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To lessen the “wear and tear” of existence, cells have evolved mechanisms that
continuously sense DNA lesions, repair DNA damage and restore the compromised
genome back to its native form. Besides genome maintenance pathways, multicellular
organisms may also employ adaptive and innate immune mechanisms to guard
themselves against bacteria or viruses. Recent evidence points to reciprocal interactions
between DNA repair, DNA damage responses and aspects of immunity; both
self-maintenance and defense responses share a battery of commmon players and
signaling pathways aimed at safeguarding our bodily functions over time. In the
short-term, this functional interplay would allow injured cells to restore damaged DNA
templates or communicate their compromised state to the microenvironment. In the
long-term, however, it may result in the (premature) onset of age-related degeneration,
including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA
damage-driven inflammation in the context of tissue-specific pathology and disease
progression.
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MAINTENANCE AND DEFENSE: TWICE THE DEAL

To withstand the hazards of existence, multicellular organisms need to preserve their bodily
functions for long periods of time and protect themselves against pathogens. Taking the cell as
a point of reference, the maintenance is directed inwards to counteract macromolecular damage.
This often involves restoring injured nucleic acids back to their native form (Hoeijmakers, 2001)
or replenishing proteins and lipids once damaged by harmful byproducts of metabolism (Balaban
etal., 2005). Instead, cellular defense mechanisms, such as the innate immune responses are mainly
directed outwards to protect the organism against irritants, pathogens, or injured cells.

Since the problem of damage or the invasion of cells by pathogens has existed nearly ab initio,
maintenance and defense must have arisen early during evolution. Indeed, even simple unicellular
organisms such as bacteria possess multiple caretaking systems or enzymes that protect against viral
infections and pathogens (Zgur-Bertok, 2013); remarkably, some prokaryotes employ a structurally
distinct family of nucleases with a dual function e.g., in DNA repair and antiviral immunity (Babu
etal., 2011). Similar to bacteria, mammals provide ample evidence that mechanisms of DNA repair
and immunity have evolved together (Alt et al., 2013). For example, non-homologous end-joining
is involved in the development of lymphocytes in resolving recombination intermediates i.e., DNA
strand breaks (DSBs) that occur during V(D)J recombination (Boboila et al., 2012). Likewise,
“programmed” DNA lesions followed by error-prone DNA repair dramatically increase antibody
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diversity by triggering  somatic  hypermutation  of
immunoglobulin variable genes (Di Noia and Neuberger,
2007). Activation-induced cytidine deaminase is a unique
enzyme that deaminates cytosines into uracils in Ig genes.
Direct replication over uracils may lead to C—T transition
mutations. Moreover, removal of the uracils by base-excision
repair (BER) (Krokan and Bjoras, 2013) generates abasic sites;
replication bypass of abasic sites may also lead to mutations (Di
Noia and Neuberger, 2007). The relevance of BER enzymes in
antibody gene diversification is revealed in patients carrying a
defect in uracil N glycosylase that show marked deficiencies in
immunoglobulin (Ig) class-switch recombination and somatic
hypermutation generation (Imai et al., 2003). Alternatively,
mismatch repair (MMR) (Pena-Diaz and Jiricny, 2012) could
recruit poln for error-prone repair of U/G mismatches further
promoting mutations in immunoglobulin variable genes (Di
Noia and Neuberger, 2007). Nonetheless, the evolutionary
transition from one-celled microbes to more complex living
systems has pushed for drastic changes in maintenance and
defense strategies. In mammals, a single fertilized egg rapidly
divides into several trillions of cells grouped into specialized
tissues with marked differences in terms of developmental origin,
regenerative capacity and ability to cope with damage. Moreover,
tissues, organs and organ systems team up to perform specific
tasks such as the body’s first line of defense against bacteria or
viruses. This inherent complexity arising from manifold levels of
organization within multicellular life forms requires that genome
maintenance, the DNA damage response (DDR) and defense
strategies are tightly linked (Velimezi et al, 2013) and highly
coordinated processes (Figure 1).

LINKING DDR WITH PRO-INFLAMMATORY
NUCLEAR FACTORS

Unlike adaptive immunity, DNA repair mechanisms per se do
not seem to play a role in innate immunity (Xu, 2006). However,
innate immune cells e.g., natural killer (NK) cells, natural killer
T (NKT) cells, Y8 T cells or phagocytes often rely on DDR
to activate nuclear factors (Liu et al., 1996; Frontini et al,
2009), cell surface ligands (Gonzalez et al., 2008), intercellular
adhesion molecules (Gorgoulis et al., 2003), or smaller peptides
i.e,, cytokines or chemokines in response to stress (Kuilman
and Peeper, 2009). A major step forward linking DDR with
pro-inflammatory nuclear factors was the discovery that DNA
damage activates cytoplasmic NF-kB (nuclear factor kappa-light-
chain-enhancer of activated B cells) (Hayden and Ghosh, 2008);
NF-kB is a fast-acting transcription factor present in most
cells as a dimer of RelA or p65, c-Rel, RelB, p50, and p52
subunits (Hayden and Ghosh, 2008). In case of DNA damage,
the “nuclear-to-cytoplasmic” response originates mainly from
DNA double strand breaks (DSBs) that trigger the SUMO (small
ubiquitin like modifier) modification of NEMO (NF-kB essential
modulator) in the nucleus (Huang et al., 2003). In turn, the DNA
damage sensor ATM (Ataxia telangiectasia, mutated) kinase
phosphorylates SUMOylated NEMO triggering the removal of
SUMO and the addition of a ubiquitin residue. These events
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FIGURE 1 | DNA damage events and the immune system. (A) Adaptive
immunity relies on programmed DNA damage events and error-prone DNA
repair mechanisms, such as the NHEJ to increase antibody diversity during
VDJ recombination in developing lymphocytes or the BER or MMR to turn
cytosines into uracils in Ig genes (B). Random DNA damage events trigger the
activation of DDR-driven pro-inflammatory signals, including NFKB or various
interleukins leading to chronic inflammation and disease. The figure is a
summarization/scheme of the manuscript.

allow the export of ATM-NEMO complex out of the nucleus
to activate NF-kB in the cytoplasm through the stimulation of
the canonical inhibitor of kB (IkB) kinase (IKK) complex and
IkB degradation (Scheidereit, 2006; Wu et al., 2006). Disruption
of the sumoylation sites on NEMO abolishes the activation of
IKK complex upon DNA damage. Following the degradation of
IkB, the NF-kB (p65/p50) heterodimer enters the nucleus and
modulates the expression of target genes (Karin, 2006). Other
stress stimuli, such as oxidative stress or heat shock may also
induce the SUMOylation of NEMO in an ATM-independent
manner (Li et al,, 2001; Oeckinghaus et al., 2011) suggesting
that NF-kB activation is a conserved survival response that is
not restricted to DDR. Intriguingly, NF-kB play roles in DNA
repair itself; for instance, p65~/~ mouse embryonic fibroblasts
show aberrant chromosomal structures that resemble those seen
in Fanconi anemia patients (D’Andrea and Grompe, 2003) or the
Bloom syndrome (Furuichi, 2001). Moreover, NF-kB activates
the CtIP-BRCA1 complex to trigger DNA-end processing (Volcic
et al,, 2012). Lastly, DDR-mediated activation of ATM-NEMO-
NF-kB pathway plays a physiological role during lymphocyte
development in response to “programmed” DSBs (Bredemeyer
et al., 2008). Similar to NF-kB, the interferon regulatory factors
(IRFs) make up another family of immune-related transcription
factors with a role in DNA repair. IRF-1 appears to regulate the
DNA inter-strand cross-link (ICL) repair pathway (Frontini et al.,
2009). Moreover, IRF-3 is an in vivo target of DNA-PK (Karpova
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etal., 2002), a protein with well-established functions in the DNA
repair and V(D)J recombination (Lieber et al., 2003). Finally,
IRF-5 is a direct transcriptional target of p53 also upon exposure
to various genotoxic agents (Mori et al., 2002). IRFs maintain
functionally diverse roles in interferon-induced antiviral defense
(e.g., IRF-1, IRF-3, and IRF-7) (Akira et al., 2006; Paun and
Pitha, 2007), lymphocyte development (e.g., IRF-4) (Lu et al,
2003), macrophage-induced inflammation (e.g., IRF-8) (Paun
and Pitha, 2007), or keratinocyte differentiation (e.g., IRF-6)
(Richardson et al., 2006). IRFs induce the transcription of type I
interferons and other pro-inflammatory cytokines by recognizing
a consensus IFN-stimulated response element on the promoter
of target genes (Taniguchi et al, 2001). IRF-1 is required
for oncogene-induced apoptosis of embryonic fibroblasts by
anticancer drugs or ionizing radiation (IR) (Tanaka et al., 1994)
and for DNA damage-driven apoptosis in mitogen-activated
T lymphocytes (Tamura et al, 1994). Induction of IRF-1
mRNA and protein levels, requires ATM (Pamment et al,
2002). However, Atm~/~ cells can still trigger the induction
of IRF-1 in response to viral mimetics. Evidently, DDR and
pro-inflammatory nuclear factors provide an ever-expanding
functional network linking the cellular machineries that regulate
the innate immune response and that sense and respond to DNA
damage.

LINKING DDR AND CELL SURFACE
LIGANDS

Most cells do not express cell surface ligands abundantly
(Cerboni et al., 2014); however, such ligands are known to be
up-regulated in cells exposed to stress, as well as in cancer
cells (Smyth et al., 2005). Upon viral infection or malignant
transformation, cells express MHC class I-like cell surface
ligands e.g., MICA, MICB, ULBP1-6 of the activating immune
receptor NKG2D. In humans, all NK cells and y8 T, af
CD8 T cells, and NKT cells express NKG2D (Lopez-Larrea
et al., 2008) allowing them to detect and selectively remove
damaged, unhealthy cells (Champsaur and Lanier, 2010). A
direct link between NKG2D cell surface ligands and the DDR
was shown in cells exposed to genotoxins. Most—if not all—of
the NKG2D ligands tested, including Raetl, Multl, and H60a
genes in mice or MICA and ULBP genes in humans showed
increased mRNA levels (Gasser et al., 2005; Gasser and Raulet,
2006). Although, it remains unknown how NKG2D ligands
are induced upon DNA damage, this likely takes place at
the posttranscriptional level (Himmelreich et al., 2011) and
requires ATM and/or ATR along with downstream kinases,
such as the checkpoint kinase (CHK) 1 and CHK2 (Gasser
et al., 2005). In line, siRNA-mediated knockdown of ATM
leads to the reduction of NKG2D ligand expression in cancer
cells (Gasser et al., 2005) suggesting that ligand expression
in tumors (that often bear chromosomal abnormalities) is
driven by intrinsic genome instability rather than cellular
transformation. Similar to NKG2D, DNAM-1 (DNAX Accessory
Molecule-1), a 65 kDa transmembrane glycoprotein, is expressed
in many cell types, including NK cells and some T cells

(Shibuya et al, 1996). DNAM-1 promotes cellular adhesion
to DNA damage-treated cells expressing DNAM-1 ligands
(Soriani et al., 2009), such as CDI155 and CDI112, two
adhesion molecules belonging to the Ig-like superfamily (Bottino
et al., 2003). Other cell types such as fibroblasts, endothelial
cells or lymphocytes and macrophages express cell surface
glycoproteins such as the intercellular adhesion molecules
(ICAMs). ICAM-1 is a transmembrane glycoprotein that serves
as aligand for lymphocyte function-associated antigen-1 (LFA-1)
and macrophage antigen-1 (Mac-1), two receptors found on
leukocytes that promote their adhesion to inflamed vascular
endothelium and transendothelial migration (Yang et al,
2011). Whereas, ICAM-1 expression is suppressed upon UV
irradiation-induced DNA damage (Ahrens et al, 1997), it is
induced in response to IR in a p53-dependnent manner (Gaugler
et al., 1997). Interestingly, P53 directly activates the expression
of ICAM-1 in senescent cells in an NF-kB-independent manner
(Gorgoulis et al., 2003). Macrophage, mast cells and dendritic
cells also express a distinct type of pattern recognition receptors
called the TLRs (Toll-Like Receptors) (Blasius and Beutler, 2010).
TLRs recognize a spectrum of pathogen ligands, collectively
referred to as PAMPs (Pathogen-Associated Molecular Patterns),
most TLR promoters are targeted by P53 and can also be
modulated by DNA damage with variation amongst individuals
(Menendez et al., 2011).

LINKING DDR WITH CYTOKINES

Cells carrying hallmarks of persistent DSBs may trigger the
secretion of interleukins, such as interleukin-6 (IL-6) and
interleukin-8 (IL-8) (Rodier et al., 2009). Release of IL-6 and IL-8
requires DDR i.e., ATM, NBS1, and CHK2; instead, the cell cycle
inhibitors p53 or pRB are dispensable for the response (Rodier
et al., 2009). NEMO and Receptor Interacting Protein (RIP) 1
kinase operate upstream of I1-6 and IL-8 secretion; ATM recruits
NEMO and RIP1 through autocrine Tumor Necrosis Factor
(TNF)-a signaling to trigger cytokine secretion and caspase
activation (Biton and Ashkenazi, 2011). Upon exposure to UV
irradiation, keratinocytes form large cytoplasmic complexes,
called “inflammasomes” to trigger the maturation, activation
and secretion of pro-inflammatory cytokines (Faustin and Reed,
2008; Schroder and Tschopp, 2010). At times, the presence
of dsDNA derived from e.g., pathogen-damaged cells that are
otherwise not exposed to any exogenous genotoxins may activate
the stimulator of IFN genes (STING) and IRF3 (Kondo et al,
2013). In this case, the meiotic recombination 11 homolog
A (MREL11) serves as the cytosolic sensor for the exogenous
dsDNA. Once active, cytokines may instigate more DNA
damage through the propagation and persistent maintenance
of (chronic) inflammation (Jaiswal et al., 2000; Bartsch and
Nair, 2006). Eventually, the inherent propensity of certain
cells to secrete pro-inflammatory signals upon stress (Tchkonia
et al., 2010) could establish self-perpetuating pro-inflammatory
cycles leading to DNA damage and age-related diseases
(Karakasilioti et al., 2013; Pateras et al., 2015), including cancer
(Meira et al., 2008).
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DNA DAMAGE-DRIVEN INFLAMMATION
AND DISEASE

Until recently, there would have been few examples to link DNA
damage and inflammation to health and disease. However, recent
findings allow us to consider several instances where innate
immune responses driven by intrinsic genome instability or
chronic exposure to exogenous genotoxins is causal to age-related
degeneration, metabolic abnormalities and cancer (Coussens
and Werb, 2002). Indeed, chronic inflammation is thought to
generate an excess of reactive oxygen and nitrogen species (ROS,
RNYS) triggering DNA damage and malignancy (Wiseman and
Halliwell, 1996; Kuper et al., 2000; Ohnishi et al., 2013). In
support, chronic inflammation in the colon or the gastric cardia
of mice is functionally linked to the formation of DNA lesions
and the induction of the DDR, as well as with cancer induction
(Meira et al., 2008; Lin et al., 2015).

Cellular senescence is a term used to describe cells that cease
to divide in culture and has been one of the first paradigms to
link DNA damage and immunity to disease (Campisi and d’Adda
di Fagagna, 2007). Cellular senescence is often fueled by nuclear
DNA damage followed by chronic DDR activation; telomere
shortening, mitogenic oncogenes, or intrinsic DNA damage can
lead to different types of senescence limiting the replicative
lifespan of cells (Campisi and d’Adda di Fagagna, 2007).
Persistent DNA damage and DDR signaling triggers senescent
cells to secrete immunomodulatory proteins, a phenomenon
known as the senescence-associated secretory phenotype (SASP)
(Campisi and d’Adda di Fagagna, 2007; Fumagalli and I’Adda
di Fagagna, 2009). SASP factors range from inflammatory
and immune-modulatory cytokines to chemokines as well as
growth factors, shed cell surface molecules, survival factors and
extracellular matrix remodeling enzymes (Coppé et al., 2008;
Ohanna et al., 2011; Acosta et al., 2013; Malaquin et al., 2013).
Together, they impinge on cell-fate decisions in neighboring
cells or the tissue microenvironment. For example, certain
SASP factors, such as the CXCR2-binding chemokines reinforce
growth arrest (Acosta et al., 2008) whereas other promote tumor
clearance e.g., Csfl, Mcpl, Cxcll, IL-15 (Xue et al., 2007), or
growth e.g., IL-6 and IL-8 (Acosta and Gil, 2009). As DNA
damage accumulates with age, persistent DDR-mediated release
of SASP factors could be associated with degenerative changes
that manifest with old age; in support, several SASP factors are
considered amongst the most reliable biomarkers for age-related
diseases (Fumagalli and d’Adda di Fagagna, 2009). In line, older
individuals often show an increase in systemic inflammation
(often termed “inflammaging”) as evidenced by the elevated
levels of pro-inflammatory cytokines e.g., IL-6, clotting factors
and acute phase reactants (Ferrucci et al., 1999; Cohen et al., 2003;
Cavanagh et al,, 2012; Shaw et al., 2013). Nevertheless, any direct
evidence linking DNA damage to chronic inflammation stems
from recent findings in progeroid (accelerated aging) syndromes
and accompanying mouse models that carry inborn DNA repair
defects. Patients with Werner syndrome (WS, associated with
mutations in the RecQ DNA helicase) manifest with features
of systemic chronic inflammation (Davis and Kipling, 2006),
including the high serum levels of highly sensitive C-reactive

protein (hs-CRP), an acute-phase protein of hepatic origin whose
levels are increasing following interleukin-6 (Goto et al., 2012).
Transcriptome analysis in cells lacking a functional CSB protein
revealed an NF-kB-dependent pro-inflammatory response. The
latter is thought to be responsible for the extraordinary
neurodegenerative and wasting symptoms of this and other NER
progeroid disorders (Newman et al., 2006; de Waard et al., 2010;
Goss et al., 2011; Jaarsma et al., 2011; de Graaf et al., 2013;
Barnhoorn et al., 2014). In other instances, DNA damage-driven
inflammation may trigger tissue-specific degenerative changes
leading to systemic metabolic abnormalities. Using animal
models of the XFE human progeroid syndrome (Niedernhofer
et al, 2006) that carry a DNA repair defect only in the adipose
tissue (aP2-Ercc1¥/~ mice), we recently showed that persistent
DDR triggers a chronic auto-inflammatory response leading
to severe fat depletion in mice (Karakasilioti et al., 2013).
AP2-ErccI¥/~ fat depots showed hallmarks of persistent DDR
together with the marked up-regulation of pro-inflammatory
factors, the infiltration of activated macrophages as well as the
release of DAMPs known to initiate and perpetuate immune
responses (Karakasilioti et al., 2013). Further studies in aP2-
Ercc1®/~ fat depots in vivo and in adipocytes ex vivo showed
that persistent DNA damage signaling triggers the induction
of IL-6, IL-8, and TNFa by promoting transcriptionally active
histone marks and the dissociation of nuclear receptor co-
repressor complexes from promoters; the response required
ATM and it was instigated in a DNA lesion- and cell type-specific
manner. In support of these findings, NF-«kB is stochastically
activated in tissues of naturally-aged and Ercc1™/# mice (unlike
Ercc1™/~ mice, the Ercc1™/4 animals maintain about 10% of
the wild-type ERCC1 protein levels and develop progressive,
degenerative changes that markedly resemble those seen in
natural aging (Tilstra et al., 2012). Importantly, genetic depletion
of the p65 subunit of NF-«kB or pharmacologic inhibition of NF-
kB delayed age-related symptoms in Erccl~/4 mice. Moreover,
inhibition of IKK/NF-kB activity reduced cellular senescence and
oxidative damage in DNA and proteins (Tilstra et al., 2012).
In other instances, the accumulation of prelamin A isoforms
at the nuclear lamina triggers an ATM- and NEMO-dependent
signaling pathway that leads to NF-kB activation and high levels
of secreted pro-inflammatory cytokines in Zmpste24~/~ and
Lmna@006/Go99G progeroid animals. As in Erccl™/4 animals,
genetic and pharmacological inhibition of NF-«B signaling can
ameliorate the age-associated features and extend the lifespan
of these animal models (Osorio et al., 2012). Finally, Atm~/~
animals present with infiltration of neutrophils and lymphocytes
in the lungs and increased mRNA levels of pro-inflammatory e.g.,
IL-6, TNF cytokines (Eickmeier et al., 2014).

ssDNA intermediates generated during e.g., transcription
or DNA replication may also activate DDR and trigger a
pro-inflammatory response (Abe et al., 2013). At any given time,
proliferating cells may contain 1-2% of genomic DNA in single-
stranded form (Bjursell et al., 1979). The relevance of ssDNA
intermediates in humans is highlighted by the Aicardi-Goutiéres
syndrome patients and mice that carry inborn defects in
TREX1 (Three prime repair exonuclease 1); TREX1 degrades
ssDNA polynucleotide species derived from the processing of
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aberrant DNA replication intermediates to prevent persistent
DDR activation (Yang et al, 2007). The Aicardi-Goutiéres
syndrome patients present with an auto-inflammatory phenotype
leading to immune-mediated neurodevelopmental abnormalities
(Chahwan and Chahwan, 2012) or cardiomyopathy and
circulatory failure respectively (Coscoy and Raulet, 2007; Yang
et al,, 2007). Eventually, a universal theme arises from these
recent findings; it is neither DNA damage nor senescence or
cancer per se but persistent DDR that triggers the repertoire of
innate immune responses (Fumagalli and d’Adda di Fagagna,
2009). Thus, any events that could potentially activate DDR could
trigger the activation of innate immune responses in the absence
of DNA damage; similarly suppressing DDR signaling in the
presence of tolerable DNA damage levels could alleviate some
of the pathological features associated with DNA damage-driven
inflammation.

EARLY BENEFITS AND LATE ADVERSE
CONSEQUENCES

DNA damage-driven inflammation can be both beneficial and
detrimental for organismal survival (Figure 2). To understand
this controversy, it may be helpful to consider that such
responses have been selected for by having their early benefits
outweigh their late costs during evolution. Early in life, priorities
in mammals are shifted toward development, growth, and
reproductive fitness. As cells divide, gain volume or differentiate,
tissues rely on maintenance and defense mechanisms to
efficiently detect and remove damaged cells. In doing so, specific
cell types may activate immune responses to fine tune cell-fate
decisions at the organismal level; for instance, DNA damage
in germ cells induces an innate immune response in worms
that promotes endurance of somatic tissues to allow delay of
progeny production when germ cells are hit by DNA damage
(Ermolaeva et al., 2013). Once reproductive maturity has been
reached, the competitive advantage to signal the presence of
damaged cells (in youth) is gradually deteriorating. Despite the
efficiency of DNA repair mechanisms, some DNA damage is
left unrepaired leading to the gradual accumulation of DNA
lesions in cells. In turn, the slow but steady buildup of damaged
cells within tissues is expected to intensify DDR responses over
time. Likewise, the DDR-mediated pro-inflammatory signals
may further alarm the neighboring cells and tissues for the
presence of cells with compromised genome integrity. The
latter triggers a vicious cycle of persistent DDR and pro-
inflammatory signals leading to chronic inflammation, tissue
malfunction and degeneration with old age; in DNA repair-
deficient patients, the rapid accumulation of DNA damage (in
view of the DNA repair defect) would trigger the untimely
activation of DDR signaling leading to the early manifestation
of age-related pathology that is associated with chronic
inflammation.

Future strategies aimed at identifying new players or delineate
key pathways may shed light on the biochemical crosstalk DNA
repair and immune factors allowing us to gain insights onto
how both systems contribute to disease origin and progression
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FIGURE 2 | Early benefits and late adverse consequences of innate
immune responses. Innate immune responses have been selected for by
having their early benefits outweigh their late costs during evolution. As cells
proliferate, grow or differentiate during the course of normal development
(upper panel), they rely on maintenance and defense mechanisms to efficiently
detect or remove damaged cells and promote wound healing (1), fine tune
cell-fate decisions, such as preventing cancer (2) or else defend against
pathogens (). During adulthood and once reproductive maturity has been
reached (lower panel), however, the competitive advantage to signal the
presence of damaged macromolecules (as in youth) gradually deteriorates.
The slow but steady buildup of DNA damage (1) is expected to trigger DDR
and DDR-mediated pro-inflammatory stimuli (2) leading into a vicious cycle of
persistent DDR, chronic inflammation (3) and SASP (4) with advancing age.
The figure is a summarization/scheme of the manuscript.

at old age. In this regard, the use of e.g., tissue-specific or tagged
knockin animals and high-throughput proteomics and genomics
approaches will likely prove valuable toward the development of
rationalized interventions (Tilstra et al., 2012; Karakasilioti et al.,
2013).
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