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Background: Genetic factors impact alcohol use behaviors and these factors may

become increasingly evident during emerging adulthood. Examination of the effects

of individual variants as well as aggregate genetic variation can clarify mechanisms

underlying risk.

Methods: We conducted genome-wide association studies (GWAS) in an ethnically

diverse sample of college students for three quantitative outcomes including typical

monthly alcohol consumption, alcohol problems, andmaximum number of drinks in 24 h.

Heritability based on common genetic variants (h2SNP) was assessed. We also evaluated

whether risk variants in aggregate were associated with alcohol use outcomes in an

independent sample of young adults.

Results: Two genome-wide significant markers were observed: rs11201929 in GRID1

for maximum drinks in 24 h, with supportive evidence across all ancestry groups; and

rs73317305 in SAMD12 (alcohol problems), tested only in the African ancestry group.

The h2SNP estimate was 0.19 (SE = 0.11) for consumption, and was non-significant

for other outcomes. Genome-wide polygenic scores were significantly associated with

alcohol outcomes in an independent sample.

Conclusions: These results robustly identify genetic risk for alcohol use outcomes at the

variant level and in aggregate. We confirm prior evidence that genetic variation in GRID1

impacts alcohol use, and identify novel loci of interest for multiple alcohol outcomes in

emerging adults. These findings indicate that genetic variation influencing normative and

problematic alcohol use is, to some extent, convergent across ancestry groups. Studying

college populations represents a promising avenue by which to obtain large, diverse

samples for gene identification.
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INTRODUCTION

Alcohol use phenotypes are genetically influenced, with
heritability for alcohol use disorder typically estimated at around
50% in twin and adoption studies (Heath et al., 1997; McGue,
1999; Prescott and Kendler, 1999; Verhulst et al., 2015). Other
alcohol-related phenotypes, such as initiation of use, typical
consumption, maximum number of drinks consumed in a day,
or initial response to alcohol, are also modestly to moderately
heritable (Fowler et al., 2007; Poelen et al., 2009; Agrawal et al.,
2011; Kalu et al., 2012). As these measures constitute steps along
the trajectory to alcohol problems among some individuals,
elucidating their genetic etiology is important.

Many genome-wide association studies (GWAS) have
been conducted for diagnostic alcohol outcomes (e.g., alcohol
abuse/dependence or symptom count; Treutlein et al., 2009a;
Bierut et al., 2010; Edenberg et al., 2010; Kendler et al.,
2011b; Wang et al., 2013; Gelernter et al., 2014). Overall,
these investigations have not enjoyed the same success
in large-scale gene-identification efforts as, for example,
schizophrenia (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014). Quantitative phenotypes are more
statistically powerful than binary outcomes in general population
samples and have also been the subject of recent genome-wide
studies (e.g., Heath et al., 2011; Schumann et al., 2011; Pan et al.,
2013; Kos et al., 2014; Edwards et al., 2015). In some cases,
associations surpassing stringent genome-wide significance
criteria have been observed (Schumann et al., 2011; Pan et al.,
2013), though robust replication has not been reported.

Although, robust and replicated variant level associations
have yet to be discovered for alcohol related measures, most
GWAS have supported the hypothesis that these phenotypes are
classic quantitative genetic traits, influenced by many variants
(hundreds to thousands) of individual small effect. Methods that
examine the aggregate effects of common variants represent an
important complement to analyses based on single markers (e.g.,
primary GWAS results) and support the results from twin and
family studies. Heritabilities based on common markers using
unrelated individuals have been reported including an alcohol
problems score in Dutch adults (0.33; Mbarek et al., 2015), and
maximum drinks in 24 h and alcohol use disorder (AUD) (0.32
and 0.34, respectively; Kos et al., 2014) in a modestly sized
sample of Mexican-American adults. However, in a UK sample
of emerging adults, a heritability estimate of 0.05 for alcohol
problems was non-significant (Edwards et al., 2015).

Most prior GWAS have focused on alcohol outcomes in
mature adults, and less is known about the transition period
between adolescence and young adulthood. Alcohol use increases
across adolescence, with consumption, risky drinking, and
alcohol use disorders all peaking in young adulthood (SAMHSA,
2014). Longitudinal studies indicate that heritability estimates for
alcohol use and problems also increase across adolescence and
generally reach the levels observed in adults during emerging
adulthood (Rose et al., 2001; Palmer et al., 2013; Samek et al.,
2013), though there is some suggestion from cross-sectional
and/or retrospective studies that heritability may continue to
increase slightly across adulthood (Bergen et al., 2007; Kendler

et al., 2007; Hansell et al., 2008). During emerging adulthood
there is also a shift in the nature of genetic influences on
substance use outcomes, as it is during this time frame that
genetic factors become more substance-specific (Vrieze et al.,
2012) and less related to overall externalizing behavior (Kendler
et al., 2011a; Edwards and Kendler, 2013; Meyers et al., 2014).
Thus, emerging adulthood is a critical time frame for clarifying
alcohol use etiology.

Here, we examine problematic and normative alcohol use
in a population-based sample of US emerging adults. The Spit
for Science (S4S) sample (Dick et al., 2014) was recruited at
a large, urban university as part of a study on alcohol use
and other health-related behaviors. In addition to emerging
adulthood being an important period for clarifying the etiology
of alcohol use outcomes, there is evidence that college students
drink more than their non-college attending peers (Quinn
and Fromme, 2011), and that the college environment actually
enhances the degree to which genetic influences are important
for alcohol consumption (Timberlake et al., 2007). Accordingly,
this population presents an opportunity to readily obtain
large samples in order to assess genetic influences on alcohol
outcomes. The Spit for Science sample’s ethnic diversity further
enables us to assess whether genetic effects are consistent across
ancestry groups.

Three cross-sectional alcohol outcomes were assessed: typical
consumption, maximum drinks in 24 h, and a quantitative
measure of alcohol problems, which have been demonstrated to
be phenotypically and genetically correlated (Kendler et al., 2010;
Dick et al., 2011). A series of analyses investigate the effects of
individual variants as well as aggregate measures of genetic risk.
These effects are tested for replication in an independent sample.

METHODS

Sample
Spit for Science is an ongoing longitudinal study of college
students enrolled in a large, urban university in the Mid-Atlantic,
as previously described (Dick et al., 2014). Briefly, incoming
students age 18 or older were eligible to complete phenotypic
assessments, which covered a wide range of topics but focused
on alcohol use. Study data were collected and managed using
REDCap electronic data capture tools (Harris et al., 2009) hosted
at Virginia Commonwealth University. Follow-up assessments
were completed in subsequent spring semesters. Individuals who
did not participate in the first wave of data collection (including
those who turned 18 after the end of the first wave of data
collection) had the opportunity to join the study the following
spring; those who participated during their first year were eligible
to complete follow-up assessments each spring. Participants who
completed the phenotypic assessments were eligible to provide
a DNA sample. The current study includes three cohorts, which
matriculated in Fall 2011 (N = 2,714), 2012 (N = 2,486), and
2013 (N = 2,403), for a total N = 7,603. Of these, 98% provided
a DNA sample. As the current analyses are based on the data
capture after the Spring 2014 survey, data were available for 2–4
waves, depending on cohort. At wave 1 (61% female), the average
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(SD) age was 18.59 (0.61); at wave 2 (65% female), 18.99 (0.44);
at wave 3 (66% female), 19.94 (0.60); and at wave 4 (66% female),
20.93 (0.69).

Alcohol Use Variables
For the current study, three alcohol-related variables
were derived including a measure of past 30-day alcohol
consumption in grams of ethanol (Consumption), the
lifetime maximum number of drinks consumed in a 24-h
period (Maxdrinks), and an alcohol problems sum score
(Symptoms). Abstainers were not administered the alcohol-
related items and therefore were not included in any of the
current phenotypic and genetic analyses. Participants were
given the option of skipping questions therefore number
of participants varies across constructs. When a participant
had assessments from different waves, the highest score was
used.

Typical Consumption (Consumption)
Participants were asked to report on their drinking in the
past month with items regarding how frequently they drank
and how many drinks they typically consumed on a drinking
day. These items were combined to create a single measure
of grams of ethanol consumed in the last month, using a
method previously described (Dawson, 2000) and reported
for the current sample by Salvatore et al. (2016). Briefly, the
frequency and quantity variables were multiplied, and that
product was multiplied by 14 (corresponding to the number of
grams of ethanol in a standard alcoholic drink). Responses were
windsorized with a maximum value of 2,000 g to account for
unlikely responses. Values were natural log transformed (after
adding 1 to each value). Phenotypic data were available for 7,374
participants.

Alcohol Problems Sum Score (Problems)
In waves 1–4, participants who reported having ever consumed
alcohol were asked items related to DSM-5 (American Psychiatric
Association, 2013) alcohol use disorder criteria (e.g., “Have you
ever started drinking and become drunk when you didn’t want
to?”), with some criteria assessed using multiple items. For all
but 2 items, response options were “never,” “1–2 times,” or “3 or
more times,” which were scored 1, 2, and 3, respectively. Items
addressing craving and tolerance had response options of “no”
and “yes,” coded 0 and 1, respectively. Participants missing more
than half their data within a wave were coded as missing for
that wave. For each wave, sum scores were created and pro-
rated to account for the missingness (when at least half the data
was present) and data structure. For the first survey of wave 1,
only the seven DSM-IV alcohol dependence items were assessed.
None of the four alcohol abuse items were measured. Subsequent
surveys of wave 1 and all surveys for wave 2–4 included 11
DSM-V items which were modified to make them appropriate
for the participants in accordance with IRB guidelines that the
language be written at a 10th grade reading level. The highest
pro-rated score across all available waves was selected and natural
log-transformed (after adding 1), with data available for 6,082
participants.

Maximum Drinks in 24 h (Maxdrinks)
Participants were asked in waves 1–4 to report the highest
number of drinks they had ever consumed in a 24-h period,
with response options ranging from 1 to 24, plus “more than
24.” They could also opt not to answer or select “I don’t know,”
both of which were recoded as missing for the current analyses.
Data were available for 6,125 participants. We selected the
highest reported Maxdrinks for each individual, as well as the
participant’s age at that report for inclusion as a covariate in
genetic analyses.

Genotyping, Pre-imputation QC, and
Imputation
There were 6534 samples passing DNA and initial genotyping
QC. Genotyping was performed at Rutgers University Cell
and DNA Repository (RUCDR) using the Affymetrix BioBank
array (653 k variants) which contains both common GWAS
framework variants (296 k) for imputation and functional
variants (357 k) including rare high impact exome variants
(272 k), indels (18 k), eQTLs (16 k), and miscellaneous (51 k).
QC excluded Off Target Variants found by SNPolisher, single
nucleotide polymorphisms (SNPs) missing >5% of genotypes,
samples missing >2% of genotypes, and SNPs missing >2%
of genotypes after sample filtering, similar to the Psychiatric
Genomics Consortium (PGC; Schizophrenia Working Group
of the Psychiatric Genomics Consortium, 2014). This pre-
imputation QC removed 209 samples, leaving 6,325 samples
and 560,138 variants for imputation. Imputation was conducted
using SHAPEIT2 (Delaneau et al., 2013)/IMPUTE2 (Howie et al.,
2009) and the 1000 genomes phase 3 reference panel (n = 2,504)
(1000 Genomes Project Consortium et al., 2015; Sudmant et al.,
2015).

Ancestry Principal Components (PC)
1000 Genomes Project (1KGP) phase 3 variants (2,504 samples,
26 populations) found in common with the post QC filtered
S4S genotypes were merged together. Regions with high LD
were excluded (Price et al., 2006, 2008) and the common set of
variants was then pruned (r2 < 0.1) using PLINK 1.9 (Purcell
et al., 2007; Chang et al., 2015) (–indep-pairwise 1,500 150 0.1)
to yield 109,259 semi-independent variants for ancestry analyses.
EIGENSOFT/SmartPCA (Patterson et al., 2006; Price et al., 2006)
was used to perform PCA using only the 1KGP phase 3 reference
panel to determine SNP weights for each eigenvector. This
solution was then projected onto the S4S data to generate 10
principal components (PCs).

Genetic Based Population Assignment
S4S is ethnically diverse with self-identified census race/ethnicity
as follows: American Indian/Alaska Native (N = 35); Asian (N =

1223); Black/African American (N = 1464); Hispanic/Latino (N
= 450); More than one race (N = 467); Native Hawaiian/Other
Pacific Islander (N = 50); Unknown (N = 30); and White (N =

3763). Participants could also elect not to answer (N = 108). As
noted previously, the sample of participants corresponds closely
to the overall demographics of the university student population
(Dick et al., 2014).
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For genetic analyses, S4S subjects were empirically assigned
to 1KGP based ancestry super-populations. Briefly, using all
10 ancestry PCs, the Mahalanobis distance (Mahalanobis,
1936) between each S4S sample and each 1KGP population
(N = 26) without reference population outliers (>4 SD from
population median, N = 61) was calculated. Each subject was
then assigned to the 1KGP population with the minimum
Mahalanobis distance and then collapsed into their respective
super-population assignment. This empirically based ancestry
has several advantages to self-identified race/ethnicity including
reducing variance of the within group PCs and being able to
include “Unknown,” “More than one race,” and small groups
in the analysis without an increase in genomic inflation. There
were five final ancestry groups: African descent (AFR), American
descent (AMR), East Asian descent (EAS), European descent
(EUR), and South Asian descent (SAS).

Within Group Quality Control
Due to the diverse nature of S4S, filtering by Hardy-Weinberg
Equilibrium (HWE), minor allele frequency (MAF), and
relatedness were performed within empirically assigned super-
populations. Genome-wide IBD (Π̂) was calculated using PLINK
1.9. For each sample, the mean cross-sample Π̂ was calculated
to find samples showing excessive relatedness, which is where a
sample appears to be a cryptic relative to many other samples but
those samples do not appear related to one another. One hundred
and ninety four samples were excluded (>2.5 standard deviations
above the mean) as outliers for average relatedness with all other
samples. Clusters of probable relatives were defined using Π̂ >

0.1, Z0 >= 0.825, and Z1 < 0.175. The inclusion of Z0/Z1 is
important since Π̂ > 0.1 can be due to artifacts where Z2 > 0
which is extremely unlikely for cryptic relatives. Then the best
performing sample for each relative cluster was retained which
resulted in an additional 180 samples being excluded from the
GWAS sample.

The choice of ancestry PC covariates to include in each
super-population GWAS was determined by stepwise linear
regression for the specific phenotype being analyzed. Non-
ancestry covariates (sex and age) were forced to be kept in the
model while ancestry covariates were kept if they were retained
in the best fitting model as measured by AIC. This approach, of
only keeping PCs significant to a specific ancestry and phenotype,
increases parsimony and minimizes risk of over-fitting. We have
shown that there is no evidence of genomic inflation when this
parsimonious approach is taken.

SNPTEST (Marchini et al., 2007) v2.5.2 was used to conduct
association analyses under an additive model only including
markers with a minimum MAF of 0.005 and INFO of 0.5. Post
GWAS filtering was performed using ancestry specific HWE (p
> 10−6) and sample size based MAFs. Instead of using a fixed
MAF threshold for each group, the minimum observed minor
allele count (MAC) was used. Previous research has shown a
MAC of ∼40 is robust for most association analyses performed
in GWAS (Bigdeli et al., 2014). Post filtered GWAS results were
meta-analyzed using METAL (Marchini et al., 2007; Willer et al.,
2010) which implements a fixed effect model and inverse variance
weighting based on sample size. Markers available for fewer than

1,000 individuals after meta-analysis were excluded. Estimation
of genomic inflation (λ, λ1,000) for within super-population
GWAS and meta-analyses was performed in R (R Core Team,
2016). False Discovery Rate (FDR) analysis was performed using
the “q-value” package (https://github.com/jdstorey/qvalue) using
Bioconductor 3.2 (Huber et al., 2015). To define genomic bins
for follow-up, we started with all markers with a q< 0.5. Markers
were initially collapsed into bins if they were within 10 kb. Post-
hoc inspection showed several adjacent bins <75 kb apart which
were then collapsed into the reported bins.

GCTA
Genome-wide Complex Trait Analysis was used (Yang et al.,
2011) (GCTA) to estimate the proportion of phenotypic
variance attributable to observed (non-imputed) genetic variants
[V(G)/Vp, or h2SNP]. Genetic relationship matrices (GRMs) were
derived for each ancestry group. Within ancestry group, only
unrelated individuals were included in the GRM as in the GWAS,
resulting in the following sample sizes: AFR: N = 1339; AMR: N
= 582; EAS:N = 557; EUR:N = 3018; SAS:N = 455. An ancestry
group-specificMAF cutoff of 0.01 was applied. The same ancestry
PCs used in the GWAS analyses were included in the heritability
analyses.

Replication
Sample
We used the Avon Longitudinal Study of Parents and Children
(ALSPAC; Boyd et al., 2013; Fraser et al., 2013) to test for
replication of individual variants as well as at the aggregate
level. ALSPAC participants were born in 1991–1992 and
are predominantly of European descent (>96%). The total
ALSPAC sample included 15,247 pregnancies from women
residing in Avon, UK with expected due dates between April
1991 and December 1992, resulting in 15,458 fetuses. Of
this total sample, 14,775 were live births and 14,701 were
alive at 1 year of age. The study website contains details
of all the data that are available through a fully searchable
data dictionary (http://www.bris.ac.uk/alspac/researchers/data-
access/data-dictionary/). Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Committee, Bristol
University and Virginia Commonwealth University. Genetic data
are available for N = 8,237 individuals who meet quality control
filters.

Phenotypes
ALSPAC participants were administered a self-report
questionnaire that included alcohol use items at approximately
age 20.75. These items included questions about frequency of
alcohol use and average number of drinks per drinking day,
from which the Consumption variable is derived; DSM-IV and
AUDIT (Babor et al., 2001) items, from which a problems sum
score is derived; and maximum number of drinks in 24 h. Thus,
they corresponded quite closely to those administered to S4S
participants. Sample size varied across outcomes (Consumption
N = 3,150, Problems N = 2,906, and Maxdrinks N = 2,670) as a
function of attrition and alcohol use initiation.
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Genotyping
The ALSPAC sample was genotyped on the Illumina
HumanHap550 quad SNP genotyping platform by the Wellcome
Trust Sanger Institute (Cambridge, UK) and Laboratory
Corporation of America (Burlington, NC, US). Samples were
subjected to quality control filters as previously described
(Edwards et al., 2015). Data were imputed using a phased version
of the 1000 Genomes reference panel (Phase 1, Version 3),
using Impute V2.2.2 and all reference haplotypes to maximize
imputation quality.

Individual Variant Replication
For markers with q < 0.5 in the three meta-analysis results,
we extracted summary statistics from GWAS results of the
corresponding phenotype in ALSPAC. Due to differences in
allele frequencies across the discovery and replication samples,
summary statistics were not available for all markers.

Genome-Wide Polygenic Scores (GPS)
P-value threshold based polygenic scores (GPS) were calculated
in ALSPAC using the S4S GWAS results. Prior to GPS derivation,
we identified markers present in both the S4S and ALSPAC
genetic data with MAF > 0.01 and INFO > 0.5. We pruned
this list using the clumping function in PLINK 1.9 (Chang et al.,
2015) to identify independent loci. Clumping was conducted
based on the European subsample of the 1000 Genomes reference
panel, in two stages: the first used an r2 threshold of 0.5 and
a range of 250 kb; the second used an r2 threshold of 0.1
and a range of 5 mb. Markers selected were used to derive
GPS for ALSPAC participants, employing a series of p-value
thresholds as is customary. We derived GPS based on the Z-
scores (and associated p-values) from the METAL meta-analyses
as well as based on EUR-specific SNP regression coefficients (and
associated p-values), given the possibility that the latter might be
more predictive of outcome in the European ALSPAC sample. In
R (v3.2.3), we tested whether GPS were associated with alcohol
outcomes (Consumption, Problems, or Maxdrinks), controlling
for sex, using linear regression. Our analytic goal was to test
for association rather than to try to predict outcome, given the
sample sizes and expected genetic effect sizes (Dudbridge, 2013).

RESULTS

Descriptive Statistics
Mean values for each variable are reported in Table 1. Variables
were moderately inter-correlated (r = 0.42–0.58). The sample
consists of more women than men (60.8% female), though this
distribution is only slightly different than that of the student
population. Women reported lower levels of drinking for all
outcomes (p < 0.01). Sex was included as a covariate in genetic
analyses.

GCTA/Heritability Estimates
We used GCTA to calculate h2SNP for each of the three
phenotypes, separately by ancestry group. Results are provided in
Table 2. We next meta-analyzed these results across ancestries, as
several groups (AMR, EAS, and SAS) had limited sample sizes.

Meta-analytic results indicated that Consumption is modestly
heritable, while estimates for Problems and Maxdrinks were not
significantly different from zero at this age.

Primary GWAS Results
After applying filtering and meta-analysis, results were available
for 16,511,702, 15,625,945, and 15,724,050 markers for
Consumption, Problems, and Maxdrinks, respectively. For
each phenotype, results for 33–35% of the markers were only
testable (MAC> 40) in the AFR ancestry group due to frequency.
The meta-analyses showed no evidence of genomic inflation
with λ1,000s of 1.0001 (Problems), 0.9997 (Consumption), and
0.9994 (Maxdrinks). Across the three phenotypes, FDR analysis
showed 187 markers with q < 0.50. All markers with FDR q <

0.5 are listed in Supplementary Table 1, with summary statistics
and information on nearby genes. These 187 markers map to 53
genomic bins (Supplementary Table 1). Seven bins contained at
least one genome-wide significant (GWS; p < 5× 10−8) marker.
However, in all but one of these bins the signal was limited to the
AFR group. Using stricter genome-wide significance for samples
of African ancestry (p < 1 × 10−8), only one AFR specific bin
remained GWS.

The twomarkers robustly GWS are rs11201929 forMaxdrinks
(p = 4.11 × 10−9, q = 0.06) and rs73317305 for Problems (p
= 9.02 × 10−9, q = 0.11). rs11201929 is in the third intron of
glutamate ionotropic receptor delta type 1 (GRID1) and was of
sufficient frequency and quality to be tested in all five ancestry
groups. Figure 1 depicts the regional association plot for GRID1.
The direction of effect was consistent across ancestries, though
the strength of the association varied (rs11201929 p-values by
group: 5 × 10−7 AFR, 0.046 AMR, 0.07 EAS, 0.0067 EUR,
0.13 SAS). The other GWS marker, rs73317305 (Problems), is
in the second intron of sterile alpha motif domain containing
12 (SAMD12) on chromosome 8 and is rare in non-African
populations (MAFs: AFR 0.0898, AMR 0.0175, EAS 0, EUR
0.0021, SAS 0.0008; Figure 2).

For Consumption, the most strongly associated marker was
rs76541530 (p = 3.39 × 10−8, q = 0.10), which does not meet
our stringent genome-wide significance criterion for variants
informative only in the AFR group (p < 1× 10−8). This marker,
along with 12 others that map to the same genomic region on
chromosome 11, does not map to any known gene.

Replication in ALSPAC
For replication, we considered samples similar to S4S with respect
to age and/or alcohol phenotypes in order to minimize lack of
replication due to differences in ascertainment and phenotypes.
ALSPAC met these criteria due to being a sample similar in
age and the derived variables being nearly identical. Replication
was attempted for (1) individual variants with FDR q < 0.50
and (2) p-value threshold based polygene scores. Importantly,
only results based on equivalent phenotypes were examined (e.g.,
markers associated with Problems in S4S were not examined
for their association with Maxdrinks or Consumption). While
several variants with q < 0.50 exhibited nominal associations
(p < 0.05) in ALSPAC, we did not observe robust variant
level replication after correction for multiple testing for any
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TABLE 1 | Descriptive statistics for untransformed alcohol outcome

variables.

Alcohol

phenotype

Mean (SD) Range Correlations

Consumption Problems Maxdrinks

Consumptiona 262.34 (437.26) 0–2,000 1

Problemsb 20.59 (5.32) 16–48 0.47 1

Maxdrinks 9.81 (6.07) 1–30 0.58 0.42 1

aValues presented are for scores after imposing a cutoff at 2,000 g, prior to log

transformation.
bValues presented are prior to log transformation.

phenotype. Results are presented in Supplementary Table 2.
In contrast to specific SNP results, each GPS showed some
evidence for replication, with support varying across outcomes.
Consumption and Problems both showed nominal significance
(p < 0.05) for a wide (pthreshold 0.01 to 0.5) and narrow range
(pthreshold 0.01) of thresholds, respectively. The Maxdrinks PRS
was robustly associated (p < 0.005) across a wide range of
thresholds (pthreshold 0.05–0.5) Further details are provided in
Table 3. Variance accounted for by the scores was low (<1%)
for Consumption and Problems; for Maxdrinks scores accounted
for >6% of the variance in some cases. Scores derived from
the EUR-specific GWAS were similar though less pronounced
(Supplementary Table 3).

DISCUSSION

Using a population-based study of emerging adults at a
diverse mid-Atlantic university, the Spit for Science sample, we
present evidence of replicable aggregate genetic influences on
three alcohol-related phenotypes: typical monthly consumption
(Consumption), maximum drinks in 24 h (MaxDrinks), and an
alcohol problems sum score (Problems). We find further support
that Consumption is heritable (h2SNP = 0.19, SE = 0.11). At
the marker level, variation in a previously implicated (see below)
gene, GRID1, surpasses stringent genome-wide significance
criteria for association with MaxDrinks. Furthermore, polygenic
scores derived from S4S for Consumption and Maxdrinks, and
Problems to a lesser extent, are significantly associated with the
equivalent outcomes in an independent and comparably-aged
sample. These results provide empirical support for the influence
of aggregate molecular variation on multiple alcohol outcomes.

We observed associations between alcohol phenotypes and
markers that localize to within or near genes of biological
interest. Most notable is the association between Maxdrinks
and the glutamate ionotropic receptor delta type subunit 1 gene
(GRID1), which is involved in synaptic plasticity.GRID1 has been
implicated in prior genetic studies of alcohol use outcomes: Chen
et al. (2015) found that SNPs nominally associated with alcohol
cue-elicited brain activation were enriched for markers mapping
to genes, including GRID1, that are involved in synaptic long
term depression. This gene was further implicated in comorbid
alcohol dependence and depressive syndrome (Edwards et al.,
2012), and in a study of alcohol problems in a population-based
sample (Edwards et al., 2015). Glutamatergic receptor subunit

TABLE 2 | SNP-based heritability estimates.

Alcohol

outcome

Ancestry

group

N h2SNP (SE) p-value Meta-analysis

h2SNP (SE)

Consumption AFR 1,291 <0.01 (0.27) 0.50 0.19 (0.11)

AMR 557 0.35 (0.43) 0.24

EAS 534 0.46 (0.52) 0.13

EUR 2,899 0.22 (0.13) 0.04

SAS 446 <0.01 (0.67) 0.50

Problems AFR 1,053 <0.01 (0.15) 0.50 0.02 (0.10)

AMR 466 0.17 (0.59) 0.40

EAS 409 1.00 (0.86) 0.10

EUR 2,561 <0.01 (0.15) 0.50

SAS 292 <0.01 (0.65) 0.50

Maxdrinks AFR 1,076 <0.01 (0.29) 0.50 0.01 (0.12)

AMR 474 <0.01 (0.54) 0.50

EAS 414 <0.01 (0.58) 0.50

EUR 2,566 0.02 (0.14) 0.45

SAS 283 <0.01 (0.99) 0.50

AFR, African; AMR, Ad Mixed American; EAS, East Asian; EUR, European; SAS, South

Asian.

mRNA, including GRID1, has been shown to be altered in the
caudate within an alcoholic sample relative to controls (Bhandage
et al., 2014). More generally, GRID1 has been associated at
varying levels of significance with brain structure (Nenadic et al.,
2012) and schizophrenia (Fallin et al., 2005; Treutlein et al.,
2009b; Nenadic et al., 2012). BesidesGRID1, topmarkers mapped
to within or near NPAS3, which potentially regulates genes
involved in neurogenesis and has been previously associated
with psychiatric disorders (Pickard et al., 2006; Huang et al.,
2010; Nurnberger et al., 2014); and SV2B, a synaptic vesicle
protein-encoding gene implicated in cognitive processes in
model systems (Detrait et al., 2014; Olson et al., 2015).

There was not support for specific (q< 0.5) variants in another
sample assessed for comparable alcohol use phenotypes. Such
failures to replicate may be due to population-specific effects
(genetic and/or environmental) or false positive results. Many
markers with q < 0.5 in the current analyses were assayed only
in the AFR ancestry group due to low MAC in other groups.
These results underscore the need for additional genetic analyses
to be conducted in samples of non-European ancestry, not only
to facilitate replication, but also to clarify potential differences in
genetic risk factors across ancestries (Dick et al., 2017).

We find that GPS derived from markers associated with
ethanol Consumption and MaxDrinks at modest p-value
thresholds (p < 0.05 and above) predict those same outcomes
in the ALSPAC sample. These results are consistent with the
highly polygenic nature of alcohol phenotypes. Although GPS
derived from relatively few markers (several hundred to∼25,000
for up to p < 0.01) were not predictive of outcome, those
that are more inclusive do capture meaningful genetic liability.
Furthermore, this interpretation is consistent with the null results
of our replication attempts for markers with q < 0.50. Thus,
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FIGURE 1 | Regional association plot for GRID1 and 200 kb flanking regions, implemented using LocusZoom (Pruim et al., 2010). The most significant

marker is in purple (rs11201929, p = 4.11e-09, q = 0.06 for Maxdrinks). Linkage disequilibrium information is based on the 1000 Genomes AFR super-population.

The size of the points representing plotted SNPs corresponds to the meta-analysis sample size.

FIGURE 2 | Regional association plot for SAMD12 and 200 kb flanking regions. The most significant marker is in purple (rs73317305, p = 9.02 × 10−9, q =

0.11 for Problems). Linkage disequilibrium information is based on the 1000 Genomes AFR super-population, as the minor allele was rare in other subgroups. The size

of the points representing plotted SNPs corresponds to the meta-analysis sample size.

it is likely that many of the variants implicated at marginal
thresholds are incrementally contributing to risk, though to a
degree too small to be detected in isolation. We observe similar
trends when GPS are derived from the European ancestry group

only, though results are less robust (Supplementary Table 3). We
likely benefitted from the improved statistical power of the meta-
analysis. These findings also provide support for the hypothesis
that genetic variants impacting alcohol outcomes are largely
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TABLE 3 | Associations between GPS derived from S4S meta-analysis results and ALSPAC alcohol outcomes.

Threshold Consumption Problems Maxdrinks

Beta p-value r2 Beta p-value r2 Beta p-value r2

p < 0.0001 0.0005 0.5844 0.0001 <0.0001 0.8548 <0.0001 0.0099 0.1127 0.0055

p < 0.001 <−0.0001 0.9379 <0.0001 <0.0001 0.6083 0.0001 0.0023 0.3009 <0.0001

p < 0.01 0.0002 0.0715 0.0013 0.0001 0.0088 0.0029 0.0011 0.2031 0.0037

p < 0.05 0.0002 0.0038 0.0037 <0.0001 0.0107 0.0022 0.0013 0.0050 0.0255

p < 0.10 0.0001 0.0093 0.0036 <0.0001 0.0960 0.0007 0.0011 0.0025 0.0675

p < 0.20 0.0001 0.0173 0.0028 <0.0001 0.1772 0.0007 0.0011 0.0008 0.0620

p < 0.30 0.0001 0.0148 0.0028 <0.0001 0.1070 0.0009 0.0010 0.0008 0.0649

p < 0.40 0.0001 0.0126 0.0029 <0.0001 0.1029 0.0011 0.0010 0.0007 0.0621

p < 0.50 0.0001 0.0114 0.0030 <0.0001 0.0985 0.0011 0.0010 0.0010 0.0533

Nagelkerke’s r2 is provided as a measure of variance accounted for by the polygenic score.

similar across different ethnicities, though given variation with
respect to allele presence/frequencies there are also likely to be
ethnicity-specific genetic factors.

Our estimate of the heritability of consumption was far lower
than estimates (Manolio et al., 2009; Zuk et al., 2012) obtained
previously for consumption in young adults in previous studies
(Rose et al., 2001; Palmer et al., 2013). Current methods used
to calculate h2SNP typically result in estimates that are lower
than those obtained using traditional biometric modeling. For
example, a recent study of a Dutch sample assessed using
the AUDIT reported a twin-based h2 estimate of 0.6, with a
corresponding SNP-based estimate of h2SNP = 0.33 (Mbarek
et al., 2015). Such findings (“missing heritability”) have been
discussed extensively (Manolio et al., 2009; Lee et al., 2011; Zuk
et al., 2012; Brookfield, 2013; Koch, 2014), and may be due to
rare variants, poor tagging of common variants, overestimation
of heritability in twin studies, epistatic interactions, epigenetic
factors, or other genomic phenomena. Accordingly, the low and
non-significant h2SNP estimates for Problems and Maxdrinks
may reflect the presence of other genetic factors, insufficient
statistical power, or both (Supplementary Table 4). There
are other potential explanations specific to the study and
outcomes. First, recall bias is potentially an issue for Maxdrinks
since ∼50% of drinkers in our sample report having blacked
out when drinking. There is also an overall elevation in
misuse and associated problems during this age range which
may reflect more environmental factors and mask genetic
variation. Additionally, reports of alcohol misuse and associated
consequences may reflect a certain degree of bravado at this
age, when some youth may have less developmental perspective
on alcohol problems. It is likely inappropriate to interpret
these results as an indication that genetic factors do not
impact alcohol Problems and Maxdrinks in this population,
particularly given the positive associations between S4S-derived
GPS and alcohol outcomes in an independent sample. Indeed,
non-significant h2SNP estimates can mask meaningful genetic
variation that simply does not account for a substantial
component of phenotypic variance. In the current study, the
rs671 variant within ALDH2, which is common in East Asian
populations and is known to impact risk for AUD (Edenberg,
2007), was strongly associated with all three outcomes within

the EAS-specific results (pConsumption 0.013, pMaxDrinks 0.00014,
pSymptoms 0.0039). Nonetheless, this did not translate into
significant h2SNP estimates within that ancestry group.

Limitations
The results presented herein should be considered in light of
several limitations. First, the phenotypes examined are based on
self-report data, which do not offer the possibility of external
verification and are subject to reporting bias. We attempted to
mitigate potential issues by imposing cut-offs that allowed for
variation in responses while restricting values to a reasonable
realm of possibility. Second, several of the ancestry groups
(American, East Asian, and South Asian descent) included in
these analyses were rather small, resulting in large standard
errors around parameter estimates for both individual variant
analyses and aggregate tests (e.g., GCTA). While the European
and African descent groups were larger and more statistically
powerful, substantial sample sizes are necessary to reliably
detect low heritability using GCTA, and these results should be
interpreted with caution.

Many markers with q < 0.50 were evaluated only in the AFR
group due to lowMAC in other groups. Given that most alcohol-
related GWAS have been conducted on samples of European
ancestry, these markers were largely unavailable for replication
attempts in other samples. Had we calculated q-values based
only on markers available in the EUR group, or only on those
available across all groups, the list of markers for follow-up would
have differed, potentially impacting the overall outcome of the
SNP-based replication assessments.

GPS parameter estimates are quite modest, indicating that
scores would account for little of the total variance in ALSPAC
outcomes. In addition, we report uncorrected p-values, as
the tests are not independent and the appropriate correction
approach is not immediately evident.

In spite of the above limitations, these analyses demonstrate
that genetic factors are integrally involved in liability to alcohol
use in college-aged students, at both individual variant and
aggregate levels. Furthermore, the effects of many genetic
variants are consistent across ethnicities, suggesting shared
biological mechanisms. Critically, replication in an independent
UK cohort indicates that the observed genetic effects are
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generalizable within a similarly aged cohort. These findings
validate prior evidence of specific and general genetic effects on
alcohol outcomes, and provide nascent support for novel loci that
merit additional research.
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