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Electrocardiogram (ECG) measurements play a key role in the diagnosis and prediction
of cardiac arrhythmias and sudden cardiac death. ECG parameters, such as the PR,
QRS, and QT intervals, are known to be heritable and genome-wide association studies
of these phenotypes have been successful in identifying common variants; however,
a large proportion of the genetic variability of these traits remains to be elucidated.
The aim of this study was to discover loci potentially harboring rare variants utilizing
variance component linkage analysis in 1547 individuals from a large family-based study,
the Erasmus Rucphen Family Study (ERF). Linked regions were further explored using
exome sequencing. Five suggestive linkage peaks were identified: two for QT interval
(1q24, LOD = 2.63; 2q34, LOD = 2.05), one for QRS interval (1p35, LOD = 2.52)
and two for PR interval (9p22, LOD = 2.20; 14q11, LOD = 2.29). Fine-mapping using
exome sequence data identified a C > G missense variant (c.713C > G, p.Ser238Cys)
in the FCRL2 gene associated with QT (rs74608430; P = 2.8 × 10−4, minor allele
frequency = 0.019). Heritability analysis demonstrated that the SNP explained 2.42% of
the trait’s genetic variability in ERF (P = 0.02). Pathway analysis suggested that the gene
is involved in cytosolic Ca2+ levels (P = 3.3 × 10−3) and AMPK stimulated fatty acid
oxidation in muscle (P = 4.1 × 10−3). Look-ups in bioinformatics resources showed
that expression of FCRL2 is associated with ARHGAP24 and SETBP1 expression.
This finding was not replicated in the Rotterdam study. Combining the bioinformatics
information with the association and linkage analyses, FCRL2 emerges as a strong
candidate gene for QT interval.
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INTRODUCTION

The electrocardiogram (ECG) is an important tool for
diagnosing, monitoring and evaluating risk in patients with
cardiovascular disease (CVD; Lin et al., 2013; Pelto et al., 2013).
ECG measurements, such as PR interval, QRS complex duration,
and QT interval, are used for the diagnosis and prediction of
cardiac arrhythmias and sudden cardiac death (SCD; Kolder
et al., 2012). Myocardial depolarization and repolarization
time are measured by the QT interval: the time between the
onset of the QRS complex and the end of the T wave. QT
shortening or prolongation has been associated with an increased
risk for arrhythmias and SCD (Newton-Cheh and Shah,
2007). PR interval and QRS duration are measures of cardiac
conduction time; QRS duration reflects conduction through
the ventricular myocardium, while PR interval measures atrial
and atrioventricular conduction from the sinoatrial node to the
ventricular myocardium, primarily through the atrioventricular
node (Cheng et al., 2015; Mozos and Caraba, 2015).

There are significant genetic contributions to ECG
measurements; genome-wide association studies (GWAS)
identified at least 71 common variants associated with their
variability (Arking et al., 2006, 2014; Newton-Cheh et al., 2007,
2009; Pfeufer et al., 2009, 2010; Holm et al., 2010; Sotoodehnia
et al., 2010). A number of these associations were established
in loci containing genes that encode proteins with previously
known roles in heart development and function, such as cardiac
transcription factors; sodium, calcium, and potassium ion
channels; genes with a role in myocardial electrophysiology;
and others involved in the conduction of electrical impulses
(Kolder et al., 2012). These include ARHGAP24, SETBP1, LRIG1,
CREBBP, MEIS1, TBX20, and TBX5. Some ion channel encoding
genes, such as SCN5A, HERG, KCNE1, and KCNE2, have been
associated with long QT syndrome (LQTS; Tristani-Firouzi et al.,
2001), atrial fibrillation (AF) and Brugada Syndrome (Hedley
et al., 2011). Collectively, however, these loci explain only modest
proportions of phenotypic variability; GWAS SNPs specific for
each trait account for limited trait heritability (17% for QRS, 4%
for QT, and 2% for PR) (Silva et al., 2015).

Genome-wide association studies generally interrogate only
common variants, typically of small effect. Families, in addition
to being robust against population stratification, may be enriched
for less frequent variants, which can potentially be identified by
linkage and fine mapping. The aim of this study, therefore, was
to discover less frequent variants using linkage analysis in a large
family-based study, the Erasmus Rucphen Family Study (ERF).

MATERIALS AND METHODS

Study Population
The ERF study, which is a part of the Genetic Research in
Isolated Populations (GRIP) Program, is a family-based study
including over 3000 participants descendant from 22 couples that
lived in the Rucphen region in the southwest Netherlands in
the 19th century (Pardo et al., 2005). All descendants of those
couples were invited to visit the clinical research center in the

region, where they were examined in person (Aulchenko et al.,
2004). Interviews at the time of blood sampling were performed
by medical practitioners and included questions on a broad
range of topics, including current medication use and medical
history (Sayed-Tabatabaei et al., 2005). Height and weight were
measured with the participant in light underclothing and body
mass index (kg/m2) was computed. Blood pressure (BP) was
measured twice on the right arm in a sitting position after at
least five minutes rest, using an automated device (OMRON
711, Omron Healthcare, Bannockburn, IL, USA). The average
of the two measures was used for analysis. Hypertension was
defined through the use of antihypertensive medication and/or
through the assessment of BP measurements according to the
World Health Organization (1999) guidelines (individuals with
BP ≥ 140/90 mmHg should be regarded as hypertensive). The
Medical Ethics Committee of the Erasmus University Medical
Center approved the ERF study protocol and all participants, or
their legal representatives, provided written informed consent.

ECG Measurement and Interpretation
Examinations included 10 s 12-lead ECG measurements,
recorded with an ACTA-ECG (Esaote, Florence, Italy) with a
sampling frequency of 500 Hz. Digital measurements of the ECG
parameters were made using the Modular ECG Analysis System
(MEANS; van Bemmel et al., 1990). Briefly, MEANS operates on
multiple simultaneously recorded leads, which are transformed
to a detection function that brings out the QRS complex and
the other parts of the signal. MEANS determines common
onsets and offsets for all 12 leads together on one representative
averaged beat, with the use of template matching techniques.
The measurement and diagnostic performance of MEANS have
been extensively evaluated, both by the developers and by others
(Willems et al., 1987, 1991; van Bemmel et al., 1990; de Bruyne
et al., 1997; Eijgelsheim et al., 2009). The MEANS criteria for MI
are mainly based on pathological Q waves, QR ratio, and R-wave
progression (Leening et al., 2010). A cardiologist, specialized in
ECG methodology, ascertained the final diagnosis of MI. QT
interval was corrected for heart rate using Bazett’s formula in all
analyses (Funck-Brentano and Jaillon, 1993).

Genotyping and Statistical Analyses of
the Linkage Study
Illumina’s HumanHap6k Genotyping BeadChip (6K Illumina
Linkage IV Panels R©) was used for genotyping for the linkage
analyses. All genotyping procedures were performed according
to the manufacturer’s protocols. Only markers with minor allele
frequency (MAF) > 0.05 were selected for further analysis.
Genotyping errors leading to Mendelian inconsistencies were
detected using PedCheck (O’Connell and Weeks, 1998). Unlikely
double recombination events were detected using MERLIN
(Abecasis et al., 2002). All observed Mendelian errors were
eliminated from the data. A total of 5250 autosomal SNPs
with a call rate greater than 95% were included in the linkage
analyses. All traits were adjusted for age, sex, BMI and height
and inverse-normal transformation of ranks was applied before
analysis. One thousand five hundred and forty-seven people with
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complete ECG, covariate, and genotype data were included in
the initial analysis. Variance component multipoint linkage was
performed using the –vc option in the MERLIN v.1.0.1 software
(Gudbjartsson et al., 2000; Abecasis et al., 2002). This program
calculates exact IBD sharing probabilities using the Lander-Green
algorithm, requiring restriction of pedigree size. Because of this,
the large single ERF pedigree with multiple loops was split into
non-overlapping fragments of no more than 18 bits with the help
of the PedSTR program (Kirichenko et al., 2009). Final variance
component two-point linkage analysis for the identified FCRL2
variant (rs74608430) was performed using Merlin in one large,
single pedigree.

Regions of interest with LOD > 1.9 were selected for further
study (Lander and Kruglyak, 1995). Borders of the linkage areas
were defined as LOD score minus 2 support intervals (LOD-2
SI) around the linkage peaks. Genes within the LOD-2 SI were
annotated using SCAN (SNP and CNV Annotation Database1).

Exome Sequencing
Exomes for 1336 individuals from ERF were sequenced at the
Center for Biomics, Department of Cell Biology, Erasmus MC,
the Netherlands, using the Agilent V4 capture kit on an Illumina
HiSeq2000 sequencer using the TruSeq Version 3 protocol.
Mean depth base was 74.23x (median = 57x) and mean depth
region was 65.26x (median = 52.87x). The sequence reads were
aligned to the human genome build 19 (hg19) using BWA
and the NARWHAL pipeline (Li and Durbin, 2009; Brouwer
et al., 2012). The aligned reads were processed further using
the IndelRealigner, MarkDuplicates, and TableRecalibration tools
from the Genome Analysis Toolkit (GATK) and Picard2 to
remove systematic biases and to recalibrate the PHRED quality
scores in the alignments. Genetic variants were called using the
Unified Genotyper tool of the GATK. About 1.4 million Single
Nucleotide Variants (SNVs) were called and, after removing the
low quality variants (QUAL < 150), we retrieved 577,703 SNVs
in 1,309 individuals. Linear regression analyses, with SNVs in
an additive model, were conducted on ECG measures, adjusted
for age, sex, BMI, and height. To reduce the burden of multiple
testing, we assessed only damaging variants in the LOD-2 SI; we
found 324 such variants for QT, 52 for QRS and 61 for PR. We
employed a Bonferroni correction for the number of deleterious
mutations selected for each trait (QT: P = 1.5 × 10−4, QRS:
P= 9.6× 10−4, and PR: P= 8.2× 10−4). The proportion of trait
variance explained by the SNP was calculated using the Merlin
software (Abecasis et al., 2002).

Replication
We sought to replicate our findings in the Rotterdam Study (RS)
cohort. The RS is an ongoing prospective cohort study conducted
since 1990 in the city of Rotterdam in The Netherlands (Hofman
et al., 2013). The Illumina Exome BeadChip array (“exome
chip”) was developed through a large international initiative to
efficiently study coding variants spanning the genome. The v1.0
array contains 247,870 variants, which were genotyped in 3,183

1http://www.scandb.org
2http://picard.sourceforge.net

individuals from the RS population. Calling for this sample, and
numerous others, was done centrally (in total, 62,267 samples).
After rigorous quality control and exclusion of variants that were
monomorphic or too rare to analyze, the final dataset consisted
of 108,678 polymorphic variants in 3,163 individuals.

Bioinformatics Analysis
To predict the functionality of genetic variants, and for
comparison to BWA and NARWHAL, annotations were also
performed using the dbNSFP (database of human non-
synonymous SNPs and their functional predictions3 and Seattle4

databases. These databases gave functional prediction results
from four different programs (PolyPhen-2, SIFT, MutationTaster,
and LRT) (Chun and Fay, 2009; Adzhubei et al., 2010; Schwarz
et al., 2010; Vaser et al., 2016), in addition to gene and variant
annotations. Genes containing nominally significant variants
(Table 2) were analyzed using Ingenuity Pathway Analysis (IPA;
Ingenuity systems Inc, Redwood city, CA, USA). Several IPA
modules were implemented: the “core analysis” was used to
assess pathways, relationships, and mechanisms relevant to the
dataset; the “upstream regulator analysis” was implemented
to identify molecules (including microRNA and transcription
factors) that may affect expression levels; and the “downstream
effects analysis” was utilized to predict downstream biological
processes that are increased or decreased.5 The GEO2R6 tool was
used to analyse microarray-based expression data in the GEO
database (GEO Accession numbers: GSE2240 and GSE41177).
The Gene Network tool7 was used to describe co-expression
networks and to assess potential functional effects of identified
genes.

RESULTS

Table 1 shows the characteristics of the participants included in
the discovery linkage analyses and exome sequencing, as well
as the exome chip replication sample. There were no significant
differences between the largely overlapping linkage and exome
sequence groups. The replication sample was considerably older,
and was characterized by increased frequency of hypertension
(and BP differences), increased PR interval and decreased QT
interval compared to the discovery samples. The three ECG
traits studied (the QT, QRS, and PR intervals) demonstrated
only modest pair-wise correlations in the discovery dataset
(Supplementary Table 1).

Supplementary Table 2 shows the linkage results for the
ECG traits, which yielded a total of five regions with suggestive
LOD scores (LOD > 1.9). QT was suggestively linked to two
regions, on chromosome 1 (LOD = 2.63) and on chromosome 2
(LOD= 2.05). A suggestive LOD score for QRS was observed on
chromosome 1 (LOD= 2.52) and, for PR, two suggestive regions

3http://varianttools.sourceforge.net/Annotation/DbNSFP
4http://snp.gs.washington.edu/SeattleSeqAnnotation/
5https://www.ingenuity.com/wp-content/themes/ingenuity-qiagen/pdf/ipa/ipa_
datasheet.pdf
6http://www.ncbi.nlm.nih.gov/geo/geo2r/
7http://genenetwork.nl:8080/GeneNetwork
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TABLE 1 | Descriptive statistics of the linkage, exome sequence, and replication populations.

Linkage Studies Exome sequence Exome array

ERF = 1860 ERF = 1212 Rotterdam Study = 2300

Mean (SD) Minimum Maximum Mean (SD) Minimum Maximum Mean (SD) Minimum Maximum

Males (n, %) 775 (42%) 488 (40%) 1012 (44%)

Age (years) 46.4 (13.8) 16.6 85.3 47.4 (14.0) 18.2 86.1 67.9 (8.1) 55.0 101.0

BMI (kg/m2) 26.6 (4.6) 15.5 61.8 26.6 (4.4) 15.5 61.8 26.2 (3.6) 14.3 44.2

Height (cm) 167.4 (9.1) 143.6 196.5 166.8 (9.1) 141.0 196.5 167.4 (9.4) 137.0 198.0

Weight (kg) 75.9 (15.1) 41.9 161.0 74.2 (14.5) 42.1 161.0 73.6 (11.9) 40.0 130.8

SBP (mm Hg) 137.7 (19.1) 85.5 217.0 138.0 (19.3) 85.5 239.0 139.5 (21.7) 82.0 231.0

DBP (mm Hg) 79.6 (9.7) 54.5 120.0 79.3 (9.7) 53.5 127.5 73.8 (11.0) 36.0 129.0

Hypertension 766 (41%) 517 (43%) 1133 (49%)

PR 152.0 (22.4) 92.0 308.0 152.8 (22.4) 96.0 308.0 165.5 (20.8) 102.0 220.0

QT 403.1 (22.4) 336.0 531.0 403.6 (22.0) 336.0 531.0 396.6 (28.5) 282.0 516.0

QRS 96.8 (9.9) 68.0 120.0 96.8 (9.9) 68.0 120.0 96.9 (10.6) 68.0 120.0

Mean and standard deviation (SD) are given for the continuous measurements and number (percentage) is given for the categorical variables. BMI, body mass index;
SBP, systolic blood pressure; DBP, diastolic blood pressure; QT, Bazett’s corrected QT interval; SD, standard deviation.

FIGURE 1 | Suggestive linkage peaks for ECG traits in ERF.
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were located on chromosomes 9 and 14 with LOD scores of 2.20
and 2.29, respectively (Supplementary Table 2). Plots of the linked
regions are shown in Figure 1.

Our analysis of coding variants in these linked regions
revealed 55,050 variants in coding regions of genes under the
peaks, as described in Table 2. Of these mutations, 1334 had a
frequency less than or equal to 5%, 437 were predicted to be
damaging by at least two of the prediction software packages
used, and six were nonsense variants. By linkage peak, there
were 207 missense damaging mutations and two nonsense
mutations on 1q24 and 113 missense damaging mutations and
two nonsense mutations on 2q32 for QT; 51 missense mutations
and one nonsense mutation on 1p36 for QRS; and 29 missense
mutations on 9q21 and 31 missense mutations and one nonsense
mutation on 14q12 for PR. In total, 21 variants had nominal
regression P-values less than 0.05 (the smallest P-values under
each linkage peak were P = 2.8 × 10−4 for QT on chromosome
1, P = 2.3 × 10−2 for QT on chromosome 2, P = 2.6 × 10−2

for QRS on chromosome 1, P = 1.9 × 10−2 for PR on
chromosome 9, and P = 1.9 × 10−2 for PR on chromosome
14) without reaching the significance levels needed to account
for multiple comparisons (Supplementary Table 3). Looking for
known genes under the linkage peaks (Supplementary Table 4),
we found two variants previously related to heart failure, TTN
(rs72648923; P = 5.5 × 10−2, MAF = 1.4 × 10−2) and HSD3B1
(P= 3.9× 10−2 MAF= 1.1× 10−2). Neither achieved statistical
significance after Bonferroni correction, although both genes
were marginally associated with QT. Only a single variant, a
C > G (Ser > Cys) variant in FCRL2 (rs74608430; P= 2.8× 10−4,
MAF = 1.9 × 10−2), approached the Bonferroni threshold for
multiple-testing (P = 1.5 × 10−4). This variant, under the
linkage peak on chromosome 1q23.1 for QT, is highly conserved
(scorePhastCons = 0.998) and also predicted by PolyPhen-2 to
be damaging (0.999). In the whole ERF population, rs74608430
explained 2.42% of the heritability of QT (reducing the LOD
to 1.1; h2

= 0.87%; P = 0.02). This finding was not replicated
in the RS (P = 0.12, β = 0.14). A sequence kernel association
test analysis of the gene also failed to achieve significance in the
replication sample (P = 0.44).

Not much is known about the function of FCRL2. Among
the functions predicted by Gene Network are the regulation of
cytosolic Ca2+ levels (P = 3.3 × 10−3) and AMPK stimulated
fatty acid oxidation in muscle (P = 4.1 × 10−3). In the GEO
database, FCRL2 expression was higher in AF (Barth et al., 2005;
Yeh et al., 2013). Supplementary Figure 1A shows the genes co-
expressed with FCRL2, according to Gene Network. Two genes
that have been associated with ECG outcomes by GWAS emerge:
ARHGAP24, associated with PR, and SETBP1, associated with
QRS (Holm et al., 2010; Pfeufer et al., 2010; Sotoodehnia et al.,
2010). In the chromosome 1 region linked to QT, looking for
co-expression, we found correlations between DMRTA2, CEP350,
and MPL with genes previously associated with ECG traits:
DMRTA2 is co-expressed with LRIG1, a QRS associated gene
(Supplementary Figure 1B); MPL is in a module with MEIS1,
associated with PR (Supplementary Figure 1C); and CEP350
interacts with CREBBP, associated with QT (Supplementary
Figure 1D). These three genes are not in linkage disequilibrium
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with each other. At the chromosome 2q34 locus linked with QT,
a heart failure gene, TTN, was under the linkage peak. According
to Gene Network analysis, expression of TTN is related to
expression of three previously known QT genes (ATP1B, TCEA3,
and PLN) and two QRS and PR associated genes (TBX20 and
TBX5) (Supplementary Figure 1E) (Holm et al., 2010; Pfeufer
et al., 2010; Sotoodehnia et al., 2010; Arking et al., 2014).
Additionally, SPHKAP, on chromosome 2 under the QT linkage
peak, is co-expressed with TBX5 (Supplementary Figure 1F).

DISCUSSION

Linkage analysis is an important tool for the identification
of genomic regions influencing trait variability. The role of
TPM1 mutations with sudden death is a clear example of a
locus discovered by linkage analysis (Ott et al., 2011; Mango
et al., 2016). The advantages of family studies include control
of heterogeneity and population stratification (Reich et al.,
2005; Ott et al., 2011). We performed a linkage study on ECG
measurements and identified five suggestive regions (1p35.1,
1q24.2, 2q34, 9p22.2, 14q11.2). Rare variant analysis in these
regions uncovered two genes related to heart failure, TTN
(P = 5.5 × 10−2) and HSD3B1 (P = 3.9 × 10−2) and one gene
with unknown cardiac function FCRL2 (P = 2.8 × 10−4). None
of them reaches statistical significance level after correction for
multiple comparisons.

This study was conducted in a large, well-characterized family-
based cohort, ascertained on the basis of genealogy and not
phenotype. Multiple levels of genetic data, including a linkage
panel and exome sequence data, provided a powerful dataset
for identifying variants that may not be easily discovered with
GWAS. Unfortunately, exome data was not available in the whole
cohort, which could limit our ability to identify causal variants.
Additionally, the sequence data did not include extra-genic or
intronic variants that may be responsible for the observed linkage
peaks.

Our analysis of rare coding variants in these linkage regions
revealed 55,050 variants in coding regions. One thousand three
hundred and thirty-four of these mutations had a frequency less
than or equal to 5% and 437 were predicted to be damaging;
none reached the significance threshold accounting for multiple
comparisons. These variants spanned genes, including TTN and
HSD3B1, which have been previously related to CVDs. HSD3B,
a gene on chromosome 1 (1p13.1), has two isoforms (HSD3B1
and HSD3B2) that were found to be associated with an increase
in plasma aldosterone (Shimodaira et al., 2010). Changes in
circulating aldosterone levels can modulate BP and hypertrophy
(HT). A genome wide linkage analysis revealed that HSD3B1 is a
locus for BP variation (Shimodaira et al., 2010).

Another interesting gene covered by these variants was TTN;
this gene encodes a sarcomeric protein named Titin, with
a crucial role in sarcomeric structural integrity and muscle
elasticity. Mutations in TTN have been shown to cause heart
failure in humans. Additionally, mouse models with TTN
mutations exhibit weak heart contractility and heart failure
(Gerull et al., 2002; Xu et al., 2002; May et al., 2004) and hearts of

mutant embryos displayed weak spontaneous contraction (May
et al., 2004). Additionally, the TTN network includes three QT
associated genes, ATP1B, TCEA3, and PLN; TBX320, a QRS
associated gene; and TBX5 (a QRS and QT associated gene).

We also identified a less frequent C > G missense variant
(rs74608430) in the FCRL2 gene under the linkage peak on
chromosome 1p23.1. This variant explains 2.42% (h2

= 0.87%,
P = 0.02) of the total genetic variance of QT (h2

= 36%) in the
ERF population. FCRL2 has not been previously described with
respect to cardiac function. Bioinformatics resources, however,
showed that FCRL2 expression is associated with ARHGAP24
and SETBP1 expression, two genes implicated in ECG variability
by GWAS. This suggests that FCRL2 may be relevant for heart
function. FCRL2 is expressed mostly in liver, heart, testis and
kidney8. Gene Network predicts that it may be relevant for
cytosolic Ca2+ levels and AMPK stimulated fatty acid oxidation
in muscle. These are plausible pathways for QT function. This
finding for rs74608430, however, was not replicated in the RS, in
which the MAF was 2.9× 10−2. The absence of replication could
be related to environmental differences influencing complex
gene-environment interactions between these two study groups
(Teo et al., 2009). Another plausible explanation is that, due to
longer stretches of linkage disequilibrium in the family-based
ERF sample, rs74608430 is tagging another variant in ERF and
this is not the case in the general population.

Further, Ingenuity analysis revealed that FCRL2 is correlated
with some microRNAs (such as miR-1263, miR337-5p, miR-
4699-3p, miR518e-3p, miR-507, miR3689a-5p, miR-507, miR-
3622a-5p, miR-450b-5p, miR-4720-3p, and miR-1253). Among
these, miR-337-5p is known to be differentially expressed in
patients with valvular heart disease and patients with chronic AF
(Cooley et al., 2012). This is consistent with the GEO database at
NCBI9, which suggests that FCRL2 is upregulated in patients with
AF and dilated cardiomyopathy. In summary, the bioinformatics
data available for this gene supports the hypothesis that FCRL2
may be involved in heart function, and, specifically, related to
ECG variability.

Additional interesting genes have been uncovered under the
linkage peaks. First, the PR linkage peak on chromosome 14
contains damaging variants in the alpha and beta subunits of
cardiac myosin MYH6 and MYH7. Previous studies showed
that genetic variants in these two genes have been found in
hypertrophic cardiomyopathy (Anan et al., 1994; Lankford et al.,
1995; Rayment et al., 1995; Niimura et al., 2002; Carniel et al.,
2005), dilated cardiomyopathy (Kamisago et al., 2000; Carniel
et al., 2005) and atrial septal defect (Ching et al., 2005). Second,
we found TNNT2 under the linkage peak on chromosome 1 for
QT, which harbors known mutations underlying hypertrophic
cardiomyopathy (Thierfelder et al., 1994) and familial dilated
cardiomyopathy (Kamisago et al., 2000).

No explanatory variants were found for the other loci, for
which there are a number of potential explanations. Linkage
peaks are not precise in highlighting the location of the causal
variant; even the region of interest cannot be easily pinpointed.

8http://www.bioinfo.mochsl.org.br/miriad/gene/FCRL2/
9http://www.ncbi.nlm.nih.gov/geo/
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Additionally, we did not take into account alternative forms of
genetic variation, such as structural and copy number variations
(CNVs) or repeats in the linkage regions. Lastly, causal rare
variants may be located outside the coding sequence, which we
did not include in our sequencing analyses.

CONCLUSION

Although the combination of linkage and exome sequencing
did not lead to the identification of a causal variant, suggestive
linkage regions contain a number of plausible candidate genes,
including FCRL2, TTN, MYH6, MYH7, TNNT2, and HSD321.
Further analysis will need to be performed to demonstrate
the involvement of these proteins in ECG measurements.
We could not explain these with exonic sequence variants,
so they will require more extensive follow-up, but provide
potentially important indicators of the location of variation
influencing ECG.
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