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Copy-number variation (CNV) has been associated with increased risk of complex
diseases. High-throughput sequencing (HTS) technologies facilitate the detection
of copy-number variable regions (CNVRs) and their breakpoints. This helps in
understanding genome structure as well as their evolution process. Various approaches
have been proposed for detecting CNV breakpoints, but currently it is still challenging
for tools based on a single analysis method to identify breakpoints of CNVs. It has been
shown, however, that pipelines which integrate multiple approaches are able to report
more reliable breakpoints. Here, based on HTS data, we have developed a pipeline
to identify approximate breakpoints (±10 bp) relating to different ancestral events
within a specific CNVR. The pipeline combines read-depth and split-read information
to infer breakpoints, using information from multiple samples to allow an imputation
approach to be taken. The main steps involve using a normal mixture model to cluster
samples into different groups, followed by simple kernel-based approaches to maximize
information obtained from read-depth and split-read approaches, after which common
breakpoints of groups are inferred. The pipeline uses split-read information directly
from CIGAR strings of BAM files, without using a re-alignment step. On simulated
data sets, it was able to report breakpoints for very low-coverage samples including
those for which only single-end reads were available. When applied to three loci from
existing human resequencing data sets (NEGR1, LCE3, IRGM) the pipeline obtained
good concordance with results from the 1000 Genomes Project (92, 100, and 82%,
respectively). The package is available at https://github.com/hoangtn/SRBreak, and
also as a docker-based application at https://registry.hub.docker.com/u/hoangtn/srbr
eak/.

Keywords: read depth, copy number variant (CNV), split read, breakpoint cluster region, structural variation (SV)

INTRODUCTION

Copy number variation (CNV) has been associated with increased risk of complex diseases such as
austim, HIV, Crohn’s disease, rheumatoid arthritis, epilepsy, bipolar disorder, Alzheimer’s disease,
and obesity (Gonzalez et al., 2005; McCarroll et al., 2008; Bentley et al., 2009; McKinney et al., 2010;
Chung et al., 2014; Falchi et al., 2014; Hooli et al., 2014; Olson et al., 2014; Green et al., 2016). In
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addition, CNV at the CCL3L1 locus has also been associated
with selective adaptation (Gonzalez et al., 2005; Perry et al., 2007;
Hardwick et al., 2011, 2014). Such CNV-disease relationships,
however, are difficult to detect and replicate for a number of
reasons (He et al., 2009; Shrestha et al., 2010; Carpenter et al.,
2011; Nordang et al., 2012; Aklillu et al., 2013). One reason for
this relates to technical limitations – gold standard methods for
measuring CNV, like the paralog ratio test, are less amenable to
higher throughput genotyping, meaning that inferior methods
such as quantitative PCR are more often employed (McKinney
and Merriman, 2012). A second reason is that, owing to
the often recurrent nature of recombination events leading to
common CNV, surrogate tag single nucleotide polymorphisms
(SNPs) that are easy to genotype often do not exist. Given
also the recurrent recombination events, a third reason is
that the breakpoints of copy-number variable regions (CNVRs)
have not been precisely identified. The occurrence of multiple
independent ancestral copy number changes at a locus can
lead to different sub-regions having the same copy number, but
different breakpoints, which could result in different pathways
of disease (e.g., some breakpoints could disrupt the function of
a gene more than others). Therefore, precise identification of
the breakpoints of duplication or deletion events could enhance
our understanding of the exact structure of regions carrying
the CN variants, and the subsequent functional impact on
biological pathways. Furthermore, these exact breakpoints would
be amenable to direct genotyping for surrogate measurement of
CNV.

While an appreciable percentage (20–40%) of normal and
pathogenic CNVs have been shown to have non-recurrent
breakpoints (Conrad et al., 2010; Arlt et al., 2012), CNVs
associated with complex diseases are known to have recurrent
breakpoints. For example, a common 20-kb deletion upstream
of the IRGM gene has been associated with Crohn’s disease
(McCarroll et al., 2008), a common 40-kb deletion upstream
of the NEGR1 gene has been associated with body mass index
(Willer et al., 2009), and a 32-kb deletion around the LCE3C and
LCE3B genes has been associated with psoriasis (de Cid et al.,
2009). Moreover, at some complex loci, breakpoints have been
identified at hotspots of non-allelic homologous recombination,
or in concentrated clusters (Lindsay et al., 2006). For instance,
a 129-kb polymorphic region on chr12p13.31 associated with
rheumatoid arthritis has multiple left breakpoints in a region
of 1200 bp, and multiple right breakpoints in a region of
2100 bp (Veal et al., 2014). Similarly, for the FCGR3B gene
that is associated with systemic lupus erythematosus (SLE) and
rheumatoid arthritis, multiple breakpoints of deletions lie in
a 24.5-kb region (Mueller et al., 2013). Independent recurrent
deletion events at the same locus were also found in the
SIRPB1 gene by Kidd et al. (2008). This largely precludes
using a tag SNP approach for detection and genotyping of
complex CNV, although this has been demonstrated to be
feasible in some populations at the FCGR3 locus (Nguyen et al.,
2013).

Using high-throughput sequencing (HTS) data, multiple
pipelines have been developed to detect and genotype structural
variations (SVs) in the human genome. Frequently, read depth

(RD), paired-end mapping (PEM), split-read, local assembly or
some combination of two more of these approaches is used to
detect SVs. The RD approach is based on read counts aligned
to regions of the genome, and uses changes in read depth to
identify regions of CNV (Abyzov et al., 2011; Koboldt et al., 2012;
Nguyen et al., 2013; Wang et al., 2013). The PEM approach uses
the distance and directions of two ends of a DNA segment to infer
a SV event. For example, if the mapped distance of two reads is
larger/smaller than their expected distance then this indicates a
deletion/insertion event (Korbel et al., 2007; Chen et al., 2009;
Zeitouni et al., 2010; Rausch et al., 2012; Hart et al., 2013).
Reads which are aligned across breakpoints are usually split into
separate parts and only some parts are mapped, therefore split
read based pipelines use the information from these reads to infer
SV events and their breakpoints (Ye et al., 2009; Rausch et al.,
2012; Hart et al., 2013; Wu et al., 2013).

Both split-read-based and assembly based approaches
can report base-pair resolution of breakpoints (Zhao et al.,
2013), therefore integrated pipelines which include these two
approaches to obtain high resolution estimation of breakpoints
have been developed (Ye et al., 2009; Wong et al., 2010; Wang
et al., 2011; Hart et al., 2013). For example, SVMerge (Wong
et al., 2010) uses PEM and read-depth methods to detect SVs
and then an assembler is used to assemble reads around detected
breakpoints into breakpoint-containing contigs, which are
then aligned to the reference genome to refine the estimated
positions of the breakpoints (Wong et al., 2010). Other tools
such as DELLY (Rausch et al., 2012), LUMPY (Layer et al., 2014)
and SoftSearch (Hart et al., 2013) combine PEM, read-depth
and split-read information to obtain estimates of breakpoint
locations.

Here, we introduce an integrated analysis framework
(SRBreak) which combines a read-depth-based approach and a
split-read-based approach to identify breakpoints for different
duplication/deletion events inside a large CNVR. The strength
of this pipeline comes through its use of multiple samples in one
CNV genotype group to identify common breakpoints for that
group. It is able to use both single-end and paired-end reads
from HTS data.

METHODS AND DATA

In this work, both simulated and real data were used to
characterize the performance of the SRBreak methodology.
We simulated a 1 Mb region containing different duplication
and deletion events, and also low coverage data from a full
chromosome (chromosome 21). For real data, three human loci
with disease-associated CNV were used (NEGR1, LCE3, IRGM).

Simulated Data
Simulation of a 1 Mb Region
A 1 Mb segment on chromosome 1 (chr1:101100001-102100000)
was extracted from the human reference genome (version
hg19). On this 1 Mb segment, different recombination events
including duplications and deletions were simulated. The
breakpoints relating to these events are described in Table 1.
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TABLE 1 | Breakpoints of simulated samples for single- and paired-end
reads.

Start End Length (bp) Coverage Sample
number

Del 101545220 101630000 84780 1–15x 15

Del 101556000 101576000 20000 1–15x 15

Del 101560000 101565000 5000 1–15x 15

Del 101561000 101562000 1000 1–15x 15

Dup 101555000 101605000 50000 1–15x 15

Dup 101556000 101576000 20000 1–15x 15

Dup 101558000 101568000 10000 1–15x 15

Normal 1–15x 15

Total 120

The software package dwgsim1 was used to simulate HTS read
data from this region with the following parameters: paired
reads (inner distance = 500 bp), read lengths = 100 bp, rate
of mutations = 0.001; single-end reads, read lengths = 100 bp,
rate of mutations = 0.001. BWA-MEM (Li, 2013) was then
used to align simulated read data to the reference genome. The
coverage used in the simulated data was set from 1 to 15x (sample
coverages range from 1 to 15x as in Table 1). Supplementary
Figure S1 shows plots of simulated events.

Simulation of a Chromosome
A VCF for chromosome 21 was downloaded from the 1000
Genomes Project ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/
on 26 January, 2015. A list of all annotated SVs within the
chromosome was obtained. From this list, 20 loci with different
sizes ranging from ∼1000 to ∼10000 bp were randomly chosen.
Five samples with coverage from 1 to 5x for the whole of
chromosome 21 with deletions at the 20 loci were simulated.
Paired-end reads whose lengths are 100 bp were used in this
process. Mappability information was downloaded from http://
hgdownload.cse.ucsc.edu / goldenPath / hg19 /encodeDCC/wgEn
codeMapability / wgEncodeCrgMapabilityAlign100mer.bigWig
on 26 May, 2014 (Karolchik et al., 2014). Segmental duplication
information was downloaded from http://humanparalogy.gs.was
hington.edu/build37/data/GRCh37GenomicSuperDup.tab on 26
May, 2014 (Bailey et al., 2001).

Human High-Throughput Sequencing Data
Three loci, a region upstream of the NEGR1 gene (NEGR1 locus),
a region upstream of the IRGM gene (IRGM locus) and a region
including the LCE3B and LCE3C genes (LCE3 locus) were used
in this study. Deletions of these loci were reported by Tuzun et al.
(2005), and later studies confirmed these results, with improved
resolution of breakpoints (Redon et al., 2006; Korbel et al., 2007;
McCarroll et al., 2008; Conrad et al., 2010; The 1000 Genomes
Project, 2012). At the NEGR1 locus, the breakpoints reported by
The 1000 Genomes Project (2012) are nearly identical to those of
Conrad et al. (2010). At the LCE3 locus, very similar breakpoints
were reported by three studies (Korbel et al., 2007; Conrad et al.,
2010; The 1000 Genomes Project, 2012). At the IRGM locus,
McCarroll et al. (2008) reported breakpoints using microarray

1https://github.com/nh13/dwgsim

data, and validated the precision of the breakpoints using PCR
assays. Although the initial results from The 1000 Genomes
Project (2012) did not include the breakpoints of McCarroll et al.
(2008), the updated data sets from the 1000 Genomes Project
(6 November, 2014)2 confirmed the breakpoints of McCarroll
et al. (2008). Based on the agreement between these studies, here
the published results of The 1000 Genomes Project (2012) and the
results of McCarroll et al. (2008) were used to test the breakpoint
detection pipelines.

The breakpoints of the NEGR1, LCE3 and IRGM loci
are chr1:72,766,323-72,811,840, chr1:152,555,542-152,587,742
(The 1000 Genomes Project, 2012) and chr5:150,203,163-
150,223,264 (McCarroll et al., 2008), respectively. Using
the breakpoint information, Tabix (Li, 2011) was used
to download VCF files (Danecek et al., 2011) from
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/
integrated_call_sets/ and to extract sequence from the three loci
(January 7, 2015). There were 1092 samples included in these
VCF files. Within these 1 Mb regions, there were other deletions
(≥1000 bp, minor allele frequencies > 0.0025) which had
been reported by the 1000 Genomes Project. We also obtained
breakpoints of these deletions and used them to compare all
pipelines. The breakpoints associated with these deletions are
presented in Supplementary Table S1.

On January 7, 2015, a list of the 2,535 latest samples of the 1000
Genomes Project was obtained from the link: ftp://ftp.1000gen
omes.ebi.ac.uk/vol1/ftp/data/. Four populations, CEU and YRI,
CHB and JPT, for which CN at the three loci has previously been
measured experimentally (Redon et al., 2006; McCarroll et al.,
2008; Conrad et al., 2010) were chosen to assess the performance
of SRBreak and other methods from the literature. There were
415 CEU and YRI, CHB and JPT samples. A 1 Mb region
around the three loci was extracted: chr1:72,200,001-73,200,000,
chr1:152,000,001-153,000,000, and chr5:149,500,000-150,500,000
for the NEGR1, LCE3 and the IRGM loci, respectively. Samtools
(Li et al., 2009) was used to generate BAM files (Li et al., 2009) for
the 415 samples around the two 1 Mb regions.

SRBreak Pipeline
An overview of the SRBreak (“Split-read and Read-depth based
Breakpoints”) analysis pipeline is presented in Figure 1. The
following description provides a brief overview of the SRBreak
methodology, as applied to the data sets analyzed here. Duplicate
reads were removed from the BAM files using Samtools (Li
et al., 2009) and read counts were generated in non-overlapping
windows across the 1 Mb regions of interest. These reads were
then corrected for GC bias and mappability bias using the method
of Yoon et al. (2009). For each sample, read counts in each
window were divided by the median read counts across windows
to transform all samples to the same standardized scale. These
transformed read counts were then decreased by 1, so that a value
of zero would correspond to a diploid region. In the package,
there is an option in which users can manually standardize
across windows and then standardize across samples as in our
previous work (Nguyen et al., 2013) and use these values as

2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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FIGURE 1 | SRBreak: read-depth information is adjusted for GC-content and mappability biases. Adjusted read-depth information is used to obtain CNVRs
using thresholds; red horizontal lines (left panel). Pink rectangles describe a large CNVR including three different events. The first two samples depict a deletion event
with the same breakpoints in both samples; the third sample is a duplication event and the fourth sample is a deletion event. Next, for each CNVR, a normal mixture
model is used to cluster samples into different groups and read-depth based boundaries are inferred. After that, paired-end information (if it is available) is used to
refine the boundaries for each group. Finally, split-read information around these boundaries is used to infer breakpoints based on a kernel-based approach. For
each plot on the left panel, the x-axis describes genome coordinates while the y-axis depicts standardized read counts (RCs).

input into the pipeline. However, this option should only be used
if users know that the total sizes of duplications/deletions are
smaller than the total sizes of normal regions [if the total sizes
of duplications/deletions are larger than the total sizes of normal
regions, then duplications/deletions can appear to be “normal”
regions (i.e., CN= 2) after the standardization process].

Standardized read counts from all samples were segmented
into different groups having similar read-count information
using the CNVrd2 package (Nguyen et al., 2014). Segmentation
results were then used to identify sub-regions of constant
CN. Sub-regions, as described in Nguyen et al. (2014) and
in Figure 2, are non-overlapping regions which are inferred
from the segmentation results across the samples used in
one analysis. If the segmentation result for a sub-region was
larger/smaller than a threshold, then the sub-region was called
as a duplication/deletion. Therefore, for each sample, each sub-
region described one of three possibilities: duplication, deletion,
or no variation. To choose a suitable threshold for duplication
and deletion events, we tested different thresholds, with the goal
of obtaining a small threshold that was balanced between true
positive and false discovery rates (FDRs). In an ideal situation,
thresholds larger than 0.5 and smaller than −0.5 would be

suitable for calling the two events respectively. However, because
of the noise of read counts, reads from duplication regions could
be mapped to other regions, and reads from other regions could
be mapped to deletion regions. In addition, windows which flank
breakpoints could have standardized read counts higher/lower
than 0.5/−0.5 because they included a duplication/deletion and
a normal region. Therefore, it is likely that this approach would
miss regions of duplication or deletion if such high thresholds
were used. To avoid this, different thresholds (0.5, 0.35, 0.25, 0.2)
were tested to call a sub-region as a CNV region. Consecutive
duplication/deletion sub-regions were merged to form CNVRs.
All sub-regions were used in the merging process including
regions with very high standardized read-count signals. The
notation used in the pipeline is presented in Supplementary
Table S2A.

For each CNVR, the following steps were used:

Step 1: Identify Groups with Different CN Using
Read-Depth Information
At each CNVR, a M × N matrix of segmentation values was
obtained, where M was the number of samples and N was the
number of sub-regions. Detailed information of sub-regions are
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FIGURE 2 | Identifying breakpoints using read-depth information for a group. Three illustrative plots describe the segmentation results of three samples
around a CNVR. The two blue vertical lines are the two approximate boundaries of the CNVR. These two boundaries encompass nine sub-regions for the group with
10 positions [P1 to P10, Nbreaks = 10, xk (k = 1.10)] are the coordinates of these 10 points, each xk of each sample has a weight wk. For example, the top sample
has wk = 0 if k = 1, 3- > 8, 10 because there are no differences in segmentation results of two sub-regions around these breaks, and wk 6= 0 if k = 2, 9 because
there are differences in segmentation results of the two sub-regions at the second and ninth breaks). These sub-regions are non-overlapping regions which were
counted by extracting all segmentation results across all samples. To calculate kernel-based scores for positions, zero values (red color) were added at the
approximate boundaries. P2 and P9 would have the highest kernel-based scores and are the two breakpoints of the group. For each plot, the x-axis describes
genome coordinates while the y-axis depicts standardized read counts (RCs).

described in Figure 2. A multivariate normal mixture model
was used to cluster samples into different groups using the
package mclust (Fraley and Raftery, 2009). Different model types
in the package were tested for the clustering process, with
modelNames = EII (spherical, equal volume) found to be more
accurate than other models on simulated data (Supplementary
Table S2B). Therefore, this model was chosen to obtain groups
having similar segmentation results across the CNVR. The
Bayesian Information Criterion (Schwarz, 1978) was used to
choose the number of components for the normal mixture model.
The mclust package automatically tested nine different models
(component numbers were from 1 to 9) and chose the one having
the highest BIC value as defined by Fraley and Raftery (1998).

Step 2: Identify Common Breakpoints for Each Group
Using Read-Depth Information
For each group including Mg individuals, a Mg × N sub-
matrix was extracted from the larger M × N matrix (Step 1).
Breakpoints for the group were inferred from this sub-matrix.
The sub-matrix was extended by adding one sub-region to each
side of the CNVRs, and all segmentation results from all Mg
samples in the extended sub-region were set to zero. This was
based on the hypothesis that neighboring regions of the CNVR
would exhibit minimal variability in segmentation results. In
an ideal situation, we would see the same breakpoints of read-
depth methods across samples. A simple approach to obtain
breakpoints would be to aggregate breakpoint signals across

samples for each position, and then choose the two positions
(i.e., start and end of deletion or duplication) having the highest
signals. However, to generalize all situations in which breakpoints
of samples could scatter around common breakpoints because
of noise from the segmentation process, we used a strategy
to aggregate all information from the position of interest, and
other nearby positions, with closer positions given greater weight.
To achieve this, a kernel-based approach was used to obtain
breakpoints. A normal (Gaussian) kernel was used in this study
because it was simple and met this weighting principle. There
were multiple samples, therefore, at each position we aggregated
breakpoint information across samples. If the data were not noisy
then the simple approach described above could achieve similar
results as this kernel-based approach. The following formula
was used to calculate the score for each position between two
sub-regions (Figure 2).

scorePRj =
Mg∑
i=1

Nbreak∑
k=1

wR
k × f (xk) (1)

where f is a normal kernel,

f (xk) =
1

σR
√

2π
e
−

1
2

(
xk−µ

R
j

σR

)2

with µR
j representing the coordinate of the jth position, σR is

the standard deviation used in the kernel, wR
k is the weight
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of a position that was calculated as the absolute subtraction
of two segmentation results of two sub-regions nearby, Nbreak
is the number of boundary points of sub-regions, xk values
are coordinates boundary points (see detailed information in
Figure 2). σR

= a third of window size was used in this study
(window size/3).

Based on (1), the base positions corresponding to CNV
breakpoints would have higher scores than other positions. In
order to more precisely obtain the positions of the breakpoints,
resampling Nr times with replacement was performed for each
of the Mg samples, and the two positions having the highest
scores were recorded each time. The leftmost (i.e., 5′) of the two
positions was called the left breakpoint and the other was called
the right breakpoint. This resulted in Nr pairs of left and right
breakpoints after Nr repeats of the resampling process. The two
final breakpoints were generated by calculating the medians of
the left and right breakpoints. These were named MedLeft and
MedRight.

Step 3: Refine Predicted Breakpoints Using
Split-Read Information (Supplementary Figure S2)
If reads are aligned across breakpoints then some parts of them
cannot be mapped the first time (for some packages, they can be
remapped). These parts are denoted by the ‘S’ character in the
CIGAR strings of these reads. For each group, split-read positions
(NsplitP) from all samples in the group were pooled to begin
the process of refining breakpoint predictions. Scores for these
positions (scorePS) were calculated using the following formula,

scorePSj =
NsplitP∑
k=1

wS
k × f (xk). (2)

The weight wS
k in the equation is given by the number of reads

that were split at the kth position. xk values are the coordinates

of split-read positions. Based on (2), positions that had more
split reads, or positions whose neighbors had more split reads,
would have higher scores than others. Finally, left and right
breakpoints were the positions having the highest score in the
region MedLeft/MedRight ± εOpen respectively. In this study
εOpen = window size.

As can be seen in Figure 3 and Supplementary Table S3,
the CIGAR strings of left and right breakpoints relating to a
deleted event are different. Therefore, for deletions, wk values of
left (right) breakpoints were based on CIGAR strings of the Left
(Right) CN Group as described in Supplementary Table S3.

For each sample, the final result included: CN status
(duplication, deletion, or no variation) and predicted break-
points.

Other Packages
Four other packages which use split-read information to infer
breakpoints were also used in this study. Pindel (Ye et al.,
2009), DELLY (Rausch et al., 2012), SoftSearch (Hart et al.,
2013), and MATCHCLIP (Wu et al., 2013). Pindel uses paired-
end information as its main approach. It first identifies paired
reads for which only one end is mapped and then it breaks
unmapped ends into small parts. Next, these small parts are
remapped to the reference genome to infer SV events using the
information from the mapped ends. DELLY also uses paired-
end information to obtain putative boundaries of SVs, and then
infers breakpoints by aligning unmapped or partially mapped
reads around the SVs to the reference genome. In contrast,
both SoftSearch and MATCHCLIP do not use the realignment
step, they use split-read information directly from BAM files to
infer breakpoints (Hart et al., 2013; Wu et al., 2013). SoftSearch
and MATCHCLIP are single-sample based tools (one sample
in each analysis) while Pindel and DELLY can use single or
multiple samples. These tools have been shown to be effective

FIGURE 3 | Identifying breakpoints using split-read information. In the reference genome (bottom), there is one copy of each of Region 1 and Region 2.
However, in the sequenced genome (top), Region 1 is deleted and Region 2 is duplicated. For deletions, CIGAR strings of left breakpoints have a string of bases
containing the S character on the right while those of right breakpoints have a string of S characters on the left (Supplementary Table S3). The S characters are
represented by gray.
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on real and simulated data sets. Pindel was one of the first
tools using a split-read approach to detect different ranges of
deletion events (up to 10 kb) with single base resolution (Ye
et al., 2009). It is effective on both simulated and real data
sets (Ye et al., 2009), and has been used in The 1000 Genomes
Project (2010, 2012). DELLY showed better performance than
other tools (including Pindel) on simulated data sets, and when
applied to the 1000 Genomes Project data DELLY was able to
recover 76% of SVs that were detected when 19 bioinformatics
tools used by the 1000 Genomes Project were combined (Rausch
et al., 2012). The SoftSearch methodology was included in a
comparison with other methods applied to simulated data sets,
and was found to report more exact breakpoints than other
tools (Hart et al., 2013). On a non-simulated high-coverage
(2,000x) data set, this package was also able to identify a
71 bp tandem duplication at the BRCA2 locus while two
other tools did not report this variant (Hart et al., 2013). The
MATCHCLIP software was found to provide a similar level of
performance when compared to four other tools, which also
include the split-read approach; CREST (Wang et al., 2011),
PRISM (Jiang et al., 2012), PINDEL and DELLY, in simulation
studies, despite the fact it is a purely split-read based method
(Wu et al., 2013). We also included CNVnator (Abyzov et al.,
2011), a CNV detection tool based solely on read-depth, in our
comparisons.

In the analyses presented here, MATCHCLIP (matchclips1)
was run with default parameters. For Pindel (version 0.2.4t), the
parameter M was set to 1 (-M 1) and for SoftSearch (version
2.4), the two parameters r and m were also set to 1 (-r 1 -
m 1) in order for the packages to call events which have ≥ 1
supporting reads. DELLY (version 0.5.9) was run with default
parameters. These parameters were set in order for these packages
to be able to obtain all information of very low-coverage samples.
MATCHCLIP and SoftSearch were run for single samples while
Pindel and DELLY were run for all pooled samples. CNVnator
(version 0.3.2) was run with default parameters.

Performance Assessment
To determine the performance of each method, the following
measurements were used: true positive rate (TPR), FDR, and
concordance rate (CR). These are defined as:

TPR = (Number of true predicted breakpoints)/(all
breakpoints)

FDR = (Falsely predicted breakpoints)/(all predicted
breakpoints)

CR = Number of SVs called by a pipeline/Number of
true SVs

“True” breakpoints of SVs were defined as those that were
previously detected by McCarroll et al. (2008) and The 1000
Genomes Project (2012).

As reported by previous studies (Conrad et al., 2010; Ottaviani
et al., 2014) and Abyzov et al. (2015), sequence micro-insertions
can occur at deletion breakpoints. These can range from 1 to
96 bp and the majority of the lengths of these sequences are
less than 10 bp (Abyzov et al., 2015). Based on this, a predicted

breakpoint was considered to be a “true predicted breakpoint” if:

|predicted breakpoint – actual breakpoint| ≤ 10 bp

Based on the results of the breakpoint detection, a sample was
considered to be a “true predicted sample” if:

1. It had normal CN and it was predicted to have normal CN.
2. It was duplicated/deleted and it was predicted to be

a duplicated/deleted sample with two correct predicted
breakpoints.

To demonstrate the characteristics of SRBreak, the pipeline
was first applied to all 120 simulated samples with different
read-depth based window sizes, after which a window size was
chosen. Resampling, without replacement, was then performed
250 times for different sample sizes (100, 50, 25, 10, 5) and the
pipeline was run on these re-sampled sample sets with the most
reliable window size chosen from the results of 120 samples.
TPR and FDR were calculated for all analyses. In addition,
the first, second and third quantiles of the three measurements
across 250 resampled data sets were calculated for each of the
simulations.

For the real data sets, we compared the results from this study
with those of The 1000 Genomes Project (2012) and (for IRGM)
McCarroll et al. (2008). A SV which was called by tools used in
this work was considered as identical to that of McCarroll et al.
(2008) or The 1000 Genomes Project (2012) if its breakpoints
were within 10 bp of the two previous results.

To better understand the influence of mapping qualities
on the performance of SRBreak on real data sets, we also
tested SRBreak with mapping-quality information. We then
removed reads having mapping qualities lower than a threshold.
GC-corrected read counts were adjusted for mappability bias
using the same method as the GC-correction step. After that,
SRBreak was used to detect breakpoints for the three loci
NEGR1, LCE3 and IRGM. This work was carried out three
times for three different mapping-quality thresholds: 1, 10,
and 20.

RESULTS

The SRBreak, Pindel, DELLY, SoftSearch, and MATCHCLIP
pipelines were used to analyze the simulated data sets.
Performance statistics were then calculated to assess the ability
of each approach to detect the simulated breakpoints. To
calculate TPRs and FDRs, we focused on results flanking the
simulated CNVR. The simulated CNVR was chr1:101,545,220-
101,630,000 (Table 1), therefore, the results are reported on the
region (101,545,220 – 5,000, 101,630,000 + 5,000). To choose a
suitable window based on read depth for the analysis, different
windows were used on simulated data sets of 120 samples.
Supplementary Table S4 shows distances between predicted
breakpoints and real breakpoints for all pipelines on 120 samples.
To assess the ability of SRBreak on a whole chromosome, five
samples with 20 deletions on the whole of chromosome 21 were
simulated.
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Performance of SRBreak on 1 Mb
Simulation
Different windows and different thresholds, along with different
models in the mclust package for the clustering process were
tested. The EII model (spherical, equal volume) achieved greater
accuracy than other models; therefore it was used in this
study (Supplementary Table S2B). We aimed to obtain a small
threshold which could call all CNVRs as well as balancing
between TPRs and FDRs. The threshold >0.25 for duplications
and < −0.25 for deletions satisfied this criterion (Table 2),
therefore we used these thresholds in the current study. In
addition, we also used a threshold σ equal to a third of the
window size in this study because it was found to be more reliable
across windows compared with other thresholds and the simple
approach that did not use the kernel-based method approach
(Supplementary Table S2C).

Paired-End Reads
High TPRs, ≥0.96, were seen for window sizes of 500 and 250 bp
(Table 2). TPRs steadily decreased when windows were smaller
(e.g., 100 and 50 bp), and these measurements were also lower
(0.84) for larger windows (1000 bp). FDRs for window sizes of
500, 250, and 100 (≤0.01) were lower than those of window sizes
of 50 and 1000 ≥ 0.03.

Single-End Reads
Similar to paired-end based results, high TPRs (≥0.97) were seen
for window sizes of 500 and 250 bp (Table 2). TPRs steadily
decreased when windows were smaller (e.g., 100 and 50 bp), and
these measurements were also lower (0.86) when window sizes of
1000 bp were used. Interestingly, FDRs were zero for almost all
window sizes.

Manual inspection of the SRBreak output revealed that inexact
results were observed for window sizes of 1000 bp for both
single and paired-end reads (chr1:101,561,000-101562000), with
SRBreak not reporting breakpoints for very low coverage samples
(1–2x) for this CN event. The best results were seen for window
sizes of 500 bp (Supplementary Table S5). Based on these results,
a window size of 500 bp was used for all of the subsequent
analyses.

For a window size of 1000 bp, the TPR of single-end
results was slightly higher than that of paired-end results. One
possibility for this result was that background noise from the
read-depth signals could slightly affect read counts for each
window, thus impacting the results of the segmentation and
clustering processes inside SRBreak. To test this, we ran paired-
end data with 200 different starting positions from 101,100,001
to 101,100,996, and calculated three percentiles (25, 50, and 75%)
of TPRs. These values were 0.83, 0.85, and 0.87, respectively,
indicating that the results can be affected by read-count noise.

Impact of Sample Size and Coverage on
SRBreak Performance
Results in the previous section were based on a relatively large
sample size (120). A resampling process was carried out to allow
performance to be calculated across a range of sample sizes.
Thresholds and other steps were the same as those implemented
in the original analysis of the 120 simulated samples. For each
sample size, we randomly sampled 250 times from the 120
samples.

SRBreak had good performance for large sample sizes, but
exhibited low performance when sample size was low. The TPR
medians were ≥0.96 with sample sizes ≥50 (Figure 4; Table 3),
but these numbers dropped to 0.89 for sample sizes of 10. Median
FDRs were low for all sample sizes of≥50 (≤0.2). For sample sizes
of ≤50, even though all FDR medians were below 0.2, there were
multiple occasions when this measurement was higher than 0.2,
especially for a sample size of five (Figure 4).

Comparison with Other Packages
We compared SRBreak with five other packages: Pindel, DELLY,
SoftSearch, MATCHCLIP, and CNVnator.

Simulated Data
The 1 Mb region (paired-end data only)
Firstly, we compared all packages for all 120 simulated paired-
end samples (Table 4). TPR and FDR for SRBreak were 0.98
and 0 respectively. Of the other packages, Pindel had the best
performance, with 0.88 and 0 for TPR and FDR respectively.
The TPR of DELLY was also high (0.78) and its FDR was 0.00.

TABLE 2 | Results of SRBreak on simulated data sets, using different window sizes and different thresholds to call CNVRs.

Threshold Window = 50 Window = 100 Window = 250 Window = 500 Window = 1000

TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

Paired end

0.50 0.71 0.10 0.94 0.02 0.96 0.01 0.98 0.00 0.82 0.04

0.35 0.80 0.11 0.91 0.04 0.96 0.01 0.98 0.00 0.82 0.06

0.25 0.80 0.11 0.94 0.01 0.96 0.01 0.98 0.00 0.82 0.06

0.20 0.80 0.12 0.94 0.01 0.96 0.01 0.97 0.01 0.81 0.07

Single end

0.50 0.58 0.10 0.94 0.02 0.97 0.00 0.97 0.00 0.86 0.00

0.35 0.58 0.10 0.95 0.01 0.97 0.00 0.97 0.00 0.86 0.00

0.25 0.58 0.10 0.87 0.01 0.97 0.00 0.97 0.00 0.86 0.00

0.20 0.58 0.10 0.85 0.00 0.97 0.00 0.97 0.00 0.86 0.00
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FIGURE 4 | The performance of SRBreak on simulated data for different sample sizes. For each sample size, 250 resampling processes were executed.

TABLE 3 | The performance of SRBreak on simulated data sets of different sample sizes.

TPR FDR

Paired-end read

Sample size 25.00% 50.00% 75.00% 25.00% 50.00% 75.00%

5 0.75 0.88 1.00 0.00 0.17 0.30

10 0.81 0.89 0.95 0.05 0.11 0.19

20 0.89 0.94 0.97 0.03 0.06 0.10

50 0.94 0.96 0.98 0.01 0.02 0.05

100 0.97 0.98 0.98 0.00 0.01 0.01

Single-end read

Sample size 25.00% 50.00% 75.00% 25.00% 50.00% 75.00%

5 0.80 0.90 1.00 0.00 0.00 0.20

10 0.87 0.94 1.00 0.00 0.05 0.06

20 0.94 0.96 1.00 0.00 0.00 0.03

50 0.95 0.98 0.98 0.00 0.00 0.00

100 0.97 0.97 0.98 0.00 0.00 0.00

Three percentiles (25, 50, 75%) of TPRs and FDRs were calculated from resampled data sets for each sample size. As an example, with paired-end data, for a sample
size of 5, the 25, 50, and 75th percentiles of TPRs from 250 resamplings (i.e., randomly taking five samples to analyze from the 120 simulated samples) were 0.75, 0.90,
and 1.00, respectively.

Similarly, MATCHCLIP’s FDR was also zero, but its TPR (0.69)
was lower than those of Pindel and DELLY. SoftSearch and
CNVnator had the lowest performance, with 0.32, 0.12 and 0.61,
0.47 for TPRs and FDRs respectively.

We also tested the methods on different read depths. The 120
samples were divided into three classes with 40 samples for each
class (I) 1 to 5x, (II) 6 to 10x, and (III) 11 to 15x. As expected,
TPRs increased and FDRs decreased from I to III (Table 4). For
read depth between 11 and 15x, TPRs of five packages SRBreak,
Pindel, DELLY, MATCHCLIP, and Softsearch were very high
(≥0.86); the first four packages had low FDRs (≤0.08) while

Softsearch’s FDR was very high (0.58). For class II, while TPRs
of SRBreak, Pindel, and DELLY were still high (≥0.86), TPRs of
MATCHCLIP and Softsearch went down to ≤0.77. For class I,
only SRBreak and DELLY had relatively high TPRs (0.77 and 0.63
respectively), other packages had TPRs less than 0.5. CNVnator
which is solely based on read counts had TPRs ≤ 0.13 and FDRs
of approximately 0.5 for all classes.

Chromosome 21 simulation
We also tested SRBreak and other packages on five samples of
low-coverage simulation data using the entirety of chromosome
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TABLE 4 | Results of different pipelines on 120 samples of simulation data on 1 Mb region.

All 120 samples Class I: 1–5x Class II: 6–10x Class III: 11–15x

TPR FDR TPR FDR TPR FDR TPR FDR

SRBreak 0.98 0.00 0.77 0.16 1.00 0.00 1.00 0.00

Pindel 0.88 0.00 0.31 0.00 0.89 0.15 0.97 0.08

DeLLY 0.78 0.00 0.63 0.00 0.86 0.00 0.86 0.00

Softsearch 0.32 0.61 0.19 0.78 0.59 0.66 0.91 0.58

MATCHCLIP 0.69 0.00 0.29 0.00 0.77 0.00 1.00 0.00

CNVnator 0.12 0.47 0.11 0.50 0.13 0.50 0.13 0.50

These 120 are also divided into three classes: I, II, III for coverage 1–5, 6–10, and 11–15x respectively.

21. In addition, run time was also tested. SRBreak had the
highest TRP (0.92) followed by Delly (0.86) and Pindel (0.84).
Both SoftSearch and MATCHCLIP had TPRs ≤ 0.2, and also
had very high FDRs (0.88 and 0.58 respectively). SRBreak had
FDR ∼0.1 while zero FDRs were observed for both Pindel and
Delly. CNVnator’s TPR and FDR were 0.01 and 0.99 respectively
(Table 5). Of all these packages, MATCHCLIP had the lowest
run time (less than 1 min), followed by Softsearch, SRBreak,
CNVnator (all less than 3 min). DELLY and Pindel had longer
run times (>3 min and >3 h respectively); this was likely
because these methods had to re-align reads to obtain accurate
breakpoints.

Real Data
SRBreak, Pindel, DELLY, MATCHCLIP, and SoftSearch were
used to detect the SVs initially identified by McCarroll et al.
(2008) and The 1000 Genomes Project (2012) at loci whose
CNVs have been associated with increased risks of complex
diseases, as described in Supplementary Table S1. For SRBreak,
the “countThreshold” parameter was set to equal 0.1× sampleSize
(i.e., 10% of the number of samples) in order for the package
to be able to call events occurring with at least 10% prevalence
in the population. A window size of 500 bp was used, and all
other parameters remained the same as those used in simulated
data sets. All tools were used to analyze 415 samples from
four populations downloaded from the 1000 Genomes Project.
These 415 samples overlapped with 354 samples analyzed by
The 1000 Genomes Project (2012) and 270 samples analyzed by
McCarroll et al. (2008), as shown in Supplementary Table S1.
The CR was used to compare the five pipelines with previous
results.

NEGR1 region
Results from The 1000 Genomes Project (2012) were used for
this locus. All pipelines were able to detect the two SVs at this
locus in at least some of the samples (Table 6). The highest
proportion was seen for Pindel (0.93), followed by SRBreak (0.92)
and DELLY (0.90). SoftSearch had the lowest proportion (0.10)
while MATCHCLIP reported 47% of breakpoints analyzed by
The 1000 Genomes Project (2012).

IRGM region
The results from both McCarroll et al. (2008) and The 1000
Genomes Project (2012) were used for the IRGM locus. All

pipelines were able to report the two SVs in this region
(Table 6). Similar to the NEGR1 locus, SRBreak, Pindel
and DELLY showed high concordances with previous results
reported at this locus. SRBreak had the highest proportion
(0.82), followed by Pindel (0.78) and DELLY (0.68). Detection
rates of less than 0.2 were seen for both SoftSearch and
MATCHCLIP.

LCE3 region
Results from The 1000 Genomes Project (2012) were used
for this locus. The SV chr1:152,760,345-152,770,828 (see
Methods and Data; outside the LCE3 locus of interest but
within the surrounding megabase of DNA sequence) was
not reported by any of the tools, therefore it was removed
from the calculations. SRBreak was able to report all deletion
results from The 1000 Genomes Project (2012) while both
Pindel and DELLY reported over 83% of these deletion
results. SoftSearch had low concordance for this locus (0.19)
while MATCHCLIP did not report any deletions around the
radius of 10 bp from breakpoints of the 1000 Genomes
(Table 6).

Performance of SRBreak with mappability information on
real data
We tested SRBreak with different thresholds of mapping
qualities and corrected read counts with a mappability
file. For two loci, LCE3 and IRGM, the concordances at
QUAL = 1 and QUAL = 10 were similar to concordances
observed when running SRBreak without filtering low-
quality reads (Table 6; Supplementary Table S6). However,
for the NEGR1 locus, these concordances were lower than
those with no filtering performed (Table 6; Supplementary
Table S6).

DISCUSSION

Here, an integrated framework to identify breakpoints relating to
duplication and deletion events at simple loci has been developed.
The pipeline (SRBreak) is based on the combination of read-
depth and split-read approaches, with paired-end information
able to be used if available. One of the advantages of the
pipeline is that it can pinpoint breakpoints for very low-
coverage samples if there is sufficient split-read information
from samples in the CN group. For example, if a CN group
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TABLE 5 | Results of different pipelines on five low-coverage simulated
samples (1–5x) for whole chromosome 21.

Whole chromosome 21

TPR FDR Time

SRBreak 0.92 0.10 1 m 35 s

Pindel 0.84 0.00 >3 h

DELLY 0.86 0.00 3 m 32 s

SoftSearch 0.20 0.88 1 m 27 s

MATCHCLIP 0.20 0.58 0 m 53 s

CNVnator 0.01 0.99 2 m 15 s

TABLE 6 | The performance of the five analysis methods on three loci.

NEGR1 LCE3 IRGM

SRBreak 0.92 (344/374) 1.00 (271/271) 0.82 (196/240)

Pindel 0.93 (348/374) 0.85 (231/271) 0.78 (187/240)

DELLY 0.90 (337/374) 0.83 (224/271) 0.68 (163/240)

SoftSearch 0.10 (37/374) 0.1 (27/271) 0.19 (46/240)

MATCHCLIP 0.47 (174/374) 0 (0/271) 0.04 (9/240)

The table describes the concordance rates between pipelines and results analyzed
by McCarroll et al. (2008) and The 1000 Genomes Project (2012). For example, for
the two structural variants at the NEGR1 locus, SRBreak detected 344 of the 374
deletions detected by The 1000 Genomes Project (Supplementary Table S1).

of multiple samples only has reliable split-read information
from one sample, then this group’s CN breakpoints can still
be inferred using the split-read information from this one
sample. The work presented here also showed very high
performance for SRBreak on single-end reads, which gives
it an advantage over the other four breakpoint detection
methods that were investigated, as they only utilize paired-
end data. These results show that SRBreak can be successfully
used in studies in which both single and paired reads
are produced from multiple low-coverage samples or a few
high-coverage samples. This approach provides a substantial
improvement over our previous methodology, the read-depth
based CNVrd2 (Nguyen et al., 2014), through the inclusion
of split-read information and the borrowing of read-depth
and split-read information across samples to obtain precise
breakpoints of a CNVR. As demonstrated here via the CNVnator
results, methods which utilize multiple approaches for CNV
detection tend to outperform the more simple read-depth
based approaches, particularly in regions involving complex CN
patterns.

SRBreak was applied to simulated and real data with sample
sizes ≥ 120, and compared to five other packages: Pindel (Ye
et al., 2009), DELLY (Rausch et al., 2012), MATCHCLIP (Wu
et al., 2013) and SoftSearch (Hart et al., 2013), which also
use a split-read signature to infer breakpoints; and a read-
depth package, CNVnator (Abyzov et al., 2011). SRBreak’s
TPRs were comparable with other methods, and its FDR
was lower than both MATCHCLIP and SoftSearch. We also
tested SRBreak and other packages for whole chromosome
21 on five simulated low-coverage samples (1–5x). Similar
results were also observed for the six packages (Table 5).
Generally SRBreak performed as well as Pindel and DELLY,

and all three approaches were clearly superior to Softsearch and
MATCHCLIP at the tested loci. SRBreak should be a useful
tool to apply to single or small numbers of relatively simple
loci and in this context is a good alternative to the multi-
tool (n = 19) approach used by The 1000 Genomes Project
(2012).

SRBreak uses read-depth information as the primary
strategy to detect duplication/deletion events. Therefore, it still
suffers biases inherent to read-depth-based pipelines, such as
mappability or GC-content. As can be seen in Tables 4 and
5, even though SRBreak has very high TPRs on simulated
data, its FDR was not zero as were the FDR of two paired-end
tools DELLY and Pindel. Another weakness of read-depth
methods is that their results are affected by window size.
Predicted breakpoints can be a window-size distant from real
breakpoints. As can be seen in Tables 4 and 5, CNVnator,
which is purely based on read depth, compares poorly with
other methods in predicting breakpoints. In our work, large
windows were used in order to obtain reliable results for
single-end and low-coverage samples. This can result in
missing small CNVRs. This situation can even happen for
large SVs if window sizes are higher or equal to the sizes
of the SVs. For example, in simulated data (Table 2), when
the window size is increased to 1000 bp, SRBreak was not
able to call the 1000-bp SV for some low-coverage samples.
Therefore, in high-coverage work, an adjustment for window
sizes should be used to obtain small CNVRs. As discussed by
Alkan et al. (2011), read-depth approaches usually result in
low-resolution breakpoints. However, integrating split-read
information as done in SRBreak can help to alleviate this
issue.

From this work, we have demonstrated that the use
of multiple samples (SRBreak, DELLY, Pindel) can help in
obtaining more reliable structural-variant results, and the
strategy of using group information to impute breakpoints
of other samples may lead to better results (SRBreak). One
of the key features of SRBreak is the use of a threshold to
identify CNV regions (countThreshold in the SRBreak package),
although setting this threshold is not straightforward – if
this value is set too high then some rare regions will be
missed, and if it is too low then SRBreak can report non-
exact breakpoints because of insufficient split-read information
or read-depth information noise. Based on the fact that
SRBreak was designed for common CN events, we suggest
that this value should be set high (as we did in real
data sets analyzed in this study) to obtain more exact
breakpoints.

A kernel-based approach was used by SRBreak to obtain
precise breakpoints (Step 2 and Step 3 in see Methods and Data).
In this approach, σ values play a central role. For the read-
depth-based approach, one-third of the window size was used in
this study to capture noisy signals which occur over a distance
equal to the width of a single window. For the split-read based
approach, as can be seen in Supplementary Table S3, split-read
positions can occur at or near real breakpoints. It is challenging
to understand the distribution of split-read information because
it can be influenced by other small variants such as SNPs
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or INDELs in neighboring regions (e.g., small indels in some
samples at the boundaries of a large SV can result in split-read
positions around these indels). Moreover, micro-homologies at
breakpoints (Conrad et al., 2010; Ottaviani et al., 2014; Abyzov
et al., 2015) or CNVRs on segmental duplications (Arlt et al.,
2012) can make the dispersal of split-read positions wider. We
used σS = 0.5 to capture only split-read information around
the position being calculated, and to avoid capturing other noisy
signal far away from the position. However, this small σS might
result in losing split-read information in more complex regions.

Read-depth and split-read information were combined
to infer breakpoints at specific CNVRs. As discussed by
previous studies (Teo et al., 2012; Sims et al., 2014), read
counts can be influenced by GC-content, mappability, and
other factors. These issues can then lead to non-reliable
outputs from the segmentation and clustering processes. As
a result, non-exact breakpoints can be reported, especially
in complex regions. Determining how best to remove
these biases remains a challenge. In our work, all available
reads were utilized by SRBreak to maximize the amount
of information being used, and high concordance with
previous studies was observed. However, SRBreak also has
an option to correct mappability bias if low-quality reads are
removed.

In summary, we have proposed a new CNV detection
methodology, and compared our work with five other packages
using simulated data for a 1 Mb region and for the whole
of chromosome 21, along with real data from three known
CNV loci. Our package showed higher performance than other
packages, especially compared to a purely read-depth package.
Even though we simulated different combinations of deletions
and duplications within the 1 Mb region for 120 samples, and
deletions for five low-coverage samples, the results presented
here only pertain to these data sets. SRBreak (and the other
methods tested) may show different performance on other data
sets; however, we believe that integrating split-read information
into a read-depth approach can result in more reliable analysis of
CNVRs.

The package is available online at https://github.com/hoangtn/
SRBreak. Even though the package can be used to analyze for a
single sample, we suggest that people should use multiple samples
(at least 5) as in our current study.
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The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2016.00160

FIGURE S1 | Different events in the simulated data sets. For example, the
top left picture shows a small deletion event (1000 bp) while the bottom
left picture shows a large duplication event (50,000 bp). See also
Supplementary Table S1.

FIGURE S2 | An example describing the use of split-read information to
obtain more reliable breakpoints for four samples in the same group at
the NEGR1 locus. The x axis depicts genome coordinates while the y axis shows
the occurrences of split-read positions. Red vertical lines are breakpoint positions
reported by The 1000 Genomes Project (2012).

TABLE S1 | Breakpoints of deletion regions (allele frequencies > 0.0025,
lengths > 500) reported by McCarroll et al. (2008) (∗∗) and The 1000
Genomes Project (2012) (∗) on 1 Mb regions around the three loci IRGM,
NEGR1, LCE3. There were 1092 samples analyzed by The 1000 Genomes
Project (2012), and 270 analyzed by McCarroll et al. (2008). In this study, the 415
most recent samples from four populations: CEU, YRI, CHB, and JPT were
downloaded and analyzed using five different CN detection pipelines. The sample
sizes presented in the table are the overlapping sample sizes between the 415 and
the 1092 from The 1000 Genomes Project (2012) or between the 415 and the 270
of McCarroll et al. (2008). The structural variant chr1:152,760,345-152,770,828 at
the LCE3 locus was removed from this study because it was not reported by any
of the pipelines used, or in the recent analysis of the same 1092 samples by
Abyzov et al. (2015). The results of McCarroll et al. (2008) were only used for one
event (chr5:150203163-150223264) at the IRGM locus.

TABLE S2 | (A) Notation used in the SRBreak analysis pipeline. (B) The
performance of different models for different window sizes (W). Names of the
models are from the mclust package. If the clustering process could not be
executed for the model then the corresponding cell is empty. (C) Results for
simulated data using different σ and a simple approach to obtain breakpoints for
the read-depth based step in SRBreak on 1 Mb region (120 samples). σ values
range from 1/10 to 2 times of the window size (W/10 to W∗2).

TABLE S3 | Illustrative CIGAR strings in BED files around two breakpoints,
101,545,220 and 101,630,000, in the simulated data. For example, the CIGAR
string 76M24S in the first row describes a mapped read whose length is 100 bp:
24 bp was not mapped (24S) and 76 bp was mapped (76 M). The start position of
the mapped part was 101,545,143. Split positions can be seen around the two
breakpoints, therefore, a kernel-based approach can be used to obtain all
split-read information. For deleted events, only split positions of the Left Group are
used to infer left breakpoints and only split positions of the Right Group are used
to infer right breakpoints. For duplicated events, all split positions of the Left and
Right Groups are used for both left and right breakpoints.

TABLE S4 | The distances between real breakpoints and predicted
breakpoints on 120 simulated samples. For SRBreak, this information is for
both single-end and paired-end samples. For other pipelines, only paired-end
information was described. The results are events overlapping with simulated
structural variants.

TABLE S5 | The results of the 1000 bp event called by SRBreak for 15
duplicated samples. The best results were seen for window sizes of 500 bp: the
package called exactly 13/15 duplication samples [failed to called samples of low
(1–2x) coverage].

TABLE S6 | Concordant results between SRBreak and McCarroll et al.
(2008) and The 1000 Genomes Project (2012) for three loci NEGR1, LCE3,
and IRGM with different mapping qualities (QUAL). These results were
obtained by running SRBreak with a mappability file and removing reads having
QUALs lower than 1, 10, or 20 as described in columns.
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