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RNA, the earliest genetic and catalytic molecule, has a relatively delicate and labile
chemical structure, when compared to DNA. It is prone to be damaged by alkali,
heat, nucleases, or stress conditions. One mechanism to protect RNA or DNA from
damage is through site-specific methylation. Here, we propose that RNA methylation
began prior to DNA methylation in the early forms of life evolving on Earth. In this
article, the biochemical properties of some RNA methyltransferases (MTases), such
as 2′-O-MTases (Rlml/RlmN), spOUT MTases and the NSun2 MTases are dissected
for the insight they provide on the transition from an RNA world to our present
RNA/DNA/protein world.
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INTRODUCTION

The classic experiment performed by Miller (1953) and Miller and Urey (1959) revolutionized
the view about the origin of life on Earth. In their experiment, a reducing atmosphere was
generated, similar to the one proposed to have existed on the early Earth. Exposure to UV light
and frequent lightning gave rise to a large number of organic molecules, some of which were
precursors to the biomolecules that exist today in our biosphere (Miller and Schlesinger, 1983).
These simple molecules, such as formaldehyde (HCHO) and hydrogen cyanide (HCN), might
have served as the building blocks for more complex molecules such as RNA (Schrader, 2009).
In the evaporating lagoons or dry beaches of early Earth, concentrated urea might have been
produced which would have reacted with cyanoacetaldehyde to form cytosine; further hydrolysis
of cytosine can yield another base uracil (Robertson and Miller, 1995). The ribose sugar can be
formed through polymerization of HCHO itself by the formose reaction (Shapiro, 1988). Moreover,
urazole, a heterocyclic compound which is isosteric with uracil’s hydrogen-bonding segment reacts
spontaneously with ribose (and other aldoses) to form a mixture of four ribosides: alpha (α) and
beta (β) pyranosides and furanosides (Kolb et al., 1994). The entire process could be chemically
or photochemically driven, forming the basic units of ribonucleotides which, on polymerization
with the help of a catalyst such as montmorillonite (Ferris and Ertem, 1993), converted free
ribonucleotides into a long chain of RNA (Figure 1). Nature’s selection of contemporary bases
in RNA might have been driven by modifications like N-glycosyl bonds that made the bases more
resistant to hydrolysis (Rios et al., 2014). The hallmark complexity of extant forms of life may
trace their origin to the catalytic RNA and the appearance of methionine and other amino acids
synthesized in the highly reactive primordial soup (Van Trump andMiller, 1972; Keefe et al., 1995;
Parker et al., 2011; Shechner and Bartel, 2011). Nucleophilic attack of RNA by its 2′-OH group as a
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FIGURE 1 | Prebiotic synthesis of ribose, purines, pyrimidines, and RNA. Simple inorganic molecules such as CO2, H2O, HCHO, NH3, and HCN, can be
combined to form organic ribose sugar as well as nitrogenous bases (purines and pyrimidines) by selectively subjecting them to electrical discharges representing
the proposed extreme weather conditions in the prebiotic world. The highly reactive molecule formaldehyde (1) can be generated by reacting abundant CO2 that was
present in the reducing world with water molecules. Subsequent reaction of HCHO with itself can give rise to ribose sugar via intermediates such as glycoaldehyde
(2) and glyceraldehydes (3) or another reactive molecule HCN by reacting with N2 under high atmospheric pressure. HCN reacts with itself to produce the purine
base adenine and, with HCHO, it produces cyanoacetaldehyde, which can react with urea (H2NCONH2) to give rise to two pyrimidine bases, namely cytosine and
uracil. Ribose sugar bonds with nitrogenous bases to produce ribonucleosides which might have been phosphorylated by inorganic phosphate (iPO4) from dissolved
minerals to produce ribonucleotides (Costanzo et al., 2007). These ribonucleotides are activated by imidazole (Im) and then polymerize into a long chain without any
template on a clay catalyst such as montmorillonite, which was abundantly present in the prebiotic Earth. All these steps vest on the probability of occurrence of all
these ingredients and favorable conditions at least in a close proximity to the Earth surface and its proximal atmosphere. Thymine, found only in DNA, is speculated
to have been synthesized with more complex reactions at a later evolutionary stage, possibly through methylation of uracil using hydrazine (H2NNH2) and HCHO.

nucleophile on other organic molecules, including amino acids
and short peptides, was extremely useful to form RNA-protein
complexes, which may represent the precursors of ribosomes
(Jeffares et al., 1995; Poole et al., 1998; Melendez-Hevia, 2009).
The flexibility of single-stranded RNA may have allowed it
to assume various 2 and 3◦ structures that could form a
catalytic pocket such as the pseudoknot structure present in the
triple helix of telomerase (Mihalusova et al., 2011). Indeed, the
mechanism used by RNA molecules to catalyze phosphodiester
bond formation and cleavage using two essential magnesium
ions is similar to that employed by RNA polymerases (Steitz and
Steitz, 1993; Jeruzalmi and Steitz, 1998). The ability of RNA to
act as a genetic material as well as an enzyme driving peptide
synthesis using 23S rRNA (Tamura and Schimmel, 2001; Sun
et al., 2002; Cui et al., 2004; Orgel, 2004) forms the basis for
the postulated “RNA world” (Hirao and Ellington, 1995; Orgel,
2004; Muller, 2006; Manrubia and Briones, 2007). Accumulation
of various RNAs (Ekland and Bartel, 1996; Orgel, 2004; Shechner
and Bartel, 2011), ribosomes (Melendez-Hevia, 2009; Harish

and Caetano-Anolles, 2012), RNA helicases, codon-based protein
synthesis (Zenkin, 2012) and DNA, along with other organic
macromolecules such as carbohydrates and lipids that assembled
as coacervate droplets, may have constituted the first basic
cellular structure that appeared approximately 3 billion years ago
(Cooper, 2000).

The prebiotic appearance of RNA has received considerable
attention during the past decade and this event has been
succinctly summarized by Pressman et al. (2015). The chemical
instability of RNA leads some researchers to argue against the
concept of the RNA world (Miller and Lazcano, 1995; Levy
and Miller, 1998). Other researchers propose that the RNA
stability issue is exaggerated (Meyers et al., 2004) and that
this problem is compensated for by some unique properties of
RNA, including self-replication (Johnston et al., 2001; Zaher and
Unrau, 2007; Attwater et al., 2013) and the direct involvement
of RNA in peptide synthesis (Schimmel and Henderson, 1994;
Tamura and Schimmel, 2003). Consequently, it has been
proposed that RNA, which can serve both as genetic material
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and as an efficient catalyst, can support a minimal form of
life (Flores et al., 2004; Koonin and Dolja, 2014). However,
RNA is vulnerable to highly acidic (pH < 3) and highly
basic (pH > 7) microenvironments; and sometimes to RNA
itself, as in the case of self-cleaving ribozyme RNA (Long and
Uhlenbeck, 1993; Jayasena and Gold, 1997; Abouhaidar and
Ivanov, 1999; Kikovska et al., 2005; Ferre-D’Amare and Scott,
2010). The protection of early RNA molecules in the extreme
environment of early Earth was a prerequisite for the formation
of higher-order RNA macromolecules and for the development
of complex forms of life (Paolella et al., 1992). Small RNA-
mediated RNA methylation could represent one of the earliest
mechanisms that appeared in the early RNA world to protect
RNA from hydrolytic attack (Usher and McHale, 1976; Clouet
d’Orval et al., 2001). Later, with the evolution of replicating
and peptide-coding abilities in RNA molecules, the universal
genetic code of protein synthesis began to appear, and proteins
like RNA MTases assumed the responsibility for methylation
activity, taking over from the catalytic RNAs (Poole et al.,
1998). In the history of nucleic acid evolution, a remarkable
enzyme called ribonucleotide reductase solved the problem of
RNA vulnerability by converting ribose sugar to deoxyribose
(Reichard, 1993). DNA began to proliferate rampantly and was
selected by nature as a more stable genetic molecule than
RNA for sustaining and organizing life (Melendez-Hevia, 2009).
However, the appearance of DNA cannot be traced back far
further than the appearance of RNA since the synthesis of the
sole unique base of DNA (thymine) is carried out by a unique
methyltransferase (thymidylate synthase) which requires the use
of 5,10-methylenetetrahydrofolate (Mishanina et al., 2012). This
observation suggests that the appearance of DNA occurred before
the apparition of canonical MTases which use S-adenosyl-L-
methionine (SAM) as a cofactor. In fact, folate is required for
synthesis of SAM and as a cofactor to speed up the methylation
reaction (Duthie et al., 2002). Perhaps, the selection of SAM over
folate and its primordial synthesis have a different history to
unfold (Figures 1 and 2) since its precursors are derived from
adenine (the first base likely to have been synthesized in the
prebiotic soup), methionine (the first amino acid added during
translation) and ribose (the first sugar made in nucleic acid
anabolism).

The current view about the emergence and early evolution of
life is that there might have been a systematic, cooperative and
coherent evolution of RNA and DNA, including the genetic code,
enzymes, cofactors and methylation machinery, around 3 billion
years ago, somewhere on Earth where one event was supported
by the other (Higgs and Lehman, 2015). A large number of
discoveries and evolving data (ribonucleotide reductase, reverse
transcriptase, self-splicing RNA, catalytic RNA etc.) strongly
support RNA as the first genetic material and DNA as the later in
the evolutionary genealogy. However, how the predominance of
DNA over RNA occurred is still an enigma and a poorly described
topic. The peculiar perspective that evolution of DNA from RNA
through a 2′-O-methyl intermediate has already been pointed in
earlier literature (Jeffares et al., 1995; Poole et al., 1998, 2000)
but has been a neglected topic of discussion thereafter. We have
here for the first time composed a brief review of the appearance

FIGURE 2 | Possible route of S-adenosyl-L-methionine (SAM)
appearance and its metabolic significance. The nitrogenous nucleobase
‘adenine,’ present in the universal methyl donor cofactor SAM, could have
been generated by an electric spark reaction in an aqueous solution of NH3

and HCN (in fact, adenine is merely a pentamer of HCN). The base is highly
conspicuous in all life forms in the form of the high energy molecule,
Adenosine Triphosphate (ATP), which is the universal energy currency of cells.
Likewise, methionine has been reported to be synthesized from a mixture of
CH4, H2S, NH3, and CO2 by providing a similar electric discharge (Van Trump
and Miller, 1972; Parker et al., 2011). Methionine is the first amino acid
decoded by the genetic code into the biotic proteins. Finally, the ribose sugar
present in SAM can be synthesized from formaldehyde by formose reaction
using basic substances, neutral clays, heat and various types of radiation.
Ribose is the first sugar formed in the anabolic reactions while deoxyribose is
synthesized later. Nucleophilic addition reaction of methionine with ATP
produces the SAM cofactor, which represents the second most abundant
molecule (after ATP) inside all cells and participates in all methylation reactions.

of RNA polymers and an analysis of various MTases, stability
factors for RNA through methylation and the evolutionarily
transition of RNA to DNA (with consequent shifting of RNA-
MTases’ specificity to DNA-MTases). In summary, we present
here some evolutionary evidence which supports the likelihood
that RNA methylation activity began prior to DNA methylation
and that 2′-O-methylation was probably the form of primitive
methylation on RNA, which eventually led to the emergence of
DNA, a molecule that ultimately shaped the form of life on Earth.

RIBOSE 2′-O-METHYLATION

The transition from RNA toDNA appears to require intermediate
steps, and it has been suggested that the naturally occurring 2′-O-
methylated RNA, which has chemical properties intermediate to
RNA and DNA, is a suitable candidate (Poole et al., 2000). Ribose
2′-O-methylation occurs in rRNA, tRNA, mRNA, snoRNA,
and siRNA etc. at adenosine, guanosine, cytidine, and uridine
nucleobases (Al-Arif and Sporn, 1972) and is ubiquitous in
viruses, archaebacteria, eubacteria, yeasts, protists, fungi, and
higher eukaryotes (Feder et al., 2003). 2′-O-methylation of RNA
by other RNAmolecules (ribozyme) or RNA complexes is indeed
the primordial manifestation of the methyl transfer reaction
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and is the most likely mechanistic platform for the de novo
creation of deoxyribose sugar (and, in fact, the creation of
the DNA molecule) on Earth before the appearance of genetic
code or ribonucleotide reductase. In fact, 2′-O-methylation or
the insertion of an oligodeoxynucleotide (short piece of DNA)
in some ribozymes leads to enhanced activity (Goodchild,
1992). Furthermore, the abstraction of the 2′-OCH3 moiety
requires less energy than the abstraction of a hydroxyl group
at the 2′ position, thus allowing the conversion of ribose to
deoxyribose in a more energetically favorable manner. Two
mechanisms of ribose 2′-O-methylation are known: one is
via a site-specific 2′-O-MTase that belongs to the spoUT
family of RNA-MTases (discussed below) and the other is
through C/D box ribonucleoproteins (RNPs; Clouet d’Orval
et al., 2001; Clouet-d’Orval et al., 2005). The latter includes
snoRNAs that select particular sites of an RNA substrate using
its C/D box and acts as a chaperone role rather than as a
ribozyme to methylate its substrate. Remarkably, these functions
are very similar to the functions presumably exhibited by
ancient RNA.

MTases WITH DUAL RNA-SUBSTRATE
SPECIFICITY

The two known family of MTases involved in methylation of
rRNA, as well as tRNA, are spoUT family and RlmN enzymes.
The spoUT enzymes employ a minimal domain to carry out
the methylation reaction, though the exact binding and catalytic
mechanisms remain elusive (Liu et al., 2013). spoUT genes
are abundant in extremophiles (pyrococcus, methanococcus,
acidolobus, thermophilus, metalophilus, and halophilus)1. These
enzymes might be involved in the control of ribosome or
tRNA activity and in the regulation of protein synthesis
during the cellular stress response. The other family of RNA-
MTase (RlmN) has been reported to methylate both rRNA
and tRNA at the second aromatic carbon of adenosine (m2A;
Benitez-Paez et al., 2012). RlmN catalyzes the methylation
reaction using a SAM radical rather than the usual nucleophilic
substitution reaction mechanism (SN2 mechanism; Grove et al.,
2011). The use of the SAM radical to perform an array
of unusual and chemically difficult transformations is an
ancient mechanism displayed by organisms grown anaerobically
(Stubbe, 2011). These data suggest that RlmN is an ancient
enzyme that appeared on Earth around 3 billion years ago
when oxygen was not sufficiently abundant in the atmosphere
(Figure 3).

MTases WITH BOTH RNA- AND
DNA-SUBSTRATE SPECIFICITY

NSun2 and Dnmt2 are, at this time, the only known
5-methylcytidine (m5C) RNA MTases in higher eukaryotes;
tRNA is the confirmed target substrate for both enzymes

1http://www.uniprot.org

(Brzezicha et al., 2006; Goll et al., 2006). Recently, additional
RNA substrates for NSun2 have been identified, including
mRNAs and ncRNAs (Hussain et al., 2013). Furthermore,
NSun2 deficiency has been linked to intellectual disability
(Abbasi-Moheb et al., 2012). An interesting feature of NSun2
is its ability to methylate not only its RNA substrates, but
also hemimethylated DNA (Sakita-Suto et al., 2007). Another
example that supports the appearance during evolution of
MTases with dual specificity for RNA and DNA is Dnmt2
(Hermann et al., 2003; Kunert et al., 2003; Jeltsch et al.,
2006). Dnmt2 is spread throughout the eukaryotic kingdom
from simple protists to complex metazoans (Schaefer and Lyko,
2009). Dnmt2-mediated tRNA methylation is associated with
resistance to various stresses including heat shock, nitrosative
stresses and oxidative stresses (Schaefer et al., 2010; Blanco
et al., 2014; Hertz et al., 2014). Dnmt2 is primarily a tRNA
MTase, but it employs a catalytic mechanism characteristic
of a DNA-MTase (Jurkowski et al., 2008). According to a
phylogenetic study, Dnmt2 has evolved from a DNA MTase
ancestor and acquired the ability to methylate tRNA substrates
(Jurkowski and Jeltsch, 2011). However, earlier bioinformatics
and biochemical studies have suggested the opposite; Dnmt2 may
have evolved from a hypothetical very ancient RNA: (pyrimidine,
C5)methyltransferase (Anantharaman et al., 2002; Bujnicki et al.,
2004; Sunita et al., 2008).

CONSERVED BASE FLIPPING
EVOLUTION FROM RNA TO DNA

Base flipping is a biological process in which a specific
nitrogenous base from the stacked region turns around 180◦
at the catalytic site of MTase without disturbing the remainder
of the nucleic acid backbone (Roberts and Cheng, 1998). In
the next step, the base is methylated and flipped back to its
stacked conformation. The legacy of base flipping mechanism
from the RNA world is evidenced by an ancient tRNA MTase,
TrmL (spoUT family), which methylates in the loops and double-
stranded regions of naked tRNAs (Alian et al., 2008; Hou and
Perona, 2009; Christian et al., 2010; Hamdane et al., 2014).
Base flipping is less pronounced with rRNAs which are usually
in complexes with ribosomal proteins. This suggests that DNA
MTases evolved their base flipping activity, which is probably the
most necessary element of the methylation mechanism needed in
the DNA world, from tRNAMTases.

PHAGES RESPONSIBLE FOR
DNA-MTases DISSEMINATION?

Bacterial genomes evolve rapidly through mutation,
rearrangement and horizontal gene transfer (Juhas et al.,
2009). Phages associated with these prokaryotes are thought
to have evolved from cellular retrotransposons (Xiong and
Eickbush, 1990) through gene shuffling (Powell et al., 2000) and
are frequently involved in horizontal gene transfer (Kurland
et al., 2003; McDaniel et al., 2010). They play an important role in
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FIGURE 3 | Putative chronological appearance of RNA, DNA, MTases, prokaryotes, and eukaryotes. RNA, which functions as a genetic material, as a
chaperone, and as a peptide synthesizer, is a likely candidate as the sole common precursor of other biomolecules de novo in the prebiotic world. RNA modification
through snoRNA (RNA acting as a ribozyme) would have been the initial step to stabilize and protect RNA from the extreme environmental conditions of the prebiotic
soup on Earth. An initial DNA-like molecule would have arisen from the non-enzymatic reduction of 2′-OH of ribose sugar rather than with ribonucleotide reductase
which might have manifested after the appearance of the genetic code. The kingdom of prokaryotes and Archaea that arose on early Earth already possessed RNA,
DNA, and their modifying enzymes in the course of evolution. There were many RNA MTases that were initially multi-specific, i.e., acting on many RNA species and
some of them, later on, may have evolved to act on DNA. With the appearance of cyanobacteria (blue–green algae), the atmospheric CO2 of the reducing Earth
started to be consumed and its concentration gradually decreased while the concentration of O2 started to build up (leading to the oxidizing atmosphere of the
present-day Earth). Many enzymes shifted their mechanism of methylation away from depending on radical SAM (an anaerobic type of methylation; Zhang et al.,
2011) to nucleophilic attack (SN2 type) and evolved to become oxygen tolerant. The presence of oxygen may have triggered the reversibility of methylation reaction
since demethylases (TET1-3) are often dioxygenases (Tsukada, 2012).

enriching the bacterial genomes, for example, a prophage of the
Wolbachia endosymbiont of the fruit fly encodes a DNA MTase
(N6-adenine specific) which seems to have transferred this gene
into the bacterial genome (α-proteobacteria; Saridaki et al., 2011).
N6-adenine specific methylation at the origin of replication is
directly linked with fast and faithful division of bacterial cells and
so are their associated phages. Nevertheless, Rhizobium meliloti,
Brucella abortus, Agrobacterium tumefaciens, Rhodobacter
capsulatus and Caulobacter crescentus (all ∝-proteobacteria)
contain N6-adenine DNA MTase gene intact in their genomes
(Wright et al., 1997). The phenomenon of horizontal gene
transfer from phages to bacteria may have contributed to the
wide distribution of type II restriction as well as many DNA
MTases in the prokaryotic system (Jeltsch and Pingoud, 1996).
Both adenine- and cytosine-specific DNA MTases are known
to exist in viruses and their homologous forms have been well
established in bacteria (Schneider-Scherzer et al., 1990; Shields
et al., 1990).

CONCLUDING REMARKS AND
PERSPECTIVE

The demonstration of RNA as an independent catalyst (Kruger
et al., 1982) established it as the earliest genetic material in
the prebiotic world before the appearance of DNA. The “RNA
world” hypothesis is supported by many other independent lines
of evidence, such as the observations that RNA is central to
the translation process (Lodish et al., 2000), that some RNAs
in vitro are capable of self-sustained replication (Lincoln and
Joyce, 2009), that some can synthesize peptides (Hager et al.,
1996) and that some RNAs (viroids; Flores et al., 2004) can
catalyze all of the chemical group and information transfers
required for cellular life. In the complexities of methylation
reactions and MTases known today, we have selected here some
unique MTases that provide an insight into how some ancient
RNA-MTases evolved to methylate a different substrate. Many of
these early MTases are multisite-specific tRNA MTases such as
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Trm4 and TrmH (Motorin and Grosjean, 1999; Auxilien et al.,
2012; Ochi et al., 2013). Furthermore, some have a dual-substrate
specificity, such as spoUT/RlmN (methylates rRNA as well as
tRNA; Benitez-Paez et al., 2012) and NSUN2 (methylates both
RNA and hemimethylated DNA; Sakita-Suto et al., 2007). It
is tempting to speculate that this degree of flexibility for the
substrate was an important feature of the early MTases which
provided them the flexibility to switch from one substrate (RNA)
to another (RNA/DNA). The dual-specificity spoUT family of
MTases are a remarkable example of enzymes that thrived in
the extreme conditions of the early Earth. Another MTase of
the spoUT family, TrmL, demonstrates base flipping of its tRNA
substrate during themethylation reaction similar to that observed
in the DNA methylation mechanism, providing a possible RNA
world-origin of this process which is necessary in the DNAworld.
Finally, we suggest that N6-adenine specific MTases, initially
appeared as rRNA-MTases (Cotney and Shadel, 2006; Richter
et al., 2009; Golovina et al., 2012) which evolved and adapted
into DNA-MTases in the kingdom of eubacteria (Low et al., 2001)
through rapid dispersal of DNA (horizontal transfers) possibly
mediated through their phages.

The growing repertoire of RNA/DNA modifications dataset
opens new avenues of research on the origin of nucleic acid
modifications in the various kingdoms of life. This review has
supplemented the concept of “RNA stability” to the “RNA world”
hypothesis, which on evolution through the ages in the geological
clock might have provided an avenue for the development of the
more stable genetic material, “DNA.”

The appearance of replicating RNA/DNA, non-random
genetic code, left-handed optical asymmetry of amino acids
and right-handed sugar molecules could not be the mere result
of chemicals laws, physical laws or laws of symmetry acting
on the molecules in the primordial broth. In fact, these laws

alone would have resulted in racemic mixtures incompatible
with the evolution of current forms of life. The introduction of
chirality in the early biomolecules was essential and formed the
basis for the existence of life and it might be the effect of the
early environment, climatic conditions and geomorphological
history of the Earth that shaped the biomolecules into chiral
(asymmetric) forms rather than racemic mixtures. Much remains
to be understood about the exact nature of early Earth conditions,
the constituents of the primordial mixture, the appearance of
RNA and DNA, the introduction of chirality in shaping life and
how methylation could be one of the mechanisms to conserve
chirality in the biomolecules (Law and Jacobsen, 2010; Ichiyanagi
et al., 2012).
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