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In the mathematical modeling of biochemical reactions, a convenient standard approach

is to use ordinary differential equations (ODEs) that follow the law of mass action.

However, this deterministic ansatz is based on simplifications; in particular, it neglects

noise, which is inherent to biological processes. In contrast, the stochasticity of reactions

is captured in detail by the discrete chemical master equation (CME). Therefore,

the CME is frequently applied to mesoscopic systems, where copy numbers of

involved components are small and random fluctuations are thus significant. Here,

we compare those two common modeling approaches, aiming at identifying parallels

and discrepancies between deterministic variables and possible stochastic counterparts

like the mean or modes of the state space probability distribution. To that end, a

mathematically flexible reaction scheme of autoregulatory gene expression is translated

into the corresponding ODE and CME formulations. We show that in the thermodynamic

limit, deterministic stable fixed points usually correspond well to the modes in the

stationary probability distribution. However, this connection might be disrupted in

small systems. The discrepancies are characterized and systematically traced back

to the magnitude of the stoichiometric coefficients and to the presence of nonlinear

reactions. These factors are found to synergistically promote large and highly asymmetric

fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal

systems can emerge. This clearly challenges the role of ODE modeling in the description

of cellular signaling and regulation, where some of the involved components usually

occur in low copy numbers. Nevertheless, systems whose bimodality originates from

deterministic bistability are found to sustain a more robust separation of the two states

compared to bimodal, but monostable systems. In regulatory circuits that require precise

coordination, ODE modeling is thus still expected to provide relevant indications on the

underlying dynamics.

Keywords: ordinary differential equations, chemical master equation, bistability, bimodality, gene expression,

protein bursts
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1. INTRODUCTION

In the last decades, the potential of mathematical modeling for
the analysis of biological systems has widely been recognized.
However, the reliability and explanatory power of such models
depend greatly on the chosen modeling approaches, which may
largely differ in several aspects like their level of detail or the
approximations they are based on. This fact has led to debates
not only with critics from other scientific fields, but also within
the community of systems biologists (Gunawardena, 2014).
Nowadays, modeling is still lacking any kind of gold standard,
since it is highly specific toward the underlying systems biological
problem. In fact, each and every model can only provide a
rough depiction of nature, and a major challenge consists in
applying or even developing modeling techniques which answer
the questions to be addressed as best as possible with reasonable
effort.

The host of existing modeling approaches can be grouped
according to various criteria. One important classification
distinguishes between deterministic and stochastic models.
In deterministic modeling, stochasticity within the system
is neglected. One of the most frequently used deterministic
approaches consists in ordinary differential equations (ODEs),
which are based on the phenomenological law of mass action.
They provide a dynamic and quantitative description of spatially
homogenous systems. Since ODEs are intensely used in other
scientific fields as well, numerous analysis techniques and
simulation methods have been developed thus far. In theoretical
biology, ODEs have been applied to a wide range of problems, for
example to the description of metabolism (Kremling et al., 2007),
signaling (Shinar et al., 2007) or gene regulation within cells
(Tyson andOthmer, 1978), to the investigation of systemic effects
in complex multicellular organisms (Gallenberger et al., 2012),
and to the analysis of population dynamics (Edelstein-Keshet,
1988).

However, biological systems are always subject to stochastic
effects, which occur on all levels—from molecular to
macroscopic. These can be captured by stochastic models.
Concerning biochemical networks, the chemical master equation
(CME) is very frequently applied (van Kampen, 2007, Chapter 5).
Unfortunately, its analytical solution is usually intractable,
especially if a large number of reactants is involved. The Gillespie
algorithm provides exact simulations of trajectories of the
master equation (Gillespie, 1977), but the computational cost is
high for multi-component reaction systems. Therefore, several
approximate variants of the CME as well as of the Gillespie
algorithm have been developed (Gillespie, 2001; Chatterjee et al.,
2005; Anderson, 2008).

Randomness plays a major role in signaling and regulation,
where the copy number of the involved components is small
and noise in gene expression is significant. Therefore, they
are major application fields for stochastic models in systems
biology (Tsimring, 2014). Compared to their deterministic
counterparts, stochastic models are in general more difficult
to analyze. Therefore, the need for incorporating stochasticity
should be carefully elucidated, depending on the biological
application.

In the following, we aim at comparing the explanatory power
of the very detailed discrete CMEs and the corresponding ODEs.
Starting from reviewing the analogies in their formulation in
Section 2, we will then collect the parallels and discrepancies
between the modeling results in Section 3. In this context,
common concepts like bistability and bimodality will be
contrasted. Unlike a couple of other studies on this topic, we
will also regard mesoscopic systems which are not close to the
thermodynamic limit.We will discuss these aspects in the context
of a simple gene regulatory system, using it as a platform for
identifying general factors which influence the comparability
between these kinds of deterministic and stochastic models.

2. THEORETICAL BACKGROUND

2.1. Foundations of CMEs and ODEs
In this section, we will review the formulation of CMEs andODEs
for chemical reaction systems, and highlight the connection
between deterministic reaction rates and stochastic reaction
propensities. More detailed descriptions can be found, e.g., in
Gillespie (2007) and van Kampen (2007).

2.1.1. Chemical Reactions as a Markov Process and

the Chemical Master Equation
Let us consider a system containing molecules of M different
chemical species (components) that can in total undergo R
different irreversible, elementary reactions. These reactions can
be of zeroth order (e.g., entry of molecules into an open system),
of first order (e.g., degradation of compounds or unimolecular
conversion) or of higher order (e.g., dimerization). In the latter
case, random encounters of two or more molecules are necessary
for the reaction to occur. The j-th reaction can be written as

M
∑

i= 1

βij · Xi −→

M
∑

i= 1

γij · Xi, (1)

with Xi denoting the components in the system and βij, γij ∈ N
+
0

being the stoichiometric coefficients of the educts and products.
Assuming that the system is spatially homogeneous, its state
can be characterized by the copy numbers of the components
it contains. It can therefore be formulated in terms of a vector
n(t) = (n1(t), ..., nM(t))⊤, where ni denotes the copy number of
the i-th component, and t is the time variable.

In the CME framework, the system state is modeled as
a continuous-time stochastic process, for which the Markov
property holds. This means that the probability distribution of
future system states only depends on the present state, but not
on past states (memorylessness). Here, we regard the discrete
state space defined above. Let pn(t) be the probability of being in
state n at time t and π(n,m) be the probability per infinitesimal
time unit (propensity) of a transition from m to n. The CME is
a reformulation of the Chapman-Kolmogorov equation and can
be written as:

ṗn(t) =
∑

m

(π(n,m) pm(t) − π(m,n) pn(t)), (2)
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where ṗn(t) denotes the time derivative of the probability and the
summation runs over the whole state space. The CME thus states
that the temporal evolution of pn is determined by the balance
between transitions leading to state n and transitions away from
n. Since Equation (2) applies to all states n, it defines a system of
differential equations describing the dynamics of the probability
mass function p.

Next, π(., .) needs to be defined in the context of the reaction
system (Equation 1). Within infinitesimal intervals, transitions
occur solely due to single reactions. The stoichiometric matrix
A with entries aij := γij − βij and columns aj = (a1j, ..., aMj)

⊤

captures all possible transitions between states, so that the CME
can be re-formulated as

ṗn(t) =

R
∑

j= 1

(wj(n− aj) · pn−aj (t)− wj(n) · pn(t)). (3)

Here, wj(n) is the propensity of the j-th reaction, which is the
probability per infinitesimal time unit for the j-th reaction to
occur, when the system is in state n. The propensities can more
specifically be formulated as

wj(n) = κj ·

M
∏

i= 1

(

ni

βij

)

. (4)

Here, κj denotes the stochastic reaction constant, which
is determined by physical properties of the reaction (e.g.,
activation energy, complexity) and by environmental
conditions like temperature. The latter product reflects the
combinatorial probability of random encounters of the
educts: it accounts for reactive collisions of the components,
where βij out of ni molecules of the i-th component are
involved.

2.1.2. Formulation of a System of Ordinary Differential

Equations
We consider ODEs based on the law of mass action, which
has originally been formulated by Guldberg and Waage. In
this deterministic approach, concentrations instead of molecule
numbers are usually regarded (Gillespie, 1976), and the state
space is treated as continuous (Gillespie, 1977). This is only
justified if the molecule numbers of the species and the system
size V are sufficiently large. Let ci :=

ni
V be the concentration of

the i-th reaction component. For constant V , the concentration
change of the i-th component through the reactions in Equation
(1) is given by

ċi =

R
∑

j= 1

(

(γij − βij) · kj ·

M
∏

l= 1

c
βlj

l

)

=

R
∑

j= 1

(

aij · kj ·

M
∏

l= 1

c
βlj

l

)

.

(5)

kj is the deterministic rate constant. The law of mass action thus
states that the speed of a reaction depends on this constant and on
powers of the concentrations of the educts. In case of elementary
reactions, the exponents are determined by the stoichiometry of
the reaction.

2.1.3. Relation between Stochastic and Deterministic

Reaction Constants
While the stochastic reaction constant reflects the likelihood
of a reaction to occur, the deterministic counterpart is
mostly interpreted as a kinetic term. However, the following
mathematical relation holds:

κj = kj · V ·

M
∏

i= 1

βij!

Vβij
. (6)

This equation is a generalized form of the relation derived
in Gillespie (1977). The stochastic rate constant thus depends
on the system size V , and this dependence is determined by
the stoichiometry: While zero-order reactions are more likely
to happen in large systems, the chance of molecular collisions
required for higher-order reactions is reduced when the density
of molecules decreases due to an expansion of V . Inserting the
relation into Equation (4) yields

wj(n) =
kj

V
∑M

i= 1 βij−1

M
∏

i= 1

ni!

(ni − βij)!
. (7)

For small and well-characterized chemical reaction systems,
the CME and ODE formulations are straightforward. However,
many biological reactions in cellular systems are complex and
a description in terms of elementary reactions like in Equation
(1) might thus be difficult. For example, the conversion of a
protein with the help of an enzyme is actually a multi-step
process. The description of gene expression including the actions
of the transcription and translation machinery and under the
influence of certain activators or repressors would be infeasible
at this level of detail. By exploiting time scale separation, it is a
general practice to lump several fast reactions into rate functions
kj(n), which replace the constants kj and which depend on the
current system state (pseudo-steady-state assumption). They can
for example be chosen to describe Hill-type kinetics.

2.2. The Mean of the CME and Its Relation
to the ODE System
The deterministic formulation is sometimes regarded as a
description of average values, which are assumed to represent the
system quite well when the molecule numbers of the components
and the system size are large. However, a basic calculation of
the mean of the CME shows that this analogy only holds true in
special cases (cf. for example van Kampen, 2007, Chapter 5):

Let Ni be the stochastic variable of the copy number of the i-
th component and let N = (N1, ...,NM)⊤. Let furthermore E[ . ]
denote the expected value. Then, the ODE of E[Ni] satisfies:

Ė[Ni] =
∑

n∈ZM

ni ṗn =
R
∑

j= 1

(

aij · E[wj(N)]
)

. (8)

For the sake of simplicity, we have omitted the time variable t.
The derivation can be found in the Supplementary Material 1.
Inserting the explicit formulation of the propensities (Equation
7) leads to

Ė[Ni] =
∑R

j= 1

(

aij · E

[

kj

V
∑M

l= 1
βlj−1

∏M
l= 1

Nl !
(Nl −βlj) !

])

. (9)

Frontiers in Genetics | www.frontiersin.org 3 August 2016 | Volume 7 | Article 157

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Hahl and Kremling Deterministic vs. Stochastic Models

If all βlj ≤ 1, or if the system is close to the thermodynamic
limit (i.e., the theoretical limit V → ∞, nl → ∞ s.t. cl is

constant), the approximation
nl!

(nl−βlj)!V
βlj

≈
n

βlj

l

V
βlj

= c
βlj

l
holds.

The expectation of the random variable Ci :=
Ni
V describing the

concentration then reads:

Ė[Ci] =
R
∑

j= 1

(

aij · E

[

kj
M
∏

l= 1

Cl
βlj

])

. (10)

In general, E[f (Y)] 6= f (E[Y]) for any nonlinear function f ,
where Y is an arbitrary random variable. A comparison between
the ODE in Equation (10) and the deterministic formulation in
Equation (5) thus shows that the deterministic variable ci is only

an exact description of E[Ci], if the term kj
∏M

l= 1 C
βlj

l
is linear.

This holds true for zero and first order reactions with constant kj,
which is quite a severe restriction in the context of biochemical
processes.

2.3. Bistability vs. Bimodality
In addition to the calculations in the preceding section, one
further, quite obvious limitation in identifying deterministic
variables with the mean of stochastic variables becomes apparent
when multimodal probability distributions are regarded. They
have more than one local maximum, each of them representing
a characteristic composition of state variables that is “favored”
by the system. Multimodality therefore reflects system state
heterogeneity. This heterogeneity might be temporal (frequent
switching of individual systems between different states) or
population-based (split of a population into subgroups with
different, but stable characteristics). If deterministic models
were a mere description of the mean, they would obscure
this multimodal structure and would therefore be rather
uninformative. Indeed, a property of ODE models exists which
describes some sort of heterogeneity: This property is called
multistability, meaning that multiple stable fixed points can
be assumed by the system. The initial condition determines
which of the states the system will finally tend to. Although the
effect of stochasticity, which might allow for random transitions
between the stable states, is neglected, multistability has long been
regarded as the deterministic equivalent of multimodality.

Recently, several theoretical as well as experimental studies
have challenged this association. Bistable systems with a
unimodal distribution have been observed as well as bimodal
systems whose deterministic description predicted monostability
(Artyomov et al., 2007; Qian et al., 2009; Bishop and Qian,
2010; Ochab-Marcinek and Tabaka, 2010; To andMaheshri, 2010;
Shu et al., 2011; McSweeney and Popovic, 2014). We can thus
conclude that deterministic variables are neither fully equivalent
to the stochastic mean nor to stochastic modes. This raises
the question under which conditions deterministic models can
provide reliable information on system dynamics and which
qualitative and quantitative conclusions can be drawn from the
results.

In Gillespie (2007, 2009), Kurtz (1972, 1980), and van
Kampen (2007), connections between deterministic and
stochastic variables have been derived which are valid in the

thermodynamic limit under certain constraints on the reaction
system. These constraints are usually fulfilled for elementary
reactions, but might be violated when multiple reactions
are lumped together. Furthermore, in gene expression and
regulation, where the molecule copy numbers of some of the
involved components are low, the thermodynamic limit is not an
appropriate approximation.

In order to characterize possible differences between ODE
and CME models in a mesoscopic regime, we regard a flexible
biochemical regulatory system that can be bimodal, depending
on the parameters. Usually, bimodality arises due to positive
feedback loops—a topological structure which can be found
in autostimulatory gene expression systems, both natural and
synthetic. They offer a fruitful platform for studying the effect
of stochasticity in a biological context: Protein production was
found to occur in bursts of random size, which enables us
to study the influence of stochasticity and stoichiometry by
varying the burst characteristics, namely the average amplitude
and frequency. Moreover, by theoretically varying the feedback
structure, the effect of nonlinear reaction rates can be studied.
Using this system, we will determine in which aspects and to
what extent the deterministic description is consistent with the
CME. More general statements will then be derived from our
observations.

3. RESULTS

3.1. Modeling of a Gene Regulatory System
with Feedback
Our basic description of gene regulation is mainly adapted
from Friedman et al. (2006) and Aquino et al. (2012).
Instead of modeling the dynamics on the promoter, mRNA,
and protein level in detail, we will use a simplification
proposed in Aquino et al. (2012), which regards only protein
formation and degradation. It is based on a time scale
separation with subsequent averaging of promoter states and
of mRNA concentrations. A discussion on the validity of this
approximation is also given in Aquino et al. (2012). We will
not put special emphasis on the accuracy of the model from
a biological point of view, but rather on the mathematical
characteristics of the model equations. We thus prefer the
reduced model due to its analytical solvability.

The reaction scheme we consider is given by:

∅

1
µ∗

f (n)

−−−−−→ µX

X
δ

−−→ ∅ (11)

Here, X denotes the protein, which is generated in a burst
with random size µ ∈ N

+. The burst size follows a geometric
distribution with mean µ∗. The rate of protein production is
given by f : R −→ R, which is a smooth monotonically
increasing function evaluated at the integer protein molecule
number n, illustrating autostimulation. It is scaled by µ∗ in order
to obtain comparable results when the parameter is modified in
our analyses (i.e., a change of the burst size is balanced by a
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reciprocal change of the burst frequency so that the mean protein
level remains constant). The protein degradation rate is linear
with parameter δ. Throughout this study, the cell volume V is
assumed to be fixed, so that dilution effects are neglected.

This scheme is suitable for studying the effect of linear
as well as of nonlinear functions f , by which different types
of autoregulation can be represented. For example, a non-
cooperative stimulatory effect of the protein on its own
expression can be described by a linearly increasing function
or by a Michaelis-Menten-type saturation function. Cooperative
feedback, where several protein molecules exert a synergistic
autoregulatory effect, can be described through a sigmoid Hill-
type function. Furthermore, by choosing large values for µ∗,
significant jumps in the protein trajectories can be generated.

3.2. Deterministic Description in Terms of
Ordinary Differential Equations
Since stochasticity is neglected in deterministic descriptions, the
number of proteins produced in each burst is assumed to be
equal to the average burst size µ∗. Let c := n

V be the protein
concentration, which is treated as a continuous variable. The
ODE is then given by:

ċ = µ∗

1
µ∗ f̃ (c)

V
− δ c =

f̃ (c)

V
− δ c, (12)

where f̃ (c) := f (c · V) ∀ c ∈ R. The steady state condition reads

f̃ (c)

δ
= c V . (13)

The number of fixed points thus depends on the structure of
f̃ (.)
δ

and can be determined graphically as shown in the top row
of Figure 1: The red line corresponds to the left hand-side of

Equation (13) and has therefore the shape of f̃ , and the identity
line marked in green depicts the right hand-side. The steady
states are located at the intersection points. Provided that the
basal rate of protein production is nonzero, systems without
feedback (panel A) or with non-cooperative positive feedback
(panel B) can only have one stable fixed point. Those two
cases are modeled by constant and by monotonically increasing,

concave f̃ , respectively. In case of cooperative feedback, which

is characterized by a sigmoid structure of f̃ , the system can be
mono- or bistable (panels C and D).

3.3. Mathematical Formulation Using the
Chemical Master Equation
The master equation of the reaction system is obtained by
inserting the rates and stoichiometry given in Equation (11) into
Equation (3). It can be written as:

ṗn =

n
∑

µ= 1

(

gµ∗ (µ)
1

µ∗
f (n− µ) pn−µ

)

−
1

µ∗
f (n) pn

+δ (n+ 1) pn+ 1 − δ n pn. (14)

gµ∗ (µ) := 1
µ∗ ·
(

1− 1
µ∗

)µ−1
,µ ∈ N

+, is the geometric probability

mass function.
According to the calculation in Aquino et al. (2012) using

Z-transform (a discrete version of the Laplace transform), the
probability mass function in steady state (ṗn = 0 ∀n) can be
formulated recursively as

pss1 =
f (0)

δ µ∗
pss0 ,

(n+ 1) pssn+ 1 =
f (n)

δ µ∗
pssn +

µ∗ − 1

µ∗
n pssn . (15)

3.4. Calculation of Central Moments and
Modes
The ODEs for the expectation and the variance σ 2 of the master
equation read:

dE[N]

dt
= E[f (N)] − δ E[N] (16)

dσ 2(N)

dt
= 2Cov(N, f (N)) − (E[f (N)] − δ E[N])

+ 2µ∗
E[f (N)] − 2 δ σ 2(N), (17)

where N is the discrete random variable of the number of
protein molecules. The detailed calculation is shown in the
Supplementary Material 2. In steady state, the central moments
are therefore given by:

E[N] =
E[f (N)]

δ
(18)

σ 2(N) = µ∗
E[N] +

1

δ
Cov(N, f (N)). (19)

Hence, the variance depends on the mean burst size µ∗. For
example, if f was constant (no feedback), σ 2(N) = µ∗

E[N]
holds.

Let us now focus on the extrema of the probability
distribution. In general, local maxima (modes) and minima obey
the following conditions:

pssn−1 ≤ pssn , pssn ≥ pssn+ 1 → maximum at n (20)

pssn−1 ≥ pssn , pssn ≤ pssn+ 1 → minimum at n, (21)

if n > 0. Furthermore, one extremumnecessarily occurs at n = 0.
Using Equation (15), one obtains the specific condition:

pssn+ 1 − pssn
≤

≥
0 ⇔

f (n)

δ

≤

≥
n+ µ∗. (22)

Thus, the extrema satisfy the condition

n =

⌈

f (n)

δ
− µ∗

⌉

, (23)

where ⌈.⌉ denotes the ceiling function.
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3.5. Comparison of the Deterministic and
Stochastic Descriptions
A comparison of the differential Equations (12) and (16) shows
that the average (scaled by the volume) deviates from the
deterministic variable if E[f (N)] 6= f (E[N]), which is usually
the case when f is nonlinear. Inserting the Taylor series of f (N)
around E[N], the ODE of the mean reads:

dE[N]

dt
= f (E[N])+

∑∞
r= 2

(

1
r! zr f

(r)(E[N])
)

− δ E[N]

(24)

with zr :=E
[

(N − E[N])r
]

denoting the r-th central moment

of N and f (r) being the r-th derivative of f . The mean of the
CME is thus well described by the deterministic variable c only
if f is almost linear or if higher central moments of N like the
variance, skewness, kurtosis, etc. are small. As alreadymentioned,
Equation (19) shows that bursting leads to a significant increase
in the variance. Taken together, nonlinearity in the reaction can
cause a deviation of c · V from E[N], which is expected to be
enhanced through bursting.

Concerning the modes, a comparison of the conditions given
in Equation (13) and in Equation (23) reveals a strong analogy
if µ∗ is small, so that stable fixed points can be associated with
the maxima in the equilibrium probability mass function, and
the unstable fixed points correspond to the minima. However,
large bursts can disrupt this connection, as will be shown in the
following section. The structure of f plays a minor role in this
context.

3.5.1. Large Protein Bursts Can Disrupt the

Connection between Bistability and Bimodality
In Figure 1, our previous calculations are visualized. Protein
time-courses have been simulated using the Gillespie algorithm.
For each plot, 5 · 104 simulations were run and the
histograms at a final time point tf were plotted. In order to
make sure that the steady state was approximately reached,
several runs with random initial molecule numbers have been
performed and compared to one another, and the simulated
means and modes have been compared to the analytical
values.

The first row of plots illustrates the analytical results,
summarizing the findings from deterministic fixed point analysis
as well as from the calculation of the stochastic extrema:
According to Equation (13), the deterministic fixed points can be

read from the intersection points of the graphs of
f (n)
δ

and n. The
approximate location of the modes is given by the intersection

of
f (n)
δ

and n + µ∗, see Equation (23). From left to right, the
structure of f was changed in order to check different feedback
mechanisms. Furthermore, themean burst size was varied in each
case: Missing bursts (µ∗

1 = 1), medium-size bursts (µ∗
2 = 6)

and large bursts (µ∗
3 = 11) were considered. The plots below

show the corresponding histograms of the simulations for the
three different burst sizes. Moreover, the empirical mean of the
distribution is highlighted.

First, let f ≡ b be constant. The simulations in panel (A)
show that an increase in µ∗ does not change the location of
the empirical mean. However, the maximum of the distribution

FIGURE 1 | Influence of bursting and of nonlinear feedback on the protein distribution. From left to right, the feedback characteristics are varied. The top row

shows the analytical results. The deterministic fixed points can be read from the value of n at the intersection of f (.)
δ
, marked in red, and the identity line in green. The

systems are monostable except for column (C), where it is bistable. The intersection points of the red line and the blue lines .+ µ* yield the locations of the extrema.

Three different values for µ* are shown: µ*1 = 1 (no burst, dark blue), µ*2 = 6 (medium-size burst, mid blue), µ*3 = 11 (strong burst, light blue). Through bursts, the

modes are shifted toward smaller numbers of protein molecules. The second row shows the histograms of the protein distribution obtained from 5 · 104 protein

time-course simulations using the Gillespie algorithm. The distribution is shown for each burst size (same color as above). The location of the extrema corresponds

well to the analytical results. The average values (dashed lines) match the deterministic steady state if f is linear, which is only the case in panel (A). In (C), large bursts

generate a unimodal distribution (marked in light blue), although the system is bistable. In (B,D), medium-size bursts lead to bimodality in spite of deterministic

monostability (mid-blue line). Parameters are given in the Supplementary Table 1.
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is biased toward smaller values, while the variance is enlarged.
These observations are in perfect agreement to our calculations:

The fixed point is located at b
δ
and matches the empirical mean

due to the linearity of f . The variance is given by σ 2(N) = µ∗ b
δ
,

it therefore depends on the burst size. The mode fulfills the

condition n =
⌈

b
δ
− µ∗

⌉

and is thus shifted to the left when µ∗

is increased.
If f is a non-cooperative saturation curve (panel B), the

deterministic steady state deviates from the empirical average
of the distribution, and the bias is enlarged under bursting
conditions, as stated before. Furthermore, the fixed point
only matches with the maximum of the histogram when
bursts are very small. Very interestingly, µ∗ can even be
large enough to generate a bimodal distribution which peaks
at n = 0 and at a positive value. If the burst size is
further increased, the distribution can eventually turn unimodal
again, the only maximum being located at zero. This is
also predicted by our analytical considerations, where the
shift of the identity line by µ∗ leads to the emergence of

another intersection point with
f (n)
δ
, corresponding to the

formation of a minimum in the distribution, and a further
shifting makes the intersection points vanish, so that the only
maximum is found at n = 0. As a consequence, bursting can
cause bimodality although the deterministic description predicts
monostability.

Panel (C) addresses sigmoid functions f , which are often
the result of protein oligomerizations leading to cooperative
behavior. First, we have chosen the parameters such that the
deterministic system is bistable. Again, an increase in µ∗ shifts
the modes to the left so that the deviation of the deterministic
steady states increases. Under large bursts, as in the non-
cooperative case, a unimodal distribution peaking at n = 0 can
be observed. This is an example for a bistable system, which is
unimodal.

By varying the parameters in the system with cooperative
feedback, the results shown in panel (D) are obtained. The system
is monostable, but it can get bimodal under bursting conditions.
In contrast to the situation shown in (B), bothmaxima are located
at positive molecule numbers.

All in all, large and rare bursts lead to an asymmetry
in the protein production and degradation events, generating
a skewed probability density with a large variance, that
cannot be approximated by a normal distribution (cf. the
association of deterministic and stochastic models via the
Langevin equation in Gillespie, 2007). This disrupts the
connection between deterministic fixed points and stochastic
modes.

3.5.2. Good Agreement between the Stochastic and

Deterministic Descriptions in the Thermodynamic

Limit
In spite of the preceding results, which reveals the possibility
of huge deviations between the outcome of deterministic and
stochastic models, the following calculation shows that in the
theoretical thermodynamic limit V → ∞, n → ∞, s.t. n

V is

constant, a strong correlation between modes and fixed points
exists.

Let us consider a system whose size is increased s-fold
compared to system (Equation 11) (i.e., its volume is given by
s · V). In order to maintain the concentrations, the rate of
translation, which is formally a zeroth-order reaction, needs to

be increased accordingly (it is thus given by s · 1
µ∗ f̃ ). In this case,

the deterministic ODE remains unchanged, since Equation (12)
is simply replaced by the identical formulation

ċ =
s f̃ (c)

s V
− δ c. (25)

The condition for the stochastic modes reads

n = c s V =

⌈

s · f̃ (c)

δ
− µ∗

⌉

(26)

⇒ c V =

⌈

s·f̃ (c)
δ

− µ∗

⌉

s

s→∞
−−−−→

f̃ (c)

δ
(27)

and thus matches the deterministic fixed point in the
thermodynamic limit. The simulations shown in Figure 2,
where protein distributions of two systems with differing
sizes are compared, confirm this result. To put it in a slightly
different way, the modes are in good agreement with the
deterministic steady states if µ∗ is small relative to the value of n
at the extremum. However, note that from merely locating the
deterministic fixed points in a bistable system, one cannot infer
the average steady-state of the system, since the probability of a
cell to be in one or the other state is unknown.

3.6. Feedback and Burst Characteristics
Influence the Precision of the Distribution
and the Robustness of Bimodality
Next, we will give a qualitative estimate on the local precision (i.e.,
the inverse of the variance) of the probability distribution at the
modes. The recursive formula (15) can be written as

pssn+ 1 − pssn =

f (n)
δ

− (n+ µ∗)

µ∗(n+ 1)
pssn . (28)

Therefore, the local change of the probability mass function
relative to its height is large if

•

∣

∣

∣

f (n)
δ

− (n+ µ∗)
∣

∣

∣
is large, while

• µ∗ is small.

Under this condition, the local distribution forms sharp peaks
around a maximum located at n. As a consequence, feedback
structures and burst characteristics have a significant impact
on the separation of the modes (without loss of generality,
we do not include the effect of the degradation rate δ into
our considerations). In the following, three scenarios will be
portrayed which illustrate this result. They are visualized in
Figure 3.
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FIGURE 2 | Influence of the system size on the correspondence

between deterministic and stochastic modeling results. Two systems

with differing sizes are compared: The volume V1 of system 1 (graphs in light

blue) is chosen 50-fold smaller than the volume V2 of system 2 (graphs in dark

blue), while the protein concentrations at the deterministic fixed points are

identical. The intersections of the blue lines and the red line in the upper plot

mark the analytical locations of the extrema in the protein probability mass

function. The extrema of the larger system nearly coincide with the

deterministic fixed points, since the expression µ*
V2

is almost negligible. The

distributions in the bottom plot (obtained using the Gillespie algorithm) confirm

these results: the larger system shows a clear bimodal distribution whose

modes match the stable deterministic fixed points, while the modes of the

small system are shifted, and the distribution is much broader. The dashed

lines show that the analytical determination of the modes fits well to the

simulations. Parameters are given in the Supplementary Table 2.

First, the burst size µ∗ is varied, while
f (n)
δ

− (n + µ∗) and
the location of the modes are kept constant. This is most easily
achieved by choosing two different burst sizes µ∗

1 and µ∗
2 with

µ∗
1 < µ∗

2 and by defining f2 := f1 + δ(µ∗
2 − µ∗

1) (i.e., the
system with the larger average burst size has an enhanced basal
protein production, while the shapes (derivatives) of f1 and f2 are

identical). Then,
f1(n)

δ
−(n+µ∗

1) =
f2(n)

δ
−(n+µ∗

2) holds true. The
simulated histogram in Figure 3A shows that the system with the
larger burst size does indeed have a broader distribution.

Next, the function f is modified while µ∗ is held fixed. In
this context, cooperative and non-cooperative regulation can be

compared (cf. Figure 3B): Let f3(n) := b3 + v3
nh

nh+K3
with h > 1

describe Hill type kinetics (sigmoid function, cooperativity) and
let f4(n) := b4+v4

n
n+K4

be aMichaelis-Menten-type function (no
cooperativity). Furthermore, to ensure comparability, let b3 = b4

(identical basal expression level), and let
f3
δ

and
f4
δ

have two
identical intersection points with the line .+µ∗. This guarantees
that the modes of the probability distributions occur at the same

protein molecule numbers. Then, it can be shown that for all n,
∣

∣

∣

f4(n)
δ

− (n+ µ∗)
∣

∣

∣
<

∣

∣

∣

f3(n)
δ

− (n+ µ∗)
∣

∣

∣
holds (the proof is given

in the Supplementary Material 3), so that the protein distribution
of the cooperative system has sharper peaks.

Finally, bothµ∗ and
f (n)
δ
−(n+µ∗) are varied. Let f5(n) := b5+

v5
n

n+K5
, f6(n) := b6 + v6

n
n+K6

, and let b5 = b6. Now, let µ
∗
5 > µ∗

6

and let
f5(n)

δ
= n + µ∗

5 and
f6(n)

δ
= n + µ∗

6 have an identical set
of solutions. We are thus looking at two non-cooperative systems
where the basal rate of protein production and the locations of the
modes coincide, while the burst sizes and the curvatures of f5 and

f6 differ. In this case,
∣

∣

∣

f5(n)
δ

− (n+ µ∗
5)
∣

∣

∣
>

∣

∣

∣

f6(n)
δ

− (n+ µ∗
6)
∣

∣

∣
(cf.

Supplementary Material 4), which counteracts the effect of the
differing burst sizes. Explicit calculations are therefore required
to determine which effect prevails. Interestingly, Figure 3C

shows that the bimodality in the protein distribution of the
system with larger bursts is even more precise.

Having addressed the probability mass function in steady
state, single protein time-courses are now regarded. In a bimodal
system, the robustness of the two stable steady states is crucial for
its functionality: The protein level might fluctuate permanently
between these states (small Mean first-passage times (MFPTs)
of transitions between the inactive and active states, cf. van
Kampen, 2007, Chapter 12), or it might tend to stay in one
of the states with rare switching events (large MFPTs). The
trajectories in Figure 3 show that a sharp bimodal distribution
qualitatively correlates well with the robustness of the states. In
Figure 3A, the fluctuations in the system with the lower burst
level are much smaller, leading to more distinct switches between
the modes. The protein level of the system with cooperative
feedback in Figure 3B has small noise and stays in the active
state, whereas the protein time-course in the non-cooperative
circuit does not exhibit a clear separation of the modes. The
time-courses in Figure 3C show that even systems with non-
cooperative regulation are able to sustain two separate states,
given that the nonlinearity of the feedback and the burst size are
not too small, which severely contradicts the results of standard
deterministic modeling.

4. DISCUSSION

In this study, we have compared an ODE model based on the
law of mass action with the corresponding CME formulation,
implicitly stating that the master equation provides the much
more realistic description of the biochemical reaction system.
All deviations of the deterministic from the stochastic model
have thus been interpreted as an indication of inadequacy of
the ODE formalism. Indeed, as Gillespie states, “the stochastic
approach is always valid whenever the deterministic approach is
valid, and is sometimes valid when the deterministic approach
is not” (Gillespie, 1976). One should still note that the CME,
too, is based on several simplifying assumptions. Among these
are the random, homogenous distribution of positions AND
velocities of reactants, which is only a valid approximation
when elastic molecular collisions predominate over reactive ones
(Nicolis et al., 1974; Gillespie, 1992). Hence, we need to point out
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FIGURE 3 | Robustness of bimodality in different regulatory systems with feedback. In each column, the robustness of the modes in two regulatory systems

with varying burst sizes and varying functions f are compared based on the protein distributions and exemplary protein time-courses. (A) Comparison of two

non-cooperative feedback regulations with differing burst sizes µ*1 < µ*2 and accordingly shifted functions f1 and f2 with identical shape. (B) Comparison of

non-cooperative and cooperative regulation with identical burst size µ*. (C) Comparison of two non-cooperative regulations with identical basal protein expression

and under differing burst sizes µ*6 < µ*5. In all cases, the system marked in dark colors (system 1, 3, and 5, respectively) exhibits a sharper distribution and a better

separation of the modes is visible in the protein time-course simulations. Further explanations are given in the main text. Parameter values are listed in the

Supplementary Table 3.

that although the CME approach often leads to experimentally
verifiable results, this cannot be taken for granted. On the other
hand, we can state that if significant mathematical deviations
of the even more simplistic ODE approach from the CME
model are observed, the deterministic description is almost surely
unrealistic. Our study has led to the conclusion that although
ODE modeling is quite a convenient and popular approach in
many application fields, the use of deterministic models should

be treated cautiously in the context of mesoscopic biochemical
reaction systems.

The connection between deterministic and stochastic
modeling has frequently been studied before. Several papers
have reported on multi-component reaction systems that
are monostable and bimodal, where bimodality is caused by
the presence of components with very slow dynamics. These
components can act as multi-level switches on fast downstream
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components (Qian et al., 2009; Ochab-Marcinek and Tabaka,
2010; Shu et al., 2011). Here, we have focused on nonlinear
one-component reaction systems. A related study was previously
conducted by Bishop and Qian (2010), where a phosphorylation-
dephosphorylation cycle has been analyzed. They have shown
that although the one-dimensional deterministic ODE model
exhibits monostability, the weak nonlinearity in the reactions has
the potential to cause stochastic bimodality, if the system size is
sufficiently small. In their case, one of the stationary modes was
invariably located at the zero state, whereas the other one was
close to the deterministic steady state.

Here, we have systematically analyzed the effects of
nonlinearity, but also of large stoichiometric coefficients in
a flexible autoregulated gene expression system. In this context,
we have proposed a graphical method which visualizes the
impact of these system properties on the location of the modes
and on their deviation from the deterministic fixed points. With
the help of the graphics, it could be shown that monostable but
bimodal systems can be constructed with both modes occurring
at positive values, but only if the feedback is cooperative. We
have seen that large stoichiometric coefficients can promote
highly asymmetric, irregular fluctuation patterns in the copy
numbers of the components. In our example, protein bursts
allow for sudden and large increases in the number of protein
molecules, whereas single degradation events reduce the number
merely by one. Such instant jumps in molecule numbers have
been explicitly excluded in the publications by Gillespie, where
deterministic and stochastic variables were found to correspond
well in sufficiently large systems (Gillespie, 2007, 2009). We
have shown that when all reactions are linear, the mean and
the deterministic variable coincide, but skewed fluctuations
through large bursts lead to a shift of the mode away from the
the mean. In the presence of nonlinear reaction propensities,
the deterministic variable usually differs from the mean, and
large bursts can even qualitatively change the modality of the
distribution. One could argue that through a more detailed
description of the bursting mechanism, large stoichiometric
coefficients can to some extent be avoided. Nevertheless, there
are components within a cell which usually occur at single-digit
amounts (e.g., genes, mRNA), so that every reaction involving
them is inevitably accompanied by a “large jump” relative to

the molecule number. As a next step, the interplay of jumps,
nonlinearities and reaction time-scales in a multi-component
reaction system needs to be evaluated. Our preliminary results
(not shown) indicate that those three factors together can further
reduce the comparability of ODE and CME models.

This provokes the question of what kind of conclusions
can still be drawn from deterministic modeling in small-scale
reaction systems. In some biological contexts, stochasticity
plays an important functional role: noise in certain signaling
and gene regulation systems can lead to random transitions
between different stable state and thus serve to create population
heterogeneity, which makes cells more robust toward fluctuating
environmental conditions. In this case, deterministic trajectories
are certainly not realistic. But often, uniform cellular behavior
can be observed. A coordinated hysteretic switch from one
state to another, for example, is only possible if the modes are

robustly separated. We have shown that although monostable
systems can be bimodal with moderate switching frequency, a
more robust bimodality is generated in a regime which is indeed
deterministically bistable. In such cases, deterministic modeling
might still provide valuable information on the dynamics of
the system. For a more reliable description of biochemical
processes in mesoscopic systems, however, we think that the use
of stochastic modeling is virtually inevitable.
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