑

k=1

m∑

l=1

1

nl

∑

i∈Ik,l

D{Ŷ(Xi, β̂
,k

),Yi}, (6)

and q̂d(α) is the α-quantile of the D̂ ( ∈ Sd) values issued from
B randomly selected models. Finally, we define the set of indices
of covariates that are in S∗

d
as

I
∗
d = {i | i ∈ ,  ∈ S

∗
d }

whose complement we define as Ic
d
(i.e., all those covariates that

are not included in I∗
d
).

With this approach in mind and using the above notations,
to start the procedure we assume that we have p variables from
which to select.

A. Initial Step:We start by adding the number of variables d = 1
to our initial variable setM0 with the goal of finally obtaining
the set I∗

1 .

1. Construct the p possible one variable models by
augmentingM0 with each of the p available variables.

2. Compute D̂ for every model obtained in Step A.1.
3. From Steps A.1 and A.2, construct the set I∗

1 using
Equation (3). Go to Step B and let d = 2.
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B. General Step: We define here the general procedure to
construct I∗

d
for 2 ≤ d ≤ dmax.

1. AugmentM0 with d variables as follows:

(i) Randomly select a set, either set I∗
d−1

with probability π

or its complement Ic
d−1

with probability 1− π .
(ii) Select one variable uniformly at random and without

replacement from the set chosen in Step (i) and add this
variable toM0.

(iii) Repeat Steps (i) and (ii) until d variables are added to
M0.

2. Construct a model of dimension d using the d variables
selected in Step B.1. Repeat Step B.1 B times to construct
B such models.

3. From Steps B.1 and B.2, construct the set I∗
d
according to

Equation (3). If d < dmax, go to Step B and let d = d + 1,
otherwise exit algorithm.

Once the algorithm is implemented, the user obtains an out-of-
sample discrepancy measure for all evaluated models. Given that
the goal is to obtain a set of models S∗

d
with high predictive power,

the discrepancy measure delivers the criterion based on which it
is possible to determine the optimal model dimension and the
corresponding network structure.

3.1. Practical Considerations
The algorithm described above lays out the basic procedure
to solve the problem in Equation (2). However, as many
other heuristic selection procedures, there are a series of
“hyper-parameters” to be determined and certain aspects to be
considered. In the following paragraphs we will discuss some
of these issues arising when implementing our algorithm in
practice.

3.1.1. Choice of Algorithm Inputs
The parameters dmax, B, α and π of the above algorithm are
to be fixed by the user. As mentioned earlier dmax represents
a reasonable upper bound for the model dimension which is
constrained to dmax ≤ L, where L depends on the limitations
of the estimation method and is commonly the sample size n.
As for the parameter B, a larger value is always preferable to
better explore the covariate space. However, a larger B implies
heavier computations, hence a rule of thumb that could be
used is to choose this parameter such that p ≤ B ≤

(p
2

)
.

As mentioned earlier, the parameter α should define a small
quantile, typically 1%. Finally, π determines to what extent the
user assigns importance to the variables selected at the previous
step. Given that dmax≪p and α is small, we will typically have that
|I∗

d−1
| < |Ic

d−1
|. In this setting, a choice of π = 0.5 for example

would deliver a higher probability for the variables in I∗
d−1

to be
included in I∗

d
. All other parameters being equal, increasing the

value of π would decrease the probability of choosing a variable
in Ic

d−1
and vice versa. Moreover, we discuss in Appendix A

(Supplementary Material) how the proposed algorithm can be
adjusted to situations where p is either small or very large.

As a final note, it is also possible for the initial model
M0 to already contain a set of p0 covariates which the user

considers to be essential for the final output. In this case, the
procedure described above would remain exactly the same since
the procedure would simply select from the p covariates which
are not in the user-defined set and the final model dimension
would simply be p0 + d.

3.1.2. Model Dimension and Network Building
The final goal of the algorithm is to find a subset of models
of dimension d∗ that in some way minimize the considered
discrepancy. A possible solution would be to select the set of
models S∗

d∗
such that d∗ = min∈{1,...,dmax} qd(α). However,

the quantity qd(α) is unknown and replaced by its estimator
q̂d(α). Due to this, a solution that might be more appropriate
would be to consider a testing procedure to obtain d∗ taking
into account the variability of q̂d(α). For example, we could find
the dimension d∗ such that we cannot reject the hypothesis that
q̂d∗ (α) = q̂d∗+1(α). Thus we sequentially test whether q̂j+1 is
smaller than q̂j for j = 1, . . . , dmax. As long as the difference is
significant we increment j by one unit, otherwise the minimum is
reached and d∗ = j.

The type of test and its corresponding rejection level are
determined by the user based on the nature of the divergence
measure. For example, if we take the L1 loss function as a
divergence, one could opt for the Mann-Whitney test or if the
loss function is a classification error (as in the applications in
Section 4), one could choose the binomial test or other tests for
proportions. The rejection level will depend, among others, on
the number of tests that need to be run, typically less than dmax−

1, and need to be adjusted using, for example, the Bonferroni
correction. Finally, once the set S∗

d∗
is obtained, the user may

still want to “filter” the resulting models. Indeed, the number of
models in the solution S∗

d∗
may be large and the corresponding

divergence estimates may vary considerably from model to
model. Since these divergence measures are estimators, we again
propose a multiple testing procedure to reduce the number of
models in S∗

d∗
. Before doing so, we eliminate redundant models,

thereby making sure that every model is included only once.
Then, we start the testing procedure with an empty set S0

d∗
= ∅

to which we add the model (or one of the models) that has the
minimum divergence measure estimate, denoted D̂min , where
min ∈ S∗

d∗
denotes this model. Then for every model  ∈

S∗
d∗
\min, we test whether D̂ is greater than D̂min . We add the

model to S0
d∗

if the difference is not significant and stop adding
models as soon as the test deems that the divergence of the next
model is indeed larger. By doing so we finally obtain S0

d∗
⊆ S∗

d∗

which is the set containing the models (and hence covariates)
which can be interpreted in a paradigmatic network. Generally
speaking, this network can be built starting from the most
frequent covariate(s) present in S0

d∗
(we call these “hubs”) and,

subsequently, connecting these with the most frequent covariates
included in the models with the previous hubs. This can be
continued until the number of connected hubs is equal to d∗.

3.2. Related literature
Some of the ideas put forth in this work have also been considered
in the literature. An extensive survey of the related works goes
beyond the scope of this paper. Here we briefly describe some of
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the connections to three main ideas that have been explored to
this point.

The first one is recognizing that practitioners might aim
to minimize some criterion that differs from likelihood-
type losses. An interesting paper illustrating this point is
Juang et al. (1997) in the context of speech recognition.
For their classification problem, these authors propose to
minimize a “smoothed” version of the decision rule used
for classification. The advantage of this procedure is that it
yields better misclassification errors than using pure likelihood
based criteria which intrinsically fit a distribution to the data.
In the approach presented in this work we also deliver an
approximate solution but, as opposed to approximating the
problem and solving the latter in an exact manner as in
Juang et al. (1997), we define the exact problem and try to
approximately minimize the misclassification error through our
algorithm.

Secondly, there is a large literature that uses stochastic search
procedures to explore the space of candidate models. Influential
work in this direction includes George and McCulloch (1993)
and George and McCulloch (1997) who postulate hierarchical
Bayesian models. In their set-up, subsets of promising predictors
form models with higher posterior probabilities. An interesting
application of this framework for disease classification using
gene expression data is the work of Yang and Song (2010).
Cantoni et al. (2007) also consider a random exploration of the
space of possible models, but avoiding the Bayesian formulation
of George and McCulloch (1993). Their approach defines a
probability distribution for the various candidate models based
on a cross-validated prediction error criterion and then uses
a Markov Chain Monte-Carlo method to generate a sample
from this probability distribution. An important feature of
the stochastic search implied by our algorithm is that it is a
greedy method, while the aforementioned methods are not. The
typical forward/backward greedy algorithms proposed in the
literature are not random, while existing stochastic procedures
are not greedy. Thus, the combination of greedy approach and
random search approach seems to be new (see for instance
Zhang, 2011, for some theory on greedy algorithms in sparse
scenarios).

Finally, other authors have also considered providing a set
of interesting models as opposed to a single “best” model.
The stochastic search procedures mentioned in the above
paragraph can naturally be used to obtain a group of interesting
models. For example, Cantoni et al. (2007) consider a set of
best indistinguishable models in terms of prediction. Random
forests can be used to select variables and account for the
stability of the chosen model as in Díaz-Uriarte and De Andres
(2006). These methods can also be used to construct a set
of interesting models. It is also worth noting that typical
ensemble methods, such as bagging and boosting (Friedman
et al., 2010), exploit multiple models mainly to yield good
predictions. In our approach however not only can the different
models that we explore be averaged for prediction, but typically
each of them will give good predictions, be sparse and
easy to interpret, and together can be used to construct a
network.

4. CASE STUDIES

In this section we provide an example of how the methodology
proposed in this paper selects and groups genes to explain,
describe and predict specific outcomes. We focus on the data-
set (hereinafter leukemia) which collects information on Acute
Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia
(ALL) and is frequently used as an example for gene selection
procedures. Indeed, Golub et al. (1999) were among the first to
use this data to propose a gene selection procedure which was
then followed up by other proposals that used the same data to
compare their performance.Wewill use this data-set to underline
the features and advantages of the proposed method. A second
data-set concerning the research on breast cancer (presented in
Chin et al., 2006) is analyzed in Appendix C (Supplementary
Material) to show the outputs of the proposed method from
another example. Note that both he Leukemia (Section 4.1) and
the Breast Cancer (Appendix C in Supplementary Material) data-
sets are made available in the R package “datamicroarray”.

The analysis of these data-sets focuses both on the advantages
of the proposed methodology and the biological interpretation of
the outcomes. One of the goals of our method is to help decipher
the complexity of biological systems. We will take on an overly
simplified view of the cellular processes in which we will assume
that one biomarker maps to only one gene that in turn has only
one function. Although this assumption is not realistic, it allows
us to give a straightforward interpretation of the selected models
or “networks” which can therefore provide an approximate first
insight into the relationships between variables and biomarkers
(as well as between the biomarkers themselves). We clarify that
we do not claim any causal nature in the conclusions we present
in these analyses but we believe that the selected covariates can
eventually be strongly linked to other covariates that may have a
more obvious and direct interpretation for the problem at hand.
Finally, the data-set has binary outcomes [as does the data-set
in Appendix C (Supplementary Material)], hence we will make
use of the Classification Error (CE) as a measure of prediction
performance and we will not assign weights to a given prediction
error. This means that misclassification errors are given the
same weight, in the sense that a false positive prediction (e.g.,
predicted “presence” when the truth is “absence”) is considered as
undesirable as a false negative prediction. However, our method
can also consider divergence measures based on unequal weights
as highlighted in Section 2.

4.1. Acute Leukemia
Golub et al. (1999) were among the first to propose an automatic
selection method for cancer classification and demonstrated
the advantages of using such a method. One of the main
applications of their method was on the leukemia data-set in
which information regarding 72 patients is included, namely
their type of leukemia (25 patients with AML and 47 patients with
ALL) and 7129 gene expressions used as explanatory variables
to distinguish between two types of leukemia. As explained
in Golub et al. (1999) this distinction is critical for successful
treatment which substantially differs between classes. In fact,
although remissions can be achieved using any of these therapies,
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FIGURE 1 | Number of covariates vs. D̂ on leukemia cancer

classification training set. The names are abbreviations for other selection

method referred to in Table 1.

cure rates are markedly increased and unwarranted toxicities are
avoided when targeting the specific type of leukemia with the
right therapy.

4.1.1. Statistical Analysis
In order to understand how our proposedmethodology performs
compared to existing ones, we split the leukemia data into the
same training set (38 patients) and test set (34 patients) as in the
original work by Golub et al. (1999). We employ our method
on the training set to understand the dimension of the model
and to select the most relevant genes. Setting α = 0.01, the
corresponding observed quantile of the 10-fold cross-validation
CE (D̂) is shown in Figure 1. It can be seen that the error
immediately decreases to almost zero when using two covariates
instead of one, after which it roughly monotonically increases,
suggesting that the optimal model dimension is two.

In Figure 1 we also plotted the performance of the other
selection methods used on this training data which are
represented by labeled dots reporting the acronyms of these
methods that are listed in Table 1. These cross-validation errors
are taken from Zou and Hastie (2005) in the same setting in
which we ran the proposed method. However, another table
in which the competing methods were ran using currently
available software is presented in Appendix B (Supplementary
Material) where the conclusions in terms of comparison do not
differ from those presented in Table 11. Indeed, the approach
proposed in this work compares favorably to all other methods
in terms of prediction power since they lie under the curve
to the right of its minimum indicating that, compared to our
method, they select models of considerably higher dimensions
without achieving the same degree of performance in terms of
CE. Therefore, for this particular case, our method outperforms
the other methods. The sparsity and tenfold CV error are
further illustrated in Table 1, where we also present the average
prediction error on the test data. Considering the latter, it

1The use of the software making available the competing methods is described in

Section 5.

TABLE 1 | Summary of Leukemia classification results.

Method Tenfold CV Test error Number of

error genes

Golub 3/38 4/34 50

Support vector

machine

2/38 1/34 31

(with recursive feature

elimination)

Penalized logistic

regression

2/38 1/34 26

(with recursive feature

elimination)

Nearest shrunken

centroids

2/38 2/34 21

Elastic net 3/38 0/34 45

Panning Algorithm

(107)

Model a 0/38 2/34 2

Model b 0/38 2/34 2

Model c 0/38 2/34 2

[. . .]

Model averaging 2/34 2

The table is taken from Zou and Hastie (2005) where we added the Panning Algorithm.We

obtained a total of 107 models of size 2 (109 different biomarkers) using a probability

α = 0.01, B = 20’000 bootstrap replicates, a selection probability π = 0.5 with

D(·, ·) estimated through tenfold-CV repeated K = 10 times. Models “a” to “c” are three

examples out of the 107 models. All 107 models have a tenfold-CV error of 0. The best

test error is 2 and the worst is 12. For model averaging all models are equally weighted.

can be seen how the performance of the different methods
are similar but the proposed method (which we refer to as
Panning) is able to achieve the same performance by selecting
models of a considerably lower dimension. As a final note
to the table, the last line reports the performance of model
averaging. Indeed, if the interest lies in predicting, the algorithm
of Section 3 provides a set of models whose CE is below a
given quantile α. The predictions of these models can be used
in the spirit of model averaging where a general prediction can
be obtained by taking the average of predictions of the selected
set of models. The proposed methodology can therefore be
potentially seen as a bridge between model selection and model
averaging.

Once this procedure is completed, we can create a gene
network to facilitate interpretation. This is a direct benefit of our
method which does not deliver a single model after the selection
process but provides a series of models that can be linked to
each other and interpreted jointly. Indeed, the existence of a
single model that links the covariates to the explained variable
is probably not realistic in many settings, especially for gene
classification. For this reason, the frequency with which each
gene is included within the selected models and with which
these genes are coupled with other genes provides the building
block to create an easy-to-interpret gene network with powerful
explanatory and predictive capacities. A graphical representation
of this gene network can be found in Figure 2 where the size of a
disk represents the frequency with which a particular biomarker
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FIGURE 2 | Network representation of biomarkers selected from the leukemia data-set. Colors represent the position of covariates within the model: green

for first position (hub) and orange for second. The width of the connecting lines is proportional to the frequency with which two biomarkers appear in the same model.

The size of the disk is proportional to the frequency with which a biomarker is present within the selected set of models.

is included in the selected models, and the line connecting the
disks indicates the biomarkers that are included in the same
model. Since the model dimension in this case is two, each
biomarker is connected with only one other biomarker and, as
can be observed, the proposed method identifies three main
“hubs” for the networks (green disks) generating three networks.
Appendix B (Supplementary Material) also reports a related table
where the biomarkers are listed according to their position in
the model. These positions represent families of biomarkers (or
genes) whose members are interchangeable. By the latter we
mean that, given the presence of biomarkers from other families,
specific biomarkers can be replaced by another biomarker from
within the same family without losing predictive power. This is
the idea behind finding a paradigmatic network for gene selection
purposes. In the following paragraph we provide a summary
biological interpretation of the the three main biomarkers (i.e.,

the most frequent in the selected models) which we call “hubs”
from which the networks start.

4.1.2. Biological Interpretation
The three hubs that were identified are the following:

1. Cystatin C: a secreted cysteine protease inhibitor abundantly
expressed in body fluids (see Xu et al., 2015);

2. Zyxin: a zinc-binding phosphoprotein that concentrates at
focal adhesions and along the actin cytoskeleton;

3. Complement factor D: a rate-limiting enzyme in the
alternative pathway of complement activation (see White
et al., 1992).

In the current state of knowledge about acute leukemia, these
three hubs appear to make sense from a biological viewpoint.
Cystatin C is directly linked to many pathologic processes

Frontiers in Genetics | www.frontiersin.org 8 June 2016 | Volume 7 | Article 97

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Guerrier et al. Paradigmatic Regression

TABLE 2 | Median performances of selection methods on 100 simulations based on a dataset of 7129 genes where only two are relevant.

Method Tenfold CV Test error Number of

error genes

Panning algorithm 0/38
(all)

1/34
(min: 0/34; max: 12/34)

2/7129
(all)

Elastic net 0/38
(min: 0/38; max: 8/38)

0/34
(all)

81/7129
(min: 1; max: 104)

Support vector machine 0/38
(all)

15/34
(all)

4/7129
(min: 4; max: 6)

Penalized logistic regression 3/38
(min: 0/38; max: 4/38)

12/34
(min: 8/34; max: 12/34)

5/7129
(all)

Logistic regression 1/38
(min: 0/38; max: 4/38)

3/34
(min: 2/34; max: 3/34)

2/7129
(all)

Nearest shrunken centroids 12/38
(min: 7/38; max: 18/38)

5/34
(min: 0/34; max: 5/34)

30/7129
(min: 3; max: 30)

through various mechanisms and recent studies indicate that the
roles of Cystatin C in neuronal cell apoptosis induction include
decreasing B-cell leukemia-2 (BCL-2) whose deregulation is
known to be implicated in resistant AML (see Sakamoto
et al., 2015). Zyxin is a protein that interacts with Vasodilator-
stimulated phosphoprotein (VASP) with both being involved
in cellular adhesion and motility. VASP interacts with ABL
(breakpoint cluster region-abelson) and is a substrate of the
BcrAbl oncoprotein which drives oncogenesis in patients with
chronic myeloid leukemia (CML) due to a constitutive activation
of tyrosine kinase activity (see Bernusso et al., 2015). Further
results suggest that the phosphorylation and dephosphorylation
cycle of VASP by the Abi-1-bridged mechanism regulates
association of VASP with focal adhesions, which may regulate
adhesion of Bcr-Abl-transformed leukaemic cells (see Masahiro
et al., 2012). Finally, Complement factor D, together with
several other components of both the classical and alternative
complement cascade, is primarily expressed through both
adipocytes and monocytes-macrophages in human subjects (see
White et al., 1992; Gabrielsson et al., 2003). A recent review in
Ratajczak (2014) has stressed the role of the complement cascade
as a trigger for hematopoietic stem cells from bone marrow into
blood.

The interpretation of the network can be carried out
through plots or tables such as those presented in Appendix
B (Supplementary Material) where the biomarkers can be
grouped together into clusters having the same biological traits,
e.g., transcription/translation factor activity, DNA repair and
catabolism, apoptotic activity. This grouping allows a more
straightforward interpretation of the links between the different
families thereby providing a more general overview of how the
elements of the identified network interact.

5. SIMULATION STUDY

In this section we present a simulation study whose goal is to
highlight the practical benefits of the proposed method over
competing methods frequently used in genomics. Considering
the complexity of simulating from a gene network, in this setting
we limit ourselves to considering the existence of a unique
true model which therefore does not allow to assess one of

the features of the proposed approach which is its network
building capacities. Hence, this section specifically focuses on the
prediction power and dimension-reduction ability of the method
and, for the comparison with alternative methods to be fair, we
only keep one model for each simulation replicate. This means
that, once the dimension of the model has been identified, the
model with the lowest estimated prediction error is kept (thereby
discarding the other potential candidates).

In this optic, for the simulation study we mimicked the acute
leukemia dataset seen in Section 4.1 where we set the true model
to be generated by a combination of two gene expressions:
Cystatin C (X1) and Thymine-DNAGlycosylase (X2) (see Section
4.1.2). Hence the response y⋆ in the simulations is a realization
of a Bernoulli random variable with probability parameter γ

which is obtained through a logit-link function applied to a
linear combination of the two above-mentioned variables plus an
intercept (with all β coefficients equaling one) i.e.,:

γ =
1

1+ exp(1+X1+X2)
.

Once the binary response variable y⋆ is generated, this is then
separated into a training and a test set of the same size as that
in the original data-set (i.e., 38 and 34 respectively).

Using the implementation of the proposed algorithm available
at the corresponding GitHub repository2, the results of the
simulations based on 100 replications can be found in Table 2

where the median performances are reported. The proposed
algorithm’s hyper-parameters are α = 0.01, B = 20′000, π = 0.5
and D(·, ·) based on the classical tenfold-CV (K = 1). To select
the dimension d∗, we ran the testing procedure described in
Section 3.1.2 based on a p-value of 0.1. As mentioned earlier,
unlike Table 1, we only kept one model of dimension d∗ instead
of a set of models. This model was chosen such that it had the
minimum training error and, if this minimum was not unique,
then the model was randomly chosen among those achieving this
minimum.

Concerning the competing methods, these were implemented
using existing R functions with default values. For the Elastic
Net we used the R package “glmnet”, that implements the

2https://github.com/SMAC-Group/panning
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coordinate descent algorithm described in Friedman et al.
(2010), using the cv.glmnet() function to select the lasso
parameter. We performed a grid search over the values
{0.2, 0.4, 0.6, 0.8, 1} for the parameter α of the Elastic Net and
kept the value yielding the best deviance3. As for the Nearest
Shrunken Centroids method of Tibshirani et al. (2002) we
considered the R package “pamr”. We applied the function
pamr.train() on the training data and took the value of
the tuning parameter (threshold) yielding the best classification.
The Support Vector Machines approach with recursive feature
elimination was obtained through the function fit.rfe()

in the “pathClass” R package . We used the function
crossval() to select the soft-margin tuning parameter
discussed in Chapelle et al. (2002). Finally, the penalized L2
logistic regression with greedy forward selection and backward
deletion was implemented with the function step.plr() of
the “stepPlr” R package. Note that this function also considers
all possible interactions among the active variables and it is an
implementation of themethodology proposed by Park andHastie
(2008). Finally, we used our own implementation for the logistic
regression with greedy forward selection, choosing the model
with the minimum BIC.

Table 2 shows how the proposed method compares favorably
in terms of median performance with the respect to the
competing methods. Indeed, it is the best approach (or it is
among the best) both in terms of cross-validation error as in
terms test error. Even considering its maximum test error it is
comparable to the other methods, keeping in mind that it selects
models of extremely low (and above all correct) dimensions. For
example, the Elastic Net is the without doubt the best in terms
of test error but it selects a unique model of size 81 (in median)
making its genetic interpretation much more complex. On the
other hand, the proposed algorithm selects the correct dimension
and, if considering the set of best models, would deliver a network
which is more straightforward to interpret.

6. CONCLUSIONS

This paper has proposed a new model selection method with
various advantages compared to existing approaches. Firstly,
it allows the user to specify the criterion according to which
they would like to assess the predictive quality of a model.
In this setting, it gives an estimate of the dimension of the
problem, allowing the user to understand how many gene
expressions are needed in amodel to well describe and predict the
response of interest. Building on this, it provides a paradigmatic
structure of the selected models where the selected covariates are
considered as elements in an interconnected biological network.
The approach can handle more variables than observations

3Note that the special cases α = 0 and α = 1 correspond respectively to ridge

regression and lasso.

without going through dimension-reduction techniques such as
pre-screening or penalization.

The problem definition of this method and the algorithmic
structure used to solve it deliver further advantages such as the
ability to cope with noisy inputs, missing data, multicollinearity
and the capacity to deal with outliers within the response and the
explanatory variables (robustness).

Some issues which must be taken into account concerning the
proposed method are (i) its computational demand and (ii) its
need for an external validation. As far as the first aspect goes, this
can be considered indeed negligible compared to the time often
required to collect the data it should analyse and can be greatly
reduced according to the needs and requirements of the user.
Concerning the second aspect, external validation is a crucial
point which is often overlooked and is required for any model
selection procedure. In this sense, the proposed method does not
differ from any other existing approach in terms of additional
requirements.

Having proposed a method with considerable advantages for
gene selection using statistical ideas in model selection and
machine learning, future research aims at studying the statistical
properties of this approach to understand its asymptotic behavior
and develop the related inference tools.
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