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MicroRNAs (miRNAs) are post-transcriptional regulators that regulate gene expression

by binding to the 3′ untranslated region of target mRNAs. Mature miRNAs transcribed

from the miR-17-92 cluster have an oncogenic activity, which are overexpressed in

chronic-phase chronic myelogenous leukemia (CML) patients compared with normal

individuals. Besides, the tyrosine kinase activity of BCR-ABL oncoprotein from the

Philadelphia chromosome in CML can affect this miRNA cluster. Genes with similar

mRNA expression profiles are likely to be regulated by the same regulators. We

hypothesize that target genes regulated by the same miRNA are co-expressed. In

this study, we aim to explore the difference in the co-expression patterns of those

genes potentially regulated by miR-17-92 cluster between the normal and the CML

groups. We applied a statistical method for gene pair classification by identifying a

disease-specific cutoff point that classified the co-expressed gene pairs into strong

and weak co-expression classes. The method effectively identified the differences in the

co-expression patterns from the overall structure. Functional annotation for co-expressed

gene pairs showed that genes involved in the metabolism processes were more likely

to be co-expressed in the normal group compared to the CML group. Our method

can identify the co-expression pattern difference from the overall structure between

two different distributions using the distribution-based statistical method. Functional

annotation further provides the biological support. The co-expression pattern in the

normal group is regarded as the inter-gene linkages, which represents the healthy

pathological balance. Dysregulation of metabolism may be related to CML pathology.

Our findings will provide useful information for investigating the novel CML mechanism

and treatment.
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INTRODUCTION

Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder of the hematopoietic
stem cells (Salesse and Verfaillie, 2002). The hallmark of CML is the Philadelphia (Ph)
chromosome, which results from a balanced reciprocal translocation event t(9;22)(q34;q11)
between chromosome 9 and 22 (Nowell and Hungerford, 1960; Rowley, 1973). Fusion BCR-
ABL oncoprotein is produced by BCR-ABL oncogene, which combines the Abelson oncogene
(ABL) at 9q34 and the breakpoint cluster region (BCR) at 22q11.2 through this translocation
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(Melo and Barnes, 2007). Such fusion can increase the tyrosine
kinase activity of ABL and the autophosphorylation of BCR-
ABL oncoprotein, creating more binding sites for the interacting
proteins (Melo and Barnes, 2007).

Recently, more microarray studies have been performed
in CML, such as the gene differential and co-expression
analysis. The differential expression analysis can only identify the
upregulation or downregulation of genes, which cannot reflect
the functional linkages among genes during signal transduction.
The co-expression analysis is very powerful for grouping genes
and further analyzing the underlying mechanisms of diseases.
In addition, gene co-expression patterns vary among different
states and cell types (Torkamani et al., 2010). Hence, the altered
co-expression pattern can be served as the signature of a disease.
It was reported that genes with similar mRNA expression profiles
tend to be regulated by the same mechanism(s), e.g., sharing
common regulator (Altman and Raychaudhuri, 2001; Schulze
and Downward, 2001).

MicroRNAs (miRNAs) are emerging as a new class of
gene regulatory factors regulating human gene expression
during the post-transcriptional process. MiRNAs are short and
noncoding RNA molecules, with about 22 nucleotides long,
which can bind to the complementary sequences in the 3′

untranslated region (3′UTR) of mRNAs (Kumar et al., 2007).
MiRNAs are also found to be involved in multiple steps
of myeloid differentiation, for example, the differentiation of
common progenitor from the early stage to the terminal
stage (Bhagavathi and Czader, 2010). The miR-17-92 cluster
located in chromosome 13 transcribes to 7 mature miRNAs
(miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a, miR-19b,
and miR-92-1) (Coller et al., 2007; Aguda et al., 2008). It is
worth mentioning that these 7 mature miRNAs have similar
expression patterns in hematopoietic cell lines (Yu et al., 2006;
Coller et al., 2007 ). Expressions of these miRNAs were found
to promote cell proliferation, inhibit apoptosis, and induce
tumor angiogenesis in cancer cells (Mendell, 2008). Moreover,
this cluster is overexpressed in chronic-phase CML patients
compared to normal individuals, and its overexpression can
promote cell cycle progression and proliferation, and inhibit
apoptosis (Venturini et al., 2007; Mendell, 2008). Thus, the BCR-
ABL tyrosine kinase activity may affect the functions of this
miRNA cluster.

In this study, we hypothesize that target genes regulated
by the same miRNA should be co-expressed. We explored
the difference in the co-expression patterns of those target
genes potentially regulated by miR-17-92 cluster between the
normal and the CML groups. We applied a statistical method
to identify a disease-specific cutoff point for co-expression levels
that grouped the co-expressed gene pairs into strong and weak
co-expression classes so that one of the classes was best coherent
with the CML state (Wang et al., 2014a, 2015a,b; Chan et al.,
2015). Previous co-expression analysis calculates a p-value of
correlation coefficient for each gene pair to identify significantly
co-expressed gene pairs. Our method formed two distributions
based on all the correlation coefficients of gene pairs in two
different groups. By analyzing the biological meaning of strongly
co-expressed gene pairs, we can further explore the underlying

mechanisms of CML, and provide useful information for cancer
treatment.

METHODS

Microarray Expression Data
In this study, we chose the microarray dataset GSE5550,
which is publicly available in the Gene Expression Omnibus
(GEO) repository database (Diaz-Blanco et al., 2007). The data
are normalized by variance stabilizing transformations (VSN)
method across the samples. This dataset was obtained from
gene expression measurements of 8537 unique mRNAs. CD34
+ hematopoietic stem and progenitor cells were collected from
bone marrows of untreated chronic-phase CML patients and
health controls (Diaz-Blanco et al., 2007). The subjects recruited
were Caucasians from Germany. Two groups of sample are
included in this dataset: (i) the CML group: nine patients; and
(ii) the control group: eight normal individuals. For microarray
data, a gene may be interrogated by more than one probe. The
average of all the probes for the same mRNA was taken to deal
with this situation (Breslin et al., 2005; Kapp et al., 2006).

Identification of Candidate Target Genes
Potentially Regulated by miR-17-92 Cluster
The systematic search for genes targeted by miR-17-92 cluster
(miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a, miR-19b
and miR-92-1) was performed on five miRNA prediction
databases (DIANA-microT, MicroCosm-Targets, miRWalk,
TargetScan and miRDB). Some prediction databases (e.g.,
DIANA-microT and TargetScan) predict the miRNA targets
based on three basic criteria: (i) complementarity when miRNAs
bind to mRNAs in seed regions;(ii) free energy to fold the
miRNA-mRNA duplex; and (iii) conservation among different
species (Li et al., 2010; Chan et al., 2012; Wang et al., 2014b).
In the first step, we obtained the target genes regulated by
each mature miRNA from the miR-17-92 cluster using these
five prediction databases. In order to increase the prediction
accuracy, we selected the mRNAs predicted by at least four out
of five databases. In the next step, we combined the target genes
from all the seven mature miRNAs as the candidate target genes
potentially regulated by miR-17-92 cluster for the following
co-expression analysis.

Co-expression Analysis for Candidate
Target Genes
Co-expression Measure for Gene Pairs

Pearson correlation coefficient (r) was chosen as the similarity
measure to calculate the correlation coefficients of gene pairs
in this study. Pearson correlation coefficient is represented by
the direction cosine between two vectors normalized by the
subtraction of their own means. Generally, similarity measure
is regarded as a kernel function between two feature vectors. In
this study, each feature vector contained the expression profiles
of a gene across all the samples in the normal or the CML
group respectively. The absolute values of correlation coefficients
(|r| values) were considered, due to that the co-expression
measure output a scalar in the range from 0 to 1 where a high
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output indicated a strong biological relationship in either positive
or negative direction, and a low output represented a weak
biological relationship. The co-expression level was denoted by
Cd(i, j) if the expression profiles of two genes were extracted from
the disease (CML) group, and Cn(i, j) for the normal group, as
shown in Formulas 1 and 2.

Cd(i, j) = |cor(xdi, xdj)| (1)

Cn(i, j) = |cor(xn i, xnj)| (2)

where Cd(i, j) and Cn(i, j) refer to the absolute values of
correlation coefficients between the expression profiles of gene i
and gene j in the CML group and the normal group, respectively
(Horvath and Dong, 2008); xdi and xdj represent the expression

profiles of the ith and jth genes in the CML group; xni and xnj refer

to the expression profiles of the ith and jth genes in the normal
group; cor(xdi, xdj) stands for the Pearson correlation coefficient

between the ith and jth genes in the CML group; cor(xni, xnj)

represents the Pearson correlation coefficient between the ith and
jth genes in the normal group.

Identification of Disease-Specific Cutoff Point

Two sets of correlation coefficients in the normal and CML
groups were obtained. These two sets of data formed two different
cumulative distributions. In the next step, we performed two-
sample Kolmogorov-Smirnov (KS) test to exam if these two
sets of correlation coefficients significantly differed in terms of
the overall distributions between two different conditions. The
significance for KS test was represented by comparing the the
maximum deviation between two cumulative distributions of Cd

and Cn (Formulas 3-5) to a criticalD value (Dcritical) based on our
previous developed method (Chan et al., 2015). At the maximum
deviation a threshold was identified to classify the co-expressed
gene pairs into strong and weak co-expression classes, called the
disease-specific cutoff point (C), so that the class was significantly
associated with the CML state. The cutoff point represented a
co-expression level, at which Fd and Fn were extremely deviated.

D = max
C

|Fd(C)− Fn(C)| (3)

Fd(C) = Prob(Cd ≥C) (4)

Fn(C) = Prob(Cn≥C) (5)

where Fd and Fn represent the cumulative distribution functions
(CDFs) of Cd and Cn, respectively; D is defined as the maximum
deviation; C represents the disease-specific cutoff point.

Classification of Co-expressed Gene Pairs

After the disease-specific cutoff point was identified, the gene
pairs were classified into four co-expression classes according
to the distributions: (i) strongly co-expressed gene pairs in the
normal group: with |r| values bigger than or equal to C in the
normal group; (ii) strongly co-expressed gene pairs in the CML
group: with |r| values bigger than or equal toC in the CML group;
(iii) weakly co-expressed gene pairs in the normal group: with |r|
values smaller than C in the normal group; and (iv) weakly co-
expressed gene pairs in the CML group: with |r| values smaller
than C in the CML group.

For better illustration of the groups’ characteristics, we
further identified the specifically co-expressed gene pairs to
form the co-expression galaxy. The normal-specific strongly
co-expressed pairs were the gene pairs strongly co-expressed
only in the normal group, which were regarded as the inter-
gene linkages maintaining physiological balance in healthy
individuals. Apparently, these pairs were the CML-specific
weakly co-expressed pairs, which were weakly co-expressed only
in the CML group. The CML-specific strongly co-expressed pairs
were the gene pairs strongly co-expressed only in the CML group,
which represented the characteristics of the disease and may be
the pathogenic alternatives. Similarly, these pairs were served as
the normal-specific weakly co-expressed pairs.

Functional Annotation for Candidate Target
Genes
Gene ontology (GO) provides a systematic language and concept
collection to describe genes and their product attributes across
all species (Gene Ontology Consortium, 2008). In this study,
we applied biological process of gene ontology to annotate
the candidate target genes potentially regulated by miR-17-
92 cluster, to further explore the biological meaning for the
identified co-expressed gene pairs. Database for Annotation,
Visualization and Integrated Discovery (DAVID) was applied
to perform the functional annotation (Huang da et al., 2009).
Functional annotation chart was chosen to select the significant
batch annotation and GO terms that were most pertinent to the
input data when the candidate target gene list was uploaded to
DAVID. The significance of GO term enrichment is calculated
based on a modified Fisher’s Exact Test with Expression Analysis
Systematic Explorer (EASE) score. Using DAVID, we annotated
the candidate target genes involved in the significantly associated
GO terms for a set of biological processes. The selection criteria
for the significant GO terms were: (i) EASE score <0.05; and
(ii) false discovery rate (FDR) <0.05, for multiple-hypothesis
correction. Candidate target genes identified in each significant
GO term were called the annotated target genes.

Mapping Co-expressed Gene Pairs to
Annotated Gene Pairs
The annotated target genes in each GO term were paired
with all the possible combinations to form the annotated
gene pairs. In the next step, the annotated gene pairs were
mapped to the identified co-expressed gene pairs: the mapped
normal-specific strongly, themapped normal-specific weakly, the
mapped CML-specific strongly and the mapped CML-specific
weakly co-expressed pairs. Fisher exact test was used to identify if
there were more mapped normal-specific strongly co-expressed
pairs than mapped CML-specific strongly co-expressed pairs in
each GO term for biological process. Therefore, one-sided p-
value was chosen to indicate the significance. The multiple-
hypothesis correction for the whole set of significant GO terms
for biological processes was performed by following a more
stringent method, Bonferroni correction. That is, the p-value of
each GO term was multiplied by the total number of considered
GO terms to correct the p-value. A GO term was significantly
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mapped if its corrected p-value was still smaller than the error
rate (0.05).

RESULTS

Identification of Overall Structural
Difference in Co-expression
The candidate target genes potentially regulated by miR-17-92
cluster were collected from the five prediction databases. In
order to perform the co-expression analysis, the target genes
should be found in the microarray dataset. In all, we identified
288 candidate target genes in the microarray dataset GSE5550
(Table S1). We further extracted the available expression profiles
of these 288 genes and calculated the correlation coefficients in
the normal group and the CML group, respectively, forming the
correlation coefficients of 41,328 gene pairs in each group. The
cumulative distributions for these two sets of data were plotted.
Two-sample KS test was used to identify the difference from
the overall structure. We found that these two distributions in
the normal and CML groups were significantly different with
p < 0.05 for the maximum deviation D = 0.0567 > Dcritical =

0.009 (Figure 1). The disease-specific cutoff point, C = 0.343,
was identified at the maximum deviation (Figure 1). The cutoff
point grouped gene pairs into four co-expression classes based
on the co-expression levels (Table 1). We can infer that these two
co-expression patterns were so distinct that the normal group
had more strongly co-expressed (level above ∼0.343) and less
weakly co-expressed (level below ∼0.343) gene pairs compared
to the CML group. These candidate target genes tended to be
co-expressed in the normal group when compared to the CML
group.

Co-expression Galaxy and Structures for
the Candidate Target Genes Potentially
Regulated by miR-17-92 Cluster
The co-expression galaxy was plotted and partitioned into four
regions: (i) normal-specific strongly co-expressed pairs (CML-
specific weakly co-expressed pairs): the percentage was 27.277%;
(ii) common strongly co-expressed pairs: the percentage was

18.694%; (iii) CML-specific strongly co-expressed pairs (normal-
specific weakly co-expressed pairs): the percentage was 21.603%;
and (iv) common weakly co-expressed pairs: the percentage
was 32.426% (Figure 2). From the results, we observed that
there were more normal-specific strongly co-expressed pairs than
CML-specific strongly co-expressed pairs.

DAVID Annotation for Enriched Gene
Ontology Terms
Based on the selection criteria (EASE score <0.05 and FDR
<0.05), 11 significant GO terms for biological processes were
found (Table 2). We obtained the annotated target genes from
each biological process and formed the annotated gene pairs.
After that, the co-expressed gene pairs were mapped to the
annotated gene pairs. The results revealed that all these 11
biological processes had more mapped normal-specific strongly
co-expressed pairs than mapped CML-specific strongly co-
expressed pairs (Table 3). Fisher exact test was applied to
indicate the significance. Eight of 11 biological processes had
significant fisher exact test p-values (p < 0.05) and the
corrected p-values for multiple-hypothesis correction was also
smaller than 0.05: Positive regulation of nitrogen compound
metabolic process, Positive regulation of nucleobase, nucleoside,
nucleotide and nucleic acid metabolic process, Positive regulation
of biosynthetic process, Positive regulation of cellular biosynthetic
process, Positive regulation of macromolecule biosynthetic process,
Positive regulation of transcription, DNA-dependent, Positive
regulation of RNA metabolic process and Positive regulation of
cellular metabolic process. From the results, we observed that
most of the processes were related to metabolism, including
nitrogen compound metabolic process, cellular biosynthetic

TABLE 1 | Gene pair counts identified by the disease-specific cutoff point.

Group No. of strongly co-expressed No. of weakly co-expressed

gene pairs gene pairs

Normal 18,999 22,329

CML 16,654 24,674

FIGURE 1 | Distribution plots for the co-expression analysis. (A) Cumulative distributions of co-expression levels in the normal and the CML groups. (B)

Deviation distribution against different co-expression cutoff points.
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FIGURE 2 | Co-expression galaxy (left) and four regions partitioned by the disease-specific cutoff point, C = 0.343 (right). Each correlation coefficient (|r|)

is represented by one white dot in the galaxy. More dots mean that there are more correlation coefficients located in that region.

TABLE 2 | Enriched biological process GO terms for functional annotation of candidate target genes.

No. Significant GO terms Genes found in our data EASE score FDR

1 Positive regulation of nitrogen compound metabolic process 37 4.50× 10−08 7.30× 10−05

2 Positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 36 6.50× 10−08 1.10× 10−04

3 Positive regulation of biosynthetic process 38 1.00× 10−07 1.60× 10−04

4 Positive regulation of cellular biosynthetic process 37 2.10× 10−07 3.40× 10−04

5 Positive regulation of transcription 32 6.20× 10−07 1.00× 10−03

6 Positive regulation of macromolecule biosynthetic process 35 6.20× 10−07 1.00× 10−03

7 Positive regulation of gene expression 32 1.20× 10−06 1.90× 10−03

8 Positive regulation of transcription, DNA-dependent 28 2.00× 10−06 3.30× 10−03

9 Positive regulation of RNA metabolic process 28 2.30× 10−06 3.80× 10−03

10 Positive regulation of cellular metabolic process 40 4.50× 10−06 7.30× 10−03

11 Positive regulation of macromolecule metabolic process 38 1.50× 10−05 2.40× 10−02

GO, gene ontology; EASE score, Expression Analysis Systematic Explorer score (a modified Fisher’s Exact Test); FDR, false discovery rate.

process and RNA metabolic process. Moreover, all these eight
significant biological processes perform the positive regulation
function. Our results demonstrated that genes involved in these
processes tended to be more co-expressed in the normal group
when compared to the CML group. In other words, the co-
expression pattern was dysregulated in CML.

DISCUSSION

In this study, we have successfully identified the overall
differences in the co-expression patterns of those candidate
target genes potentially regulated by miR-17-92 cluster between
the normal and the CML groups. Two-sample KS test
was performed to indicate the difference (Figure 1). In the
first step, the maximum deviation between two cumulative
distributions revealed the difference structurally. After that, a
disease-specific cutoff point was identified at the maximum

deviation to group the co-expressed gene pairs so that
the class was best coherent with the CML disease. We
further identified the specifically co-expressed gene pairs
in different groups to explore the alterations of biological
processes.

The functional annotation from DAVID database showed
that genes related to metabolism were more likely to be co-
expressed in the normal group compared to the CML group
(Table 3). Dysregulated mRNA metabolism is regarded as a
feature for many human cancers, including CML (Perrotti and
Neviani, 2007). BCR/ABL oncoprotein was found to affect the
basal mRNA translation machinery by regulating the function
of translation factors eukaryotic translation initiation factor 4E
and its binding protein (Perrotti and Neviani, 2007). Other
researchers reported that the metabolic patterns of untreated
CML patients were different from healthy controls, which
indicated the metabolic dysregulation in CML patients (Jiye
et al., 2010). In addition, CML patients had lower levels of
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TABLE 3 | Mapping co-expressed gene pairs to annotated gene pairs from each biological process GO term.

GO terms Fisher exact test Corrected p-value

a b c d p-value

Positive regulation of nitrogen compound metabolic process 186 148 148 186 0.002 0.022

Positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 177 141 141 177 0.003 0.033

Positive regulation of biosynthetic process 196 156 156 196 0.002 0.022

Positive regulation of cellular biosynthetic process 192 146 146 192 <0.001 <0.001

Positive regulation of transcription 137 111 111 137 0.012 0.132

Positive regulation of macromolecule biosynthetic process 169 129 129 169 0.001 0.011

Positive regulation of gene expression 137 111 111 137 0.012 0.132

Positive regulation of transcription, DNA-dependent 110 79 79 110 0.001 0.011

Positive regulation of RNA metabolic process 110 79 79 110 0.001 0.011

Positive regulation of cellular metabolic process 216 170 170 216 0.001 0.011

Positive regulation of macromolecule metabolic process 188 153 153 188 0.005 0.055

The GO terms highlighted with bold text are significantly mapped; a, mapped normal-specific strongly co-expressed pairs; b, mapped normal-specific weakly co-expressed pairs; c,

mapped CML-specific strongly co-expressed pairs; d, mapped CML-specific weakly co-expressed pairs.

tricarboxylic acid cycle and lipid metabolism when compared to
health individuals (Pelicano et al., 2006; Denkert et al., 2008; Jiye
et al., 2010) In our study, all these significantly mapped biological
processes were found to perform the positive regulation function
(Table 3). However, the positive function was dysregulated in
the CML group that there were less strongly co-expressed
gene pairs found in the CML group compared to the normal
group.

Researchers found that genes with similar mRNA expression
profiles tend to be regulated by the same mechanism(s), e.g., the
same regulator (Altman and Raychaudhuri, 2001; Schulze and
Downward, 2001). MiRNA is a post-transcriptional regulator.
In this study, we hypothesize that target genes regulated by the
same miRNA should be co-expressed. The originality of our
study is the application of structural co-expression analysis for
the miR-17-92 cluster target genes to identify the different co-
expression patterns between the normal and the CML states.
The miRNA targets predicted by at least four out of five
prediction databases were considered in our study, which made
the prediction accuracy more reliable. Some of the predicted
targets have been validated by other researchers. MiR-18a targets
Dicer (DICER1) in two binding sites, and both sites could
suppress expression using luciferase reporter assay in vitro
(Tao et al., 2012). MiR-19a and 19b directly target N-Myc
(MYCN), and could suppress the endogenous protein expression
in a neuroblastoma cell line (Buechner et al., 2011). MiR-20a
can down-regulate STAT3 protein expression and inhibit cell
proliferation and invasion in pancreatic carcinoma (Yan et al.,
2010).

Compared to the gene differential expression analysis, co-
expression analysis is more useful to identify the functionally
associated linkages among genes during signal transduction.
In addition, gene co-expression analysis takes into account
the level of correlations that may exist between gene
expression patterns (Torkamani et al., 2010). Hence, the
gene co-expression analysis is usually used to analyze the

underlying mechanisms of diseases. Moreover, the different
co-expression pattern can be served as a signature for the
disease.

In this study, we presented a method to group the co-
expressed gene pairs into strong and weak co-expression
classes by identifying a disease-specific cutoff point to form
the co-expression galaxy. This method was further applied to
explore the differences in the co-expression patterns of those
candidate target genes potentially regulated bymiR-17-92 cluster.
The co-expression pattern differences between the normal and
the CML groups were identified from the overall structure.
The different co-expression pattern can reflect the biological
alterations in the CML state. We also found the dysregulated
metabolism processes in CML. Our developed method and
significant findings will provide useful information for cancer
treatment.
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