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Nuclear texture analysis is a well-established method of cellular pathology. It is
hampered, however, by the limits of conventional light microscopy (ca. 200 nm). These
limits have been overcome by a variety of super-resolution approaches. An especially
promising approach to chromatin texture analysis is single molecule localization
microscopy (SMLM) as it provides the highest resolution using fluorescent based
methods. At the present state of the art, using fixed whole cell samples and standard
DNA dyes, a structural resolution of chromatin in the 50–100 nm range is obtained
using SMLM. We highlight how the combination of localization microscopy with standard
fluorophores opens the avenue to a plethora of studies including the spatial distribution
of DNA and associated proteins in eukaryotic cell nuclei with the potential to elucidate
the functional organization of chromatin. These views are based on our experience as
well as on recently published research in this field.
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INTRODUCTION

The linear DNA of the genome provides the information for the production of various types
of RNA molecules; besides mRNAs this includes a large variety of small RNA sequences such
as silencing RNAs (siRNA), piRNA, or micro RNAs (miRNA), which play an important role in
the regulation of gene expression, development, metabolism as well as in essentially any cellular
process. The environment of the genome has a decisive influence on these mechanisms, e.g.,
by modifying the accessibility to the information encoded within the DNA; it is the basis for
normal maintenance of the molecular processes within the cell but its alteration may also result
in malfunction and ultimately disease: for example, radiation induced mutations in the DNA
sequence may result in cancer related aberrant proteins or gene expression changes, and nuclear
structure analysis is a widely used method of cancer diagnosis (Zink et al., 2004; Bergmann and
Spector, 2014).

Various models have been proposed to account for the predicted correlation of spatial
organization of the nuclear genome and gene function. In this contribution, we would like to
discuss in particular some microscopically testable consequences of such models. For example,
a recently published model suggests two spatially co-aligned, active and inactive nuclear
compartments (ANC and INC; Cremer et al., 2015), in which the INC comprises the compact,
transcriptionally inactive core of chromatin domain clusters, and the ANC is formed by the
transcriptionally active periphery of chromatin domain clusters, called the perichromatin region,
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and the interchromatin compartment (IC) (Cremer and Cremer,
2001). The IC is connected to nuclear pores and serves nuclear
import and export functions. The ANC is the major site of
RNA synthesis. It is highly enriched in epigenetic marks for
transcriptionally competent chromatin and RNA Polymerase II
(RNAPII). Marks for silent chromatin are enriched in the INC.

One of the basic predictions of this model is the typically
large heterogeneity of the nuclear DNA distribution, due to
the organization in condensed chromatin domain clusters
(INC) and much less condensed ANC compartments. To
test such predictions, the spatial resolution of conventional
light microscopy (limited to about 200 nm in the object plane
and ca. 600 nm along the optical axis) is not sufficient; and
combinations of fluorescence microscopy techniques may be
employed (Spöri et al., 2004; Rossberger et al., 2013). Electron
and enhanced resolution light microscopy (for review see
Huang et al., 2009; Cremer and Masters, 2013) have been
applied to study the chromatin distribution in mammalian
cell nuclei on the nanoscale (Rouquette et al., 2010). For
example, using single molecule localization microscopy
(SMLM) of human cell nuclei containing histones tagged
with fluorescent proteins, light microscopic evidence was
obtained for a heterogeneous distribution of chromatin on
the nanoscale (Gunkel et al., 2009; Bohn et al., 2010; Markaki
et al., 2010). However, in these visualization approaches the
average density of detected histone positions was relatively
low (around 100/µm2), therefore limiting the structural
resolution obtained (Nieuwenhuizen et al., 2014; Legant et al.,
2016).

To overcome this limitation it is necessary to strongly
increase the density of single molecule signals detected (Cremer
and Birk, 2016). This goal has been achieved by labeling
the DNA directly with low molecular weight DNA dyes. So
far Localization Microscopy of DNA was used in attempts
to ‘nano-image’ isolated DNA in vitro [with fluorescent
stains YOYO-1 and PicoGreen (Flors et al., 2009; Schoen
et al., 2011)], and the density of DNA in situ in fixed
and live cells [with fluorescent stains TOPRO (Flors, 2010)
and PicoGreen (Benke and Manley, 2012)]. Another group
of methods developed in our laboratory takes advantage of
a process of photoconversion of Hoechst 33258, Hoechst
33342, and DAPI or Vybrant Violet DNA dyes (Żurek-Biesiada
et al., 2013, 2014, 2015; Szczurek et al., 2014). These dyes
presumably exist in protonated forms whose absorbance and
emission spectra are shifted toward longer wavelengths. By
applying an excitation in the blue range (e.g., 488 nm) this
approach enables imaging of a small fraction of individual
protonated (now green-emitting) fluorophores, and a much
higher signal density can be obtained (up to 6000/µm2).
These novel developments provide a test environment for a
multitude of studies on cell nuclei e.g., for the predicted
heterogeneity of the nuclear chromatin distribution, and in
future for functional structural changes of many epigenetic
landmarks and their relation to nuclear DNA at highly enhanced
optical and structural resolution. As an example, SMLM can
be used to study the spatial distribution of nucleolar on the
nanoscale.

VISUALIZING FUNCTIONAL NUCLEAR
STRUCTURE

In the following, we highlight methodological approaches to
obtain super-resolution images of mammalian cell nuclei on the
nanoscale. We focus on visualization of directly labeled DNA,
and how such approaches can contribute to a super-resolution
analysis e.g., of the architecture of ischemic cells or of nucleoli.

Chromatin Imaging with Directly Labeled
DNA
Figure 1A presents an SMLM image of the DNA distribution in
an optical section (thickness about 600 nm) of a human fibroblast
cell nucleus using the DNA dye Hoechst 33258. The image was
acquired with high intensity laser excitation 491 nm combined
with low intensity 405 nm light. Approximately 800,000 single
Hoechst molecule signals were detected. The individual positions
were blurred with the respective localization precision. A partial
conventional image (upper right) is presented in gray. While
the conventional resolution image (presented in gray) indicates
some small variations in the DNA density, the super-resolved
localization microscopy image (colored in red) clearly indicates
differences in DNA density across the nucleus.

Realization of the high resolution imaging of the directly
labeled DNA was also proposed utilizing the DNA base analog
5-ethynyl-2′-deoxyuridine (EdU) incorporated into the DNA
throughout the entire DNA replication course. Such a treatment
followed by a fixation and a click-it reaction of any fluorophore
of choice with the exposed chemical group attached to the
incorporated bases within the DNA was demonstrated to provide
a resolution superior to conventional methods (Zessin et al.,
2012). In our hands it provided very similar results to the DNA
labeling with e.g., Vybrant Violet. The ease of using typical
switchable fluorophores and switching buffers is a huge advantage
(Heilemann et al., 2009); however, the adverse biological effects
on the cell viability prior to fixation as well as the inability of
applying a click chemistry approach for analysis of isolated fixed
cell specimens from patients may be considered as a limitation.
In such cases, a direct staining with a standard DNA dye, such as
presented e.g., in Figure 1, may be advantageous.

Nanoscale Nuclear Architecture of
Ischemic Cells
Chromatin compaction status is believed to reflect its local
functionality and is likely a cause and a result of processing
the DNA information by the local molecular machinery
assembled to fulfill a specific role (e.g., replication factories or
epigenetic environment just as histone modifications together
with associated interacting proteins; Smeets et al., 2014). Thus,
SMLM can be considered as a new approach to investigate these
processes.

Recently we linked the condensation state of the chromatin
studied by means of SMLM of directly labeled DNA to the
transcriptional output estimated using standard biochemical
methods (Kirmes et al., 2015). We found that the chromatin
becomes strongly condensed upon treatment with ischemic
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FIGURE 1 | Direct DNA imaging using localization microscopy. (A) DNA distribution in an optical section (∼600 nm thickness) of a human fibroblast cell
nucleus imaged by means of localization microscopy of the Hoechst 33258 photoproduct. The image was acquired with high intensity laser excitation 491 nm
combined with low intensity 405 nm light. Approximately 800,000 single Hoechst molecule signals were detected. The individual positions were blurred with the
respective localization precision. Partial conventional image presented in gray. Scale bar equals to 2 µm. For details see (Szczurek et al., 2014). (B) Chromatin
change in HL-1 myocardiac cells upon ischemic conditions studied utilizing single molecule localization microscopy (SMLM) of a standard fluorophore. Cells were
incubated for 24 h with EdU–DNA base analog that once incorporated into the DNA during replication was labeled with Alexa 488. The single molecule localization
acquisition was performed in a presence of cysteamine serving as a switching agent for Alexa 488. Originally this methodology of super-resolution DNA imaging
using EdU–DNA base analog was described by Zessin et al. (2012).

conditions i.e., when oxygen and nutrients are deprived.
Simultaneously, the transcription level becomes reduced almost
by an order of magnitude. In addition, we noticed that the
accessibility of antibodies directed against H3 core histones
undergoes a considerable decrease. Localization microscopy of
directly labeled DNA revealed also that the changes to the status
of chromatin are largely reversible and persist only for few tens of
minutes after normal conditions have been restituted.

These results of SMLM analysis of chromatin structure and
structural changes already were consolidated by more established
methods to measure change in DNA digestion rate, light
scattering and fluorescence recovery after photobleaching of
linker histone H1.1-GFP. All these methods verified the SMLM
based conclusions on chromatin redistribution upon ischemia
(Kirmes et al., 2015).

Super-Resolution Imaging of Nucleoli
The eukaryotic cell nucleus comprises several distinct
subcompartments of different structure and functionality.
An example of such a compartment is the nucleolus: a nucleolar
substructure primarily devoid of chromatin, however, bearing an
extremely important function in ribosome biogenesis including
generation of ribosomal key subunits. Transmission electron
microscopy (TEM) emerged as a main method for structural
investigation of the nucleolus. Three major structures within the
nucleolus have been identified: lightly stained fibrillar centers

(FC) constitute about 2% of a typical eukaryotic nucleolus and
are surrounded by a dense fibrillar component (DFC) which
constitutes approximately 17% of the volume and granular
component occupies nearly 75% of the nucleolus (McLeod et al.,
2014). Ribosomal DNA (rDNA) transcription units are found in
the FCs which consist of tandem repeats of these genes and are
harbored by rRNA within the DFC. It is therefore thought that
rRNA transcription initiates at the interface between the FC and
the DFC.

A number of fluorescence labeling techniques including
immunofluorescence, nanobodies, click-chemistry, SNAP-
technology (Crivat and Taraska, 2012) and many others are
available to study nucleolar compounds, e.g., nascent RNA within
the nucleolus. RNA synthesis in U2OS cells was fluorescently
targeted using the base analog 5-ethynyl uridine (EU) for 2 h
prior to fixation and EU was subsequently conjugated with Alexa
488 switchable fluorophores. The reconstruction of the SMLM
fluorophore position map exhibits strong heterogeneity in the
distribution of nascent transcripts within the cell nucleolus
(Figure 2 upper part). The signal density attributable to the
nascent RNA within the nucleoli varied locally by a factor of 3–4.
These features indicate a number of specific subcompartments
within the nucleolus and may be used to extract their respective
positions: the areas within the nucleolus lacking strong signals
(arrows in Figure 2C1) probably constitute regions not
associated with RNA synthesis, such as the FCs.
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FIGURE 2 | Super-resolution imaging of cell nucleoli. Top: Pseudo-color images of a HeLa cell incubated with RNA base analog for 2 h to label nascent RNA
transcripts. The cell imaged with conventional widefield microscope (A1) and super-resolution reconstruction based on positions of single molecule fluorophores
(B1). (C1) Demonstrates one of the nucleoli at closer look with new structural details unraveled. Arrows point at the likely positions of fibrillar centers (FC). Bottom:
U2OS cell with immunofluorescently labeled NPM1 protein (red) and nascent RNA transcripts stained by means of click chemistry (green) in widefield (A2) and in
super-resolution (B2). The outline of the cell is indicated with dotted line. (C2) Depicts one of the nucleoli where signal of NPM1 and EU was radially integrated within
the indicated ROI. (D2) Highlights the arrangement of NPM1 and nascent transcripts at the periphery of the nucleolus studied based on single positions of
fluorophores. The NPM1 appears as a ring surrounding the nucleolus whereas nascent transcripts occupy rather the central part.

Further mapping of the positions of a number of proteins
residing in the nucleolus is necessary to elucidate the function
of its subcompartmentalization. Such structural analyses can
only be performed when high resolution data is available. In
Figure 2, bottom part, nucleophosmin 1 (NPM1) - a structural
protein responsible for i.e., nucleic acid binding, chaperoning,
and proliferation (Frehlick et al., 2007), has been imaged together
with nascent RNA (EU). This dual color experiment reveals
that the nascent RNA is confined mainly to the core part
of the nucleoli, whereas NPM1 is directed to the boundary
forming there a dense concentration of signal. Similar images
elucidating the relative positioning of key proteins in future
studies may enable evaluation of the effects of metabolic and/or
environmental changes (e.g., oxidative stress, radiation, etc.); or

the analysis of diseases on highly ordered protein arrangements
and thus might reveal its role in a specific cellular process.

DISCUSSION: PERSPECTIVES FOR
NUCLEAR NANOSCALE ANALYSIS

The functional organization of the nuclear genome still poses
an essential challenge to biological research; it also forms a
basis for new approaches to health research. Super-resolution
microscopy approaches in combination with appropriate labeling
techniques now allow us to study chromatin and nuclear texture
in unprecedented nanostructural detail, down to the single
molecule level. It is anticipated that this will strongly improve
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the predictive value of such texture analyses. Beyond that, it
may be speculated that these techniques might contribute to
even larger benefits. For example, would it become possible to
alter the compaction of “cancer genes” by specific pharmaceutical
molecules, then this might offer the starting point of a new avenue
for cancer therapy; another example would be the development of
new drugs for the treatment of myocardial infarction and stroke:
functional nuclear nanostructure analysis might contribute to test
the effects of drugs on alteration to the drastic changes induced by
oxygen and nutrient deficiency in chromatin nanostructure (and
therefore in gene activity). Today, such speculations may still
appear as “science fiction”; however, a thorough understanding
of the architecture of the cell nucleus on the nanoscale, might
provide an essential step toward its realization.

The growing number of publications reporting on super-
resolution analysis of mammalian cell nuclei highlights
the increasing interest in the interplay between chromatin
structure and regulatory mechanisms. Recently, an example
of nanostructure analysis in stem cells relying on localization
microscopy-imaging of labeled core histones imaged at different
pluripotency stages was published (Ricci et al., 2015). Using
sophisticated quantitative analysis tools, the authors of this
study showed that histone-targeting single molecule signals form
specific ‘clutches’ the size of which decreased with an increasing
pluripotency.

Although the global nuclear nanostructure assessment
using SMLM is of great importance, the goal remains to
visualize and hence quantitatively analyze in high-resolution
the chromatin status of individual gene loci. This has been
demonstrated using SMLM by means of conventional in situ
hybridization (Weiland et al., 2011), or by using specific
single oligonucleotides (Stuhlmüller et al., 2015). Most
recently this has been also demonstrated using oligo-paint
DNA probes that yield a signal accumulation only upon
transient binding to the sequence of interest. In this case a
library of direct FISH probes was designed and each probe
contained a common overhang sequence responsible for
interacting with oligo-paint probes (Beliveau et al., 2015).
Using such techniques, an unprecedented specificity of labeling
isolated gene loci in 3D intact nuclei was demonstrated.
This approach may provide complementary information on
particular genes to the data obtained using next generation
sequencing approaches and chromosomal conformation
capture (Dekker et al., 2002, 2013; van Berkum et al.,
2010).

All aforementioned localization microscopy images were
obtained with microscopes in widefield illumination mode.
However, different illumination schemes are also available
e.g., using light sheet illumination in combination with
single molecule detection, effectively suppressing out-of-focus
background, yielding high quality single molecule localization
signals originating from only one section through the nucleus.
By doing so, it was possible to study the spatial organization
of RNAPII as well as to quantify its clustering (Zhao et al.,
2014). This study revealed that 70% of these ‘clusters’ originated

from single RNAPII molecules, arguing against the simultaneous
recruitment of most of RNAPII molecules into transcription
factories. In another study, the authors set out to investigate
Sox2 enhancer organization in living embryonic cells using light-
sheet illumination along with localization microscopy imaging
using Fluorescent Proteins (Liu et al., 2014). They demonstrated
that Sox2 transcription factor targets a subset of RNAPII-
enriched regions in the nucleus and hypothesized that this
encourages the gene to undergo transcription. These pioneering
studies highlight the importance of further technological
developments.

With the advent of localization based super-resolution
microscopy of nuclear DNA using standard dyes, the enhanced
structural resolution allows the heterogeneity of nuclear
compartments to be categorized into further substructures
the function of which may be elucidated. SMLM microscopy
techniques are highly useful to study these nanostructures down
to single molecule resolution. This proves the versatility and
usefulness of the novel super-resolution methods in combination
with advanced labeling (and embedding) approaches in further
structural studies of the cell nucleus. Fields of application
envisaged include among others DNA repair, genome instability,
development and differentiation, epigenetics in the context of
nuclear structure, neuromedicine (e.g., neurological disorders).
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