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The time-scale hierarchies of a very general class of models in differential equations

is analyzed. Classical methods for model reduction and time-scale analysis have been

adapted to this formalism and a complementarymethod is proposed. A unified theoretical

treatment shows how the structure of the system can be much better understood by

inspection of two sets of singular values: one related to the stoichiometric structure

of the system and another to its kinetics. The methods are exemplified first through a

toy model, then a large synthetic network and finally with numeric simulations of three

classical benchmark models of real biological systems.
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1. INTRODUCTION

Biochemical systems are amenable to be modeled using differential equations but, due to the great
diversity of mechanisms involved, the resulting models lack a defined structure. There is seldom a
common set of properties that might simplify their analysis or enable the development of general
tools. Models with a well defined structure enable a great level of abstraction and generality. Control
engineering using linear systems is a case in point, where chemical plants, steam engines, and
electric systems can all be treated within the same framework. In opposition to that, the analysis
of ad-hoc biological models is often restricted to the numerical integration of a few scenarios.

The difficulties to analyze biological systems start with identification of which components
to include in—or exclude from—the model, since the cellular milieu contains many, highly
interconnected components. In addition to that, the intervening processes often progress at
different time-scales, the resulting models tend to be stiff and difficult to analyze. But multiple time-
scales also offers an opportunity for a deeper analysis (Hek, 2010). Many properties of biochemical
systems are tied to the time hierarchy of the system. For instance, a regulatory mechanism must
be as fast or faster that the process it is supposed to stabilize while some types of oscillations come
from the interaction between a fast and a slow subsystem. An analysis of the first case need only take
into account the subsystem that corresponds to the right time-scale, while the second case would
better be analyzed by focusing on interactions between a fast and a slow subsystem. Furthermore,
separating time scales reduces the stiffness of the system, and the computing power needed for
numerical integration of the models.

A wide variety of time scale separation methods is available (Gerdtzen et al., 2004;
Jamshidi and Palsson, 2008) but no single all-round solution has been found due to
the difficulties associated to the diversity of biological models and their non-linearity.
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Many model reduction methods are based in rewriting the
model—e.g., through non-dimensionalization—in a form in
which the different time-scales are shown explicitly

ẋ = ε f (x, y, t), x(0) = x0

ẏ = g(x, y, t), y(0) = y0 (1)

since the derivative of x is multiplied by the small perturbation
parameter ǫ , it will have slower dynamics than y. This is a regular
perturbation problem for which an approximate solution can be
obtained by writing the equations when ǫ → 0. The solution of:

ẋ = 0, x(0) = x0

ẏ = g(x, y, t), y(0) = y0 (2)

describes the fast dynamics of the system for intervals of time
small enough that the change in x is negligible. The solution to
this simplified problem is called inner solution and it is generally
valid for the thin time slice t = O(ε). In order to obtain the
slow dynamics, a reparametrization τ = ε t can be performed
to obtain:

dx

dτ
= f (x, y, τ ), x(0) = x0

ε
dy

dτ
= g(x, y, τ ), y(0) = y0 (3)

Which is a singular perturbation problem, since the order of the
equations changes when ǫ → 0, yielding.

dx

dτ
= f (x, y, τ ), x(0) = x0

0 = g(x, y, τ ) (4)

Since the original differential equation for y becomes an algebraic
equation, its initial condition y(0) = y0 can no longer be
satisfied. However, provided that the eliminated equation for ẏ
had a hyperbolic solution (one lacking a central manifold), this
approximation will be valid for t ≫ ε and it is also known as the
outer solution.

These kinds of problem fall within the category known as
boundary layer problems, alluding to the transition between
the inner and the outer solution. Obtaining a uniformly valid
solution for all times, requires the matching of the inner and
outer solution, however, when one is interested in the behavior of
the system well within the area of validity of each solution, as is
the case in biology, the inner and outer solutions are informative
enough.

The appearance of algebraic equations introduces difficulties
of its own. When the solution of Equation (2) can be written
explicitly, y = φ(x, t), then algebraic constants can be eliminated
by back-substitution in the o.d.e.s:

ẋ = f (x, φ(x, t), t), x(0) = x0 (5)

Finding this solution and substituting it as well as the non-
dimensionalization step itself are no easily accomplished for big
non-linear systems. The wide variety of possible structures for the
equations is a challenge for any attempt to do this systematically.

2. MATERIALS AND METHODS

2.1. Modal Analysis
The advantage of dealing with a system that has a regular,
convenient structure is made evident by analyzing time scales in
the linear case. It has been shown (Palsson et al., 1987; Jamshidi
and Palsson, 2008) that linearizing around a certain steady state
and decomposing the Jacobian matrix of the system, allows to
define aggregate variables or modes:

J = M−1 3M (6)

where 3 is a diagonal matrix with the eigenvalues of J. Some
eigenvalues/eigenvectors may be imaginary conjugates, in that
case, a similar decomposition may be used where 3 will be a
Jordan canonical form. In any case, new variables can be defined:

m = Mx (7)

and the linearized differential equation would be:

ṁ = 3m (8)

Since 3 is diagonal, each modemi will vary independently of the
rest in the linearized system, except for modes corresponding to
conjugate pairs of eigenvalues, which will remain bound together.
Modes enable to find combinations of variables with different
timescales even for cases when the time scales of all the variables
are similar. Modes work ideally with linear systems since the
modes themselves are linear combinations of the variables. Back-
substituting linear expressions in a linear system does not alter
its structure, because of the telescopic property. For a non-linear
system, however, the Jacobian matrix changes in every point so
the modes will only be uncoupled at the point where the system
is linearized. furthermore, non-linear systems do not normally
comply with the above mentioned telescopic property, which
results in differential-algebraic systems.

In subsequent sections we will apply these and similar
concepts to a very general class systems that, in spite of being
non-linear, have a regular structure and some extremely useful
properties.

2.2. Canonical Non-linear Forms
The theoretical results of this work arise from the properties
of the power-law and quasi-polynomial formalisms. These two
formalisms have been shown to be mathematically equivalent.
Whether a model is simpler in one mechanism or another
depends on the particular processes involved. In general, power-
law models are preferred to describe processes that depend on
absolute fluxes (e.g., chemical networks) and quasi-polynomial
models are used for modeling processes based on per capita
rates, like logistic equations or classical predator-prey models.
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In any case, any system of differential equations that fulfills
one of the formalisms can be rewritten to the other without
any loss of information. Furthermore, virtually any non-linear
system of differential equations can be rewritten as one of the
above mentioned systems through approximation (Savageau,
1969a), detailed mechanistic representation (Savageau, 1998),
exact recasting (Savageau and Voit, 1987), or partitioning of its
parameter space (Savageau et al., 2009; Lomnitz and Savageau,
2015).

2.2.1. Power-Law
The most general expression for these models is as linear
combinations of rates or fluxes:

ẋ = Nv(x) (9)

where each term vi = γi
∏

j x
fi,j
j are the power-laws the

formalism takes the name from. The rate constants, γi are
positive real numbers and the kinetic orders, fi,j, are real numbers
normally between −2 and 2. It is also common to include
“inputs” to the system as the so called independent variables, that
reflect the environment in which the system operates and remain
constant during a simulation or experiment. These variables can
be included as part of γ without loss of generality. This kind
of model is called Generalized Mass Action (GMA). All the
formalisms discussed here can be expressed in a very convenient
form adopting a direct notation proposed by Lewis Voit (1991)
and that is slowly being adopted for theoretical analyses involving
power-laws (Marin-Sanguino et al., 2010; Müller et al., 2016). So
GMA equations becomes:

ẋ = N diag(γ ) xF (10)

where the notation diag (·) will be used to represent a diagonal
matrix containing vector (·) as its main diagonal. All the
information on the system is summarized in two matrices and
a vector: N of size n × m reflects the stoichiometry of the
system—mass conversion/conservation—F has size m × n and
contains the kinetic information. The m × 1 sized vector, γ ,
serves as a reference connecting rates and metabolites—e.g.,
when the system variables are normalized by their value at a
certain equilibrium point, zi = xi/|x|0, then the vector of
rate constants becomes the vector of steady state fluxes of the
system. Under such conditions, the partition of information
becomes clear between a stoichiometric/static-flux information
N diag(γ ) and kinetics F a particular type of gma models, the
s-systems, have received an exceptional deal of attention due to
their remarkable properties. An s-system has a single positive and
a single negative term:

ẋ = diag(α) xG − diag(β) xH (11)

where α and β are rate constants and G and H are kinetic order
matrices. these systems have analytic solutions for their steady
states (Savageau, 1969b).

The variables in a s-system can be normalized using their
steady state values (Savageau, 1974). Defining new variables zi =
xi

|xi|0
where the zero subindex indicates the numerical value of the

variable in the steady state, and rearranging terms, results in the
system:

ż = diag(f )
(

zG − zH
)

(12)

Due to this normalization, the new variables will reach the steady
state at zi = 1∀i. The factors fi, are the turnovers of their
respective variables at the steady-state (Savageau, 1974),

fi =

∣

∣

∣

∣

∣

V+
i

xi

∣

∣

∣

∣

∣

0

=

∣

∣

∣

∣

∣

V−
i

xi

∣

∣

∣

∣

∣

0

(13)

and considered to contain information relative to the time
scale of the corresponding variable. Actually F-values are the
reciprocals of transition times as defined by Easterby (1981).

2.2.2. Quasi-Polynomial
In their more general form, quasi-polynomial systems can be
written as Generalized Lotka–Volterra (GLV)

ẋ = diag(x)
(

λ + AxB
)

(14)

with A, B, and λ of size n × m, m × n, and n × 1. Just like
before, the stoichiometric information is contained in one matrix
and the kinetics in another.There is also a famous particular case
of this kind of system, for B = I, Equation (14) becomes the
Lotka–Volterra model for n species.

An important property of GLV systems is their invariance
when subject to quasimonomial transformations x = yC,
where C is a square non-singular matrix. The result of this
transformation is a GLV system itself:

ẏ = diag(y)
(

λ̂ + Â yB̂
)

(15)

where

Â = C−1 A

λ̂ =C−1 λ̂

B̂ = BC (16)

All the systems that can be converted into one another through
a quasimonomial transformation form a class of equivalence,
sharing a great deal of important properties such as number of
steady states and their stability (Hernández-Bermejo and Fairén,
1995).

A very complete account of the properties of this formalism
can be found in Hernández-Bermejo et al. (1998), but we will
describe two applications of the quasimonomial transformation,
that are specially relevant in this context.

When matrix B does not have full rank r < n, a
transformation matrix can be chosen

C =

(

Ir×r

0n−r×r
φ1 . . . φk

)

(17)
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where φi i = 1 . . . k are basis vectors for the kernel of B. The
transformed exponents will in this case be B̂ = [Bm×r|0m×k].
From the structure of Equation (14), it follows that a number
of variables in the transformed system equal to the dimension of
ker(B) have no influence on any equation other than their own.
These variables result in quadratures and can therefore be taken
out of the system.

Any GLV can be converted to a Lotka–Volterra as a special
case of quasi-monomial transformation q = xB, that results in
the Lotka–Volterra model where the variables are replaced by the
quasi-monomial terms:

q̇ = diag(q)
(

Bλ + BAq
)

(18)

Since the number of quasi-monomial is often greater than that
of variables, matrix B is seldom square and BA will often be
singular. From Equation (16) follows that any two systems from
a class of equivalence will result in the same Lotka–Volterra
representation, which can be taken to be a canonical form
for the whole class. In the Lotka–Volterra systems, all non-
linearities of the system are reduced to quadratic terms and any
interaction term between two variables has the form c qi qj where
the constant c is the (i,j)-th entry of BA.

2.2.3. Relation between the Formalisms
Any system written as a power-law can be translated to a quasi-
polynomial system and vice versa. This is trivial for small systems
and can be done applying a formula to the matrices of arbitrarily
large and complex systems (Marin-Sanguino et al., 2010). This
similarity leads to many common properties that have been
found using completely different methods in both formalisms.
For instance, the symmetry matrix of an autonomous GMA
or s-system (Voit, 1992) is the B matrix of the corresponding
GLV. The rank deficiency in such matrix, implies existence of
parameter transformation groups that can decouple a power-law
system the same way transformation (Equation 17) does with
a GLV. From now on, we will consider both formalisms to be
equivalent (Voit and Savageau, 1986), so we can talk, for instance,
about the Bmatrix of a GMA or the class of equivalence to which
an s-system belongs.

2.3. Numerical Simulations
To verify the theoretical considerations, we simulated different
non-linear models in s-system representation that were taken
from the literature (Voit, 2000).

2.3.1. Integration of the Differential Equations with

Perturbed Initial Values
Differential equations were numerically integrated with Matlab’s
ode15s solver. Integration time was estimated from the the
biggest real eigenvalue of the Jacobian of the linearized, full
system at its steady state:

tend = −
(

max
(

Re(λ)
))−1

· 5

The resulting trajectories of the slow variables—those not in
quasi-steady-state (qss)—of the original system were compared

to the trajectories of the reduced system, in which the fast
variables are assumed to be in qss. The robustness of the
approximation was tested by performing simulations of the full
system in which the qss variables had random initial values
distant to qss by a factor of 10.

The value for the absolute perturbation of the fast variables is
defined as the Euclidean norm of the natural logarithm of the
quotients of the initial values of the fast variables xf ,0 and the
corresponding quasi-steady state values at time 0, xf ,qss:

δy =
∥

∥

∥

(

ln
(

xf1,0

xf1,qss

)

ln
(

xf2,0

xf2,qss

)

· · · ln
(

xfn,0

xfn,qss

))∥

∥

∥

with n fast variables xfi .

2.3.2. Effect of the Perturbation of Fast Variables on

the Slow Trajectories
In a next step, the effect of this perturbation was tested. The data
of the slow trajectories was sampled at defined times for the full
and the reduced system and the mean and standard deviation at
these points in time were calculated for 1000 simulations with
randomized initial values.

Additionally the trajectory of the slow variables in the original,
full system was also interpolated and sampled at the same points
in time. To get an objective measure of the relative error between
reduced and full system, first the relative error of the trajectories
in the reduced system x(t)si,qssa compared to the full system x(t)si
was calculated for each of the slow variables by:

Ei =

∫ tend
0 |x(t)si,qssa − x(t)si |dt

∫ tend
0 |x(t)si |dt

with xsi,ss being the steady-state-values that serve as a baseline for
the comparison. The integral was numerically computed with the
trapezoidal method, given the data from the trajectories. To get a
number for the system considering all variables, the Euclidean
norm of all these errors |E| was plotted against δy. Each of the
points represents one of the 1000 simulations.

2.4. Random Network Generation
In order to benchmark the methods for large systems, synthetic
genetic networks were generated. When modeled as s-systems,
this networks consists of a matrix of kinetic orders and a
vector of turnover numbers as indicated below in the results
section. The models were generated in python using the
standard libraries scipy and numpy. The turnover numbers were
generated at random in three groups to ensure the existence of
three different time-scales. Each group was generated following
a normal distribution with different means and standard
deviations calculated from the distances between the means
to guarantee the existence of three distinct. The number of
variables in each group (time-scale) was also predetermined.
The kinetic order matrices were generated as sparse matrices
of density 0.05. Each network was tested to ensure stability
and that all the components were connected (using the library
Network X).
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3. RESULTS

3.1. Log-Modes
The Jacobian of a system under a a particular set of
transformations (like the quasimonomial transformation) will
always have the same eigenvalues as those of the original system.
In the case of s-systems under the logarithmic transformation,
the Jacobians are identical. S-systems can be explicitly rewritten
after undergoing the transformation y = log(x), the transformed
equations take the form (Savageau, 1976),

ẏ = diag (α) exp
(

(G− I)y
)

− diag (β) exp
(

(H − I)y
)

The Jacobian matrix of the system defined in terms of y at a
steady state is identical to the Jacobian of the original system, so
the coefficients defined in Equation (6) can be used to define a
new set of modes that we will call log-modes (ℓ).

log(ℓ) = My

which will actually be a monomial transformation:

ℓ = xM

So any fast or slow manifolds identified from the log modes will
take the form of a power-law and can be back-substituted into any
of the formalisms here discussed without generating algebraic
constraints.

3.2. Identifying Time-Scales for the
Variables through the S-System
Representation
The existence of analytic steady-state solutions in s-systems
makes it possible to apply the quasi-steady-state hypothesis to
obtain the behavior of the slow part of multi-level systems
(Savageau, 1976; Savageau and Sorribas, 1989), a very similar
procedure has been used in the context of sensitivity analysis
(Delgado and Liao, 1995). In this section we will generalize the
procedure to split a dynamic system into its time scales, obtaining
equations for the all of them without generating algebraic
constraints. We will start using the s-system representation and
will then move on to more general considerations.

Without loss of generality, the variables in Equation (12) can
be arranged according to their f -factor in decreasing order, the
variables can be classified as slow or fast by finding a variable xk
such that ‖fk+1 − fk‖ is maximal. Now a non-dimensionalization
for time can be applied τ = fk t

dzi

dτ
=

fi

fk





∏

j

z
gij
j −

∏

j

z
hij
j





defining ε =
fk+1

fk
, themultiplier for the first k equations becomes:

f1
fk

>
f2
fk

> · · · > 1 and the rest ε > ε
fk+2

fk+1
> · · · > ε

fn
fk+1

.

dzi

dτ
= f̂i





∏

j

z
gij
j −

∏

j

z
hij
j



 i = 1, . . . , k

dzi

dτ
= ε f̂i





∏

j

z
gij
j −

∏

j

z
hij
j



 i = k+ 1, . . . , n (19)

if fk >> fi ⇒ dzi
dt̂

= ǫ
(

zG − zH
)

. which enables to get a

quasi-steady-state (qss) solution for the fast variable. s-systems
share the telescopic property discussed above for linear systems
so the algebraic constraints generated by the qss assumption can
be back-substituted in the system as shown in the Appendix
(Supplementary Material). As a result, the system can be divided
in two, a fast system:

dzi

dτ
= α̂i

k
∏

j= 1

z
gij
j − β̂i

k
∏

j= 1

z
hij
j i = 1, . . . , k (20)

where the slow variables are taken as constants and grouped into
α̂i and β̂i. The normalized steady state is no longer at one, since
it depends on the values assigned to the slow variables.

A time rescaling T = ε τ provides the complementary time
scale. The slow system that depends exclusively on the slow
variables:

dzi

dT
= f̂i





n
∏

j= k

z
ĝij
j −

n
∏

j= k

z
ĥij
j



 i = k + 1, . . . , n (21)

See Supplementary Information for a detailed calculation.
This procedure can only be applied to an s-system but it

provides information of use for the more general cases. GLV
systems with a single equilibrium point can be exactly rewritten
as s-systems (Hernández-Bermejo and Fairén, 1995), s-systems
can also dominate the dynamics of arbitrary non-linear systems
in a well defined region of their parameter space (Savageau
et al., 2009) or arise as good approximations through a Taylor
series (Savageau, 1969a). The validity of the turnover numbers as
indicators for timescales is in fact so robust, that the inverse of
the turnover, the transition time, was defined as a reference in the
model free setting of biochemical enzyme assays (Easterby, 1981).
Turnover numbers are only a valid approach for well behaved
systems in which they dominate over the rest of the equations,
the next section will deal with not so well behaved systems.

3.3. Collinearity among the Quasinomials
In order to assess whether a system is “well behaved” in the
sense mentioned above, a closer examination of B is in order.
Sensitivity to parameter combinations can be assessed through
the spectrum of the corresponding matrix (Hearne, 1985).
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Since the matrices involved are not usually square, the SVD
decomposition of the matrix, B = UB 6B V

T
B, will be of great use.

It has been seen that a rank deficiency in B allows to decouple
some of the variables of the system. This results in an invariant
manifold spanned by the corresponding vectors of VB which
can consist of infinite equilibrium points or preclude any sort of
equilibrium (Voit, 1991).When the matrix is not singular but it is
ill conditioned, a similar phenomenon happens. This can be seen
by applying a quasimonomial transformation:

x = yVB (22)

where each of the new variables yi is associated to a singular
vector. The exact dynamics of all these new variables will have
GLV form as shown in Equation (16). From inspection of the
resulting system

ẏ = diag(y)
(

λ̂ + Â yUB 6B

)

(23)

it is straightforward to see that the exponents of yi in all
monomial terms are multiplied by σi, as the later tends to zero,
the variable will lose influence on the all the other variables,
reducing the real dimension of the system.

3.4. The Stoichiometric and Kinetic
Components of the Invariant Matrix
Analyzing the log-modes of a non-linear system at a certain
equilibrium point has the risk of not being representative,
since its Jacobian may change dramatically when it moves
away from the linear region. As has been seen above, the
turnovers of the variables and the singular vectors of B provide
two complementary methods. The interplay between these
three alternative representations can be seen in the LV of the
corresponding equivalence class. The constant matrix BA does
not result from a linearization, it defines all interactions between
variables the whole phase space. Although there is no closed form
for the singular/eigen-values of a matrix product, a great deal can
be learned by calculating the SVD of both A and B:

BA = UB 6BW6A VT
A (24)

where W = VT
B UA. The three matrices UB, W, and UA are

unitary and will not amplify or dampen any perturbation to
the variables. Any change in the norm of the perturbation will
come from the two diagonal matrices of singular values, one
coming from the stoichiometric component of the system, 6A,
and one from the kinetic 6B. When only one of these matrices
has extreme values it will dominate the response of the system
and one of the two methods mentioned above will be accurate.
No sudden changes of the jacobian are to be expected, since the
Jacobian of an normalized LV system is precisely (Equation 24),
see Dıaz-Sierra et al. (1999). When both sets of singular values
are in the same range, the system will not be decomposable
by time hierarchies. Extreme cases, where both sets of singular
values have big differences, will result in systems where the time
hierarchies shift along the orbits of the system. In such cases,

FIGURE 1 | A simple biochemical network. Full arrowhead indicates

activation and reverse arrowhead indicates inhibition.

Equation (24) would be a good starting point to identify regions
of interest in the parameter and in the phase space.

3.5. A Simple Example
Lets start with a model of a small regulatory network of three
genes that affect one another’s induction as depicted in Figure 1.
Obtaining the GMAmodel is straightforward:

ẋ1 = α1 x
g1,1
1 x

−g1,3
2 − β1 x1

ẋ2 = α2 x
g2,1
1 − β2 x2

ẋ3 = α3 x
g3,2
2 − β3 x3 (25)

which can be rewritten as a GLV by just factoring the variables
out:

ẋ1 = x1

(

α1 x
g1,1−1
1 x

−g1,3
2 − β1

)

ẋ2 = x2
(

α2 x
g2,1
1 x−1

2 − β2

)

ẋ3 = x3
(

α3 x
g3,2
2 x−1

3 − β3

)

(26)

So

B =





g11 − 1 0 −g13
g21 −1 0
0 g32 −1



 (27)

Computing the turnovers of the variables in Equation (25) is
straightforward:

fi = βi ∀i

normalizing:

ż1 = β1 (z
g1,1
1 z

−g1,3
2 − z1)

ż2 = β2 (z
g2,1
1 − z2)

ż3 = β3 (z
g3,2
2 − z3) (28)

The Jacobian matrix is:

J = diag(β)B
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FIGURE 2 | Orbits of a simple genetic network for different initial conditions (red dots) projected onto the x1 − x2 plane. Orbits clearly evolve toward a one

dimensional manifold (dotted line) that follows to the singular vector v3 corresponding to the smallest singular value. The equilibrium point x = 1 is marked as a black

dot. Red dots mark starting points of different orbits and the black dot is the equilibrium point they all tend to.

for the particular case βi = 1 ∀β all the turnover numbers
are also 1 and all variables are expected to operate in the
same time scale. However, as can be seen in Figure 2, where a
special case is simulated—g11 = 1.1, g13 = 0.48, g21 = 0.3,
g32 = 0.7—the system approaches a slow manifold defined
by the singular vector with the smallest singular value of B:
v = (0.939, 0.281, 0.197). So the system has a slow manifold.
Transformation using Equation (22), an alternative formulation
is obtained with variables (y1, y2, y3) and matrices:

λ =





−0.050
0.99
−1.4



 (29)

A =





−0.10 0.78 −0.62
0.33 −0.57 −0.76
0.94 0.28 0.20



 (30)

B =





0.29 0.40 −0.00056
−0.81 0.66 0.00019
1.2 0.36 0.00027



 (31)

and as can be seen by the small exponents of y3, this variable
has negligible influence on the dynamics of the other two,
Figures 3, 4.

The same procedure can be done applying the decomposition
shown in Equation (3.1) to obtain the equations for the log
modes. In this case, the results are very similar to those already
shown, since the Jacobian matrix of the system J = B. Even
though the similarity decomposition that defined the log-modes
is not equal to svd decomposition, the coefficients of the slowest
log-mode of the system are within 0.5% of those of v3. Additional

simulations show that special cases with well conditioned B led
to similar time-scales using turnover numbers and log-modes,
for cases with similar turnovers, the log-modes are similar to the
slow manifolds predicted by B, as can be expected from Equation
(24)—data not shown.

3.6. A Large Network
The toy model shown above is useful to understand the theory
behind the methods, but in order to test the performance of
the method on large scale models, randomly generated genetic
networks were used. Genetic networks can be modeled using s-

systems of the form ẋi = αi
∏

j x
gi,j
j −βi xi, where the interactions

between genes are concentrated in the kinetic orders of the
positive term. The turnover can be factored out :

ẋi = Fi





∏

j

x
gi,j
j − xi



 (32)

The details of how the networks were generated are shown in
the methods section, and the results were satisfactory in all cases.
Here we will show the analysis of a representative network with
75 variables divided in three time scales with turnover numbers
of 1, 100, and 104. The number of variables in each group
(time-scale) was 10, 25, and 40 respectively. The network is
defined by 356 parameters: 281 non-zero kinetic orders and 75
turnover numbers. The parameters values of the s-system model
are provided as supplementary data.

The existence of three time scales opens several possibilities.
If the model is to be partitioned in two, the variables
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FIGURE 3 | Projection of the orbits of a the transformed system onto the y1 − y3 plane for different initial conditions. In the new coordinate system

x = yV , each axis correspond to a singular value, so the manifold shown in the previous figure, is now parallel to the y3 axis (dotted line). Red dots mark starting

points of different orbits and the black dot is the equilibrium point they all tend to.

FIGURE 4 | Projection of the orbits of a the transformed system onto the y1 − y2 for different initial conditions. In this projection, the manifold appears as a

point aligned with the equilibrium point. Changing the values of y3 within an order of magnitude resulted in no appreciable change in this projection, since the third

variable is de facto uncoupled. Red dots mark starting points of different orbits and the black dot is the equilibrium point they all tend to.

in the middle range can be assigned to the fast or slow
subsystem. Moreover, successive separation can lead to three
different submodels, one per time scale. Each approach will

generate systems with different accuracy and degree of stiffness,
so the optimal decision will depend on the goal of the
analysis.
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FIGURE 5 | Dynamics of x1-x10 in the reduced system for the large genetic network model after removing variables x11 to x75. Red shaded areas show

the deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are shown.

See text for details.

FIGURE 6 | Dynamics of the worst performing variables in the reduced system for the large genetic network model after removing variables x36 to

x75. Red shaded areas show the deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations

above and below are shown. See text for details.

Figures 5, 6 show the errors in the dynamics of 100 different
simulations of the two possible slow systems. In the first case,
a system with only ten variables is obtained, in the second, the
final number of slow variables is thirty five. Figure 7 shows the
accumulated error. As can be seen, the smallest model has amuch
higher error but still agrees qualitatively with the dynamics of the
full system. The bigger model, has an extremely small error but
it still contains variables operating in two different time scales.
This increases the computational cost of integration as shown
in Table 1. The bigger model provides high accuracy with a
substantial improvement in computational cost and a significant

reduction in complexity and the number of variables. Since most
biological measurements are subjected to high levels of noise, the
smallest and much simpler model system will often be adequate
as well.

Finally, the network can be split into three different
submodels able to reproduce the slow, middle and fast
dynamics respectively. Figure 8 shows how the reduction
processes affects the connectivity of the network. Submodels
of the fast dynamics, reduce the degree of connectivity,
since many connections between fast variables happen
through slow variables that are frozen in the fast time scales.
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FIGURE 7 | Accumulated error for perturbations of different sizes in the genetic network model. The left pane shows the error for the fully reduced model

consisting only the slow variables x1 to x10. The right pane shows the model with the slow and middle scale variables, x1 to x35.

TABLE 1 | Comparison of simulation times between original and reduced

models of the large randomized networks.

Genetic network

Time QSS

Full 1109± 400 none

Slow 3.6± 0.2 x11 to x75

Slow/Middle 193± 6 x36 to x75

Submodels of slower timescales, experience the opposite
effect, since the variables that are eliminated through the
quasi-steady-state assumption become links between slow
variables.

3.7. Examples from Real Models
In order to test the applicability to real cases, three classical
s-system models from the literature (Voit, 2000) were taken
as examples for benchmarking: A very simplified model for
the anaerobic fermentation of Saccharomyces cerevisiae with 5
variables, a model for the purin metabolism in man consisting
of 16 variables and one for the tricarboxylic acid cycle in
Dictyostelium discoideum constituted by 13 variables. These
three models have been also used for benchmarking an
alternative method of model reduction, which will enable further
comparisons.

All three models had well conditioned B matrices, so
timescales were assigned to each variable according to their
turnover number.

3.7.1. Yeast
Eliminating the two fastest metabolites of this model of yeast
glycolysis results in a robust reduced system that still can
reproduce the slow dynamics with great accuracy (well within
experimental error), as can be seen in Figures 9, 10. Even a
perturbation δy of 3 still results in less than 14% error E.

3.7.2. TCA Cycle
The system is also reduced to less than two thirds of its size
and results in good quantitative agreement with the full system.
Figure 11 shows how some variables reproduce the dynamic
perfectly while x6 and x8 go through a short adaptation phase
where their dynamics are not as robust as the rest. Accumulated
error is shown in Figure 12.

3.7.3. Purine Metabolism
In this example, a more conservative approach is shown, where
eliminating only a small set of the total number of variables shows
a great quantitative agreement between the full and the reduced
systems. Figure 13 shows the only variable where an appreciable
difference between the systems can be found. Accumulated error
shown in Figure 14.

3.7.4. Performance
Two further metrics will be considered to evaluate the
performance of the method: the reduction in simulation times
due to the model reduction and the amount of variables
eliminated in comparison to the alternative method (Liu
et al., 2013) similar method. There is, to our knowledge
only one method that has exploited the regular structure of
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FIGURE 8 | Graphs depicting the different models as directed graphs. Activating interactions are shown in blue, inhibitory interactions in red.

canonical models to produce a a model reduction algorithm
(Liu et al., 2013). The alternative method does not provide a
separation into submodels, it concerns itself exclusively with
the elimination of variables using multicriteria optimization
based on reactive weight, sensitivity, and flux analyses. Based
on such optimization, the model is reformulated to eliminate
one or more variables. For the sake of comparison, the
methods presented in this study were used to obtain reduced
models with total accumulated errors that were comparable
to those of the previously mentioned approach, the number
of variables that each method was able to remove is then
compared.

Table 2 shows that model reduction always resulted in a
significant improvement on the simulation times. Moreover, the
number of reduced variables is always higher than or equal to the
much more complex (and computationally demanding) existing
method.

4. DISCUSSION

One of the bottlenecks for modeling biological systems is the
need to find values for a great amount of parameters that cannot
be measured directly. That, and the impossibility to predict how a
change in the value of such parameters will change the dynamics
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FIGURE 9 | Dynamics of the reduced system for the yeast model after removing fast variables x1 and x4. Red shaded areas show the deviation of repeated

simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are shown. See text for details.

FIGURE 10 | Accumulated error for perturbations of different sizes in the reduced Yeast model. Each point represents one simulation where the fast

variables were perturbed by |dy| and the overall error E was calculated.

TABLE 2 | Comparison of simulation times between original and reduced

models of the Yeast, TCA and purine models.

Simulation time Eliminated variables

Full

model

Reduced

model

This

study

Liu et al., 2013

Yeast 31.5± 1.0 11.3± 0.6 x1, x2, x4, x5 No reduction

TCA 71.1± 7.4 50.9± 8.2 x1, x2, x4, x10, x12 x7

Purines 492.1± 46.6 260.8± 45.7 x3, x8, x13 x6, x14, x16

of the system, limit the reliability of numerical simulations. It is
therefore imperative to find reliable tools for the global analysis
and model reduction for non-linear systems.

Canonical, non-linear systems are flexible enough to
reproduce any kind of non-linear behavior and, at the same time,
all the information defining a particular model is encoded in
two matrices and a vector. Methods like recasting (Savageau and
Voit, 1987; Hernández-Bermejo et al., 1998) enable to rewrite
virtually any non-linear system in one of the canonical forms
treated here. Moreover, Design Space Analysis (Savageau et al.,
2009) enables to decompose the parameter space of any system
into qualitatively similar regions, each described by an s-system.

These formalisms offer the exciting possibility of converting
very abstract problems into simple linear algebra operations.
Converting topologically equivalent systems into one another
is done with three simple matrix products and identifying a
slow manifold can be done by Singular Value Decomposition.
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FIGURE 11 | Dynamics of the reduced system for the TCA cycle model after removing fast variables x1,x2,x4,x10, and x12. Red shaded areas show the

deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are shown. See

text for details.

FIGURE 12 | Accumulated error for perturbations of different sizes in the reduced TCA model. Each point represents one simulation where the fast variables

were perturbed by |dy| and the overall error E was calculated.

Moreover, any model in one of these formalisms can be exactly
converted into a set of Lotka–Volterra equations. In the Lotka–
Volterra representation, a single constant matrix determines
the interactions between variables for the whole phase space,
as opposed to a linearization, where the constant matrix is
merely a local representation in the vicinity of an equilibrium.
Decomposing this matrix into its kinetic and stoichiometric
parts, provides a great deal of insight into the structure of the

system through the examination of the two corresponding sets
of singular values. These results obtained with simple linear
algebra, are as good as those that can be obtained using much
more complicated approaches (Liu et al., 2013) as well as more
general. The significance of this can best be appreciated in light
of an example attributed to professor Grötschel (Holdren et al.,
2010), a certain linear programming problem that would take
82 years to be solved by a computer in 1988 would be solved
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FIGURE 13 | Dynamics of x16 in the reduced system for the Purines metabolism model after removing fast variables x3,x8, and x13. Red shaded areas

show the deviation of repeated simulations using the full system for different initial values of the eliminated variables. Three standard deviations above and below are

shown. See text for details.

FIGURE 14 | Accumulated error for perturbations of different sizes in the reduced Purines metabolism model. Each point represents one simulation where

the fast variables were perturbed by |dy| and the overall error E was calculated.
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in roughly a minute by a modern computer 15 years later.
Of this improvement by a factor of 43 million, 1000 could be
attributed to hardware improvements and the remaining 43,000
to improvements in numerical algorithms, mostly numerical
linear algebra.
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