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This commentary explores the hypothesis that when autoimmunity leads to a fall of beta

cell mass during the progression of type 1 diabetes (T1D), rising glucose levels cause

major changes in beta cell identity. This then leads to profound changes in secretory

function and less well-understood changes in beta cell susceptibility to autoimmune

destruction, which may influence of rate of progression of beta cell killing.
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COMMENTARY

There are important unanswered questions about what happens to pancreatic beta cells during the
progression of type 1 diabetes (T1D). The process can evolve over many years from the appearance
of beta cell autoantibodies, which is thought to result from injury by cytotoxic T cells, to the
development of hyperglycemia, which is then typically followed by killing of the vast majority of
beta cells. Some of the critical questions are: What happens to beta cell mass and function over
time? What happens to beta cell vulnerability when its phenotype changes in response to rising
glucose levels? What makes a beta cell a target? Why are only some cells being killed at any given
time? How much regeneration occurs as the autoimmune process proceeds? These fundamental
questions cannot be fully answered until we have a better understanding of the variations of beta
cell identity that change over time.

THE BETA CELL AS A MOVING TARGET DEPENDING ON CELL

IDENTITY

The importance of beta cell heterogeneity is becoming increasing obvious (Pipeleers, 1987; Bader
et al., 2016; Dorrell et al., 2016). These variations in cell identity must be accompanied by changes
in function and susceptibility to immune killing. Certainly there are differences depending on the
age of a cell, such as new cells that come from self-duplication, cells that originate from neogenesis,
or cells that might be considered middle-aged, senescent, or close to death. There must be a variety
of other factors that contribute to heterogeneity. For example a beta cell that is adjacent to an alpha
or delta cell may well differ because of paracrine influences unlike those in the center of the beta
cell core. In spite of this well-documented beta cell heterogeneity, there is striking homogeneity
of some aspects of function. For example, with even modest hyperglycemia the first phase insulin
response to glucose is completely shut off in essentially every beta cell.
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RATE OF DECLINE OF BETA CELL MASS

Although, limited by our inability to measure beta cell mass
as the disease progresses, we know that the rate of loss can
differ greatly (Giannopoulou et al., 2015; Hao et al., 2016). A
child developing T1D before 1 year of age clearly has a process
of rapid beta cell destruction. In contrast another child may
have autoantibodies at age two indicating that the process has
begun; yet hyperglycemia may only appear 10 years later during
adolescence. It is not uncommon for there to be a remission at
that time with near normal insulin secretion usually measured
as C-peptide. As a rough estimation, it may be that beta cell
mass has fallen to 30–40% of normal with more insulin being
secreted by whatever beta cell mass is remaining. We know that
beta cell mass falls more rapidly once diabetes is diagnosed, most
notably during childhood or adolescence. However, individuals
diagnosed later, such as in their 20s or 30s will typically have
a slower decline beta cell mass (Greenbaum et al., 2012). It
is becoming more apparent that there is intensification of the
autoimmune process as suggested by the increased appearance
of both the types and increased titers of autoantibodies. The
appearance of methylated insulin DNA in the circulation is a
marker of beta cell death (Herold et al., 2015; Lehmann-Werman
et al., 2016). During the progression of autoimmunity the levels
of this marker fluctuate but are higher shortly before diagnosis,
which suggests intensification of the attack. Another example of
very rapid killing was shown when the pancreas of an identical
twin without T1Dwas transplanted into the other twin with T1D;
the beta cells were mostly destroyed in just weeks, while the rest
of the pancreas presumably had no allograft rejection (Sutherland
et al., 1989). We must be careful, however, about equating the
titers of antibodies with intensity of beta cells killing because
titers can fall while progression due to attack from CD8+ cells
appears to continue (Martinuzzi et al., 2008).

THE DISTRIBUTION OF ISLET

INFLAMMATION

Examination of pancreases from people with T1D at various
stages shows that few islets can be found with histological
evidence of inflammation (Gepts, 1965; In’t Veld, 2011, 2014;
Campbell-Thompson et al., 2013). With some of these islets
lymphocytes can sometimes be found just at the periphery, while
in others the lymphocytes and other inflammatory cells can be
found throughout the islet as beta cells are selectively killed.
While the vast majority of islets have no evidence of insulitis,
there are entire lobes completely free of visible inflammation
(Gepts, 1965). Thus, depending on the stage of the process one
finds normal looking islets and increasing numbers of pseudo
atrophic islets containing mostly non-beta islet cells. This raises
very interesting questions. Why do only a small number of islets
show evidence of active autoimmune attack? Why should the
islets of some lobes be completely spared at a point in time? How
long can the surrounding lymphocytes maintain their position
before entering the beta cell domains of the islet? And of course
a very important question is: How long does it take from the

appearance of lymphocytes around the islet until the beta cells
are wiped out. In NODmice, the killing takes place in a matter of
weeks. Can the process have similar timing in human T1D?

There may be an explanation for the finding that some
lobes have no evidence of islet inflammation. We know that
pancreas weight increases along with the weight of other organs
until growth stops shortly after adolescence (SBW, unpublished).
Pancreatic growth occurs to a large extent by the formation of
new lobes that include ducts, acini, and islets. Thus, it seems
plausible that the older islets contained in older lobes are for some
reason attacked first. Newly born cells as would be found in new
lobes may go through a long period of maturation before they are
recognized by the immune system.

Much is being learned about the cellular composition of
inflammation in human islets. The cells surrounding the islets
consist of CD8+ and CD4+ T cells as well as neutrophils and
macrophages. As cytotoxic CD8+ T cells enter the islet, they are
accompanied by B-cells (CD20+), which can be characterized as
being either CD20Hi or CD20Lo. It is becoming apparent that a
dominance of CD20Hi cells is associated with more aggressive
and rapid killing (Morgan et al., 2014; Gomez-Tourino et al.,
2016). A detailed summary of these cellular changes is beyond
the scope of this chapter, but there is the concept of a “balanced
autoreactive set-point” that refers to the balance between pro-
inflammatory cells CD4+ cells secreting INF-gamma and/or
IL-17 vs. CD4+ cells secreting IL-10 and or TGF-beta that have
a regulatory suppressive effect (Gomez-Tourino et al., 2016). It
seems entirely possible that rising glucose levels could change this
balance.

THE RELATIONSHIP OF HYPERGLYCEMIA

TO BETA CELL FUNCTION AND

SUSCEPTIBILITY TO AUTOIMMUNITY

On one hand we know that beta cells exposed to even very
slightly elevated glucose levels will undergo major changes in
secretory function and phenotype (Jonas et al., 1999; Laybutt
et al., 2003). Moreover, this change in phenotype, which becomes
more marked as glucose levels rise, seems likely to be associated
with changing vulnerability to autoimmunity.

With rising glucose levels, the changes in beta cell phenotype
are probably very similar in all forms of diabetes whether
T1D, T2D, or monogenic. The suggestion that insulin secretory
function was altered by high glucose levels was first shown when
rodent islets cultured at high glucose levels were found to have
high basal insulin release and impaired insulin responses to acute
increases in glucose levels (Andersson, 1974), a finding recently
confirmed in cultured human islets (Henquin et al., 2015). This
concept was best shown in the human in vivo studies of Brunzell
et al. (1976), in which fasting glucoses only just above 100
mg/dl are associated with reduced first phase insulin responses
to intravenous glucose; and when above only 114 mg/dl, the
response is completely gone. These findings have now been
replicated in many other studies. There are some studies, which
conclude that β cell dysfunction can precede hyperglycemia
(Weyer et al., 1999), but these studies did not rigorously exclude
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a contribution from mild dysglycemia. To conclude that glucose
levels are truly “normal,” more is required than glucose tolerance
tests and measuring fasting glucose levels. Similar results have
been found in animal studies. A study by Laybutt et al. (2003)
showed that after a 90% pancreatectomy in rats, many of the
rats maintained what might look like “normoglycemia,” but
dysglycemia was clearly present. The beta cells of these rats were
found to have major changes in gene expression, which was
almost certainly the result of the changes in glycemia, a process
often called glucose toxicity (Weir and Bonner-Weir, 2013).
Some argue that lipotoxicity and/or glucolipotoxicity contribute
to these changes, but data showing adverse effects of free fatty
acids or other lipid moieties on beta cells are largely based on in
vitro studies, and the case for this occurring in vivo has only weak,
if any, support.

Subjects with pre-T1D subjects have been found to have
diminished first phase insulin responses in response to glucose
shortly before obvious hyperglycemia develops. Originally
studied by the Eisenbarth group, these subjects with reduced
first phase insulin responses usually were found to have only
modest dysglycemia (Ziegler et al., 1990) that did not even
reach the definition of glucose intolerance This impairment of
first phase release is very similar to what has been found as
glucose levels rise during the progression to T2D. Thus, it seems
highly likely that this beta cell abnormality in pre-T1D was
caused by hyperglycemia. It is difficult to accept some alternative
suggestions, such as this being due to either local inflammation or
circulating cytokines because the insulitis in this stage of T1D is
so patchy, and it is hard to imagine that circulating cytokine levels
are high enough to produce such an effect. There are countless
papers showing that inflammatory cytokines can kill beta cells in
vitro, but we need to be careful about equating the doses used
in these studies with what is actually occurring in vivo. It is
logical to think that cytokines are responsible for β cell killing
and dysfunction in islets that are full of lymphocytes, but these
islets are few and far between.

BETA CELL CHANGES DRIVEN BY

HYPERGLYCEMIA COULD MAKE THEM A

MORE VULNERABLE TARGET TO

AUTOIMMUNITY

In 2008, Skowera et al. wrote, “It has long been speculated that
β cells, stressed by the need to control blood glucose levels
as diabetes develops, could become enhanced targets for the
immune system” (Skowera et al., 2008). This group suggested that
two naturally processed epitopes from the human preproinsulin
signal peptide were increased by high glucose and served as
targets for autoreactive cytotoxic lymphocytes. Thus, there are
many ways in which rising glucose levels could influence the
autoimmune process. The change in beta cell phenotype that
occurs with mild dysglycemia could be associated with the
appearance of a variety of new and important autoantigen
derived epitopes (Delong et al., 2016; Gomez-Tourino et al.,
2016). It is possible the glucose-driven endoplasmic reticulum
stress or oxidative injury could be involved in the appearance

of neoepitopes. Another change driven by glucose could be the
release of chemokines such as CXCL10, MCP1, and MIP-1alpha
by beta cells that might attract immune cells (Morgan et al.,
2014). In addition there are a wide variety of other mechanisms
involved in protection and vulnerabity that could be altered in
this situation.

While it is tempting to think that phenotypic changes resulting
from hyperglycemia should make the beta cell more vulnerable,
some protective factors may be in play. When studying rat
islets exposed to in vivo hyperglycemia following 90% partial
pancreatectomy, we found that the beta cells were actually more
resistant to streptozocin killing (Laybutt et al., 2002). Clearly this
issue of beta cell vulnerability needs more study.

CHANGES IN BETA CELL VULNERABILITY

THAT ARE INDEPENDENT OF

HYPERGLYCEMIA

When beta cells are attacked by autoimmunity, it makes sense
that some would succumb more quickly than others. We know
that β cells are heterogeneous even in normal pancreases, so
this is yet another variable that can account for differential
vulnerability. Simply put, there must be a normal ratio of
vulnerable cells to resistant cells, and when autoimmunity
progresses, the relative number of residual resistant cells should
increase. However, the complexity and intensity of the assault
appears to increase, so that even resistant cells are eventually
killed. There has been great interest in the possibility that there
are populations of beta cells that survive autoimmunity, this
possibility being raised by finding that beta cells can virtually
always be found in the pancreases of individual even decades
after the onset of T1D (Keenan et al., 2010). These beta cells
are very few in number and many of these individuals had no
measurable circulating C-peptide. Evidence suggests that a low
rate of neogenesis occurs throughout life (Bonner-Weir et al.,
2010), so a more attractive explanation is that these residual beta
cells are newly born and then killed once they develop a certain
of level of maturity.

HOW MUCH BETA CELL REGENERATION

MIGHT TAKE PLACE AS AUTOIMMUNITY

PROGRESSES?

As was written by the pathologist Shields Warren in 1938: “The
pancreas in diabetes is not simply the scarred field of an old
battleground, but is the actual field of conflict. It does not submit
without a struggle to injury, but endeavors to regenerate.” We
know that human beta cells can replicate, particularly during
childhood. We also know that adult human beta calls can
replicate although we do not know to what extent. Ki67 marks
cells that enter cell cycle and in pancreases obtained from
adult subjects it is common to find that 0.05% of beta cells
can be stained for Ki67. The big question is how many of
these cells actually divide to produce two new cells? We also
know that replication of human beta cells can be enhanced by
hyperglycemia, so one would expect that as beta cell mass falls
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progressively due to autoimmunity and glucose levels start to
rise, residual beta cells would be pushed to replicate, particularly
in young subjects. A very instructive study published in 1907
reported the presence of islets with a large diameter in the
pancreas of a 10-year-old boy who died of diabetes. The mean
islet size was 240 × 188 µm whereas the mean diameter in
five normal subjects was 157 × 146 µm. Because we know that
increased demand from experimental insulin resistance leads to
beta cell hyperplasia and increased islet diameter, it makes sense
that the same process occurs as T1D develops.

The possibility that there is increased islet neogenesis is much
less certain. With pancreas growth or regeneration, we think
that all of the anatomical components of the pancreas increase,
most obviously new ducts, acini, and islets. It is less apparent as
to why islet neogenesis should be specifically stimulated in the
absence of growth of these other pancreatic components. It has
not yet been shown convincingly that increased glucose levels
stimulate pancreatic duct cells to differentiate into new islet cells.
Nonetheless, some provocative findings have been reported. In
autopsy pancreases of subjects with insulin resistance, increased
numbers of cells in ducts that are co-stained for insulin and
cytokeratin have been described (Yoneda et al., 2013; Mezza
et al., 2014). Moreover, in pregnancy, which is a state of insulin
resistance, small collections beta cells have been found that could
have originated from neogenesis (Butler et al., 2010). However,
it is difficult to exclude the possibility that these result from
hyperplasia of small extra-islet nests of beta cells.

HYPERGLYCEMIA LEADS TO REVERSIBLE

IMPAIRMENT OF INSULIN SECRETION

The adverse effects of hyperglycemia on insulin secretion have
been clearly shown in animal models and human T2D, and
although less thoroughly studied in T1D, it is becoming clear
that similar beta cell changes take place with all forms of diabetes
(Weir and Bonner-Weir, 2013). The most striking defect is the
loss of first phase insulin secretion to a glucose challenge. In
spite of the presence of such a profound defect, glucose levels
can remain in the state of glucose intolerance for many years.
The glucose levels remain only slightly elevated because there
is some second phase insulin secretion in response to glucose
and the beta cells also receive parasympathetic stimulation from
the cephalic activation, as well as receiving further stimulation
from gut hormones such as gastrointestinal inulinotropic peptide
(GIP) and glucagon-like peptide 1 (GLP-1). As beta cell mass
falls and glucose levels rise further and insulin secretion becomes

more impaired by glucose toxicity. It appears that secretion over
24 h can be reduced to only about 30% of normal, as deduced
from the improvement of secretion that occurs in T2D when
subjects are aggressively treated with insulin (Garvey et al., 1985).
Thus, the glucose toxicity effect can be reversed when glucose
levels are lowered, as is also very well shown when subjects
with T2D normalize glucose levels by undergoing gastric bypass
surgery (Polyzogopoulou et al., 2003).

The same kind of secretory changes can be seen in T1D, as
strongly suggested by a study in Brazil that employed autologous

bone marrow cells transplants with strong immunosuppression
in an attempt to reset the immune system in subjects with
new-onset T1D. An impressive number of remissions were
obtained, which were associated with large increases in C-peptide
secretion (Couri et al., 2009). It is highly doubtful that there
was enough beta cell regeneration to account for this increase
in secretion so relief of glucose toxicity appears to be the most
logical explanation to account for a major part of the improved
secretion. These findings have important practical ramifications,
because as long as there are some significant number residual
beta cells in recent onset T1D, or even with islet and pancreas
transplantation, reduction of glucose levels with treatment will
lead to improved endogenous insulin secretion.

SUMMARY

The main point of this commentary is to argue that when
autoimmunity leads to a fall of beta cell mass in the
progression of T1D, rising glucose levels cause major changes
in beta cell identity. This then leads to profound changes in
secretory function and less well understood changes in beta cell
susceptibility to autoimmune destruction. This latter process
should receive more attention.
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