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Target prediction is generally the first step toward recognition of bona fide microRNA
(miRNA)-target interactions in living cells. Several target prediction tools are now
available, which use distinct criteria and stringency to provide the best set of candidate
targets for a single miRNA or a subset of miRNAs. However, there are many false-
negative predictions, and consensus about the optimum strategy to select and use
the output information provided by the target prediction tools is lacking. We compared
the performance of four tools cited in literature—TargetScan (TS), miRanda-mirSVR
(MR), Pita, and RNA22 (R22), and we determined the most effective approach for
analyzing target prediction data (individual, union, or intersection). For this purpose,
we calculated the sensitivity, specificity, precision, and correlation of these approaches
using 10 miRNAs (miR-1-3p, miR-17-5p, miR-21-5p, miR-24-3p, miR-29a-3p, miR-
34a-5p, miR-124-3p, miR-125b-5p, miR-145-5p, and miR-155-5p) and 1,400 genes
(700 validated and 700 non-validated) as targets of these miRNAs. The four tools
provided a subset of high-quality predictions and returned few false-positive predictions;
however, they could not identify several known true targets. We demonstrate that union
of TS/MR and TS/MR/R22 enhanced the quality of in silico prediction analysis of miRNA
targets. We conclude that the union rather than the intersection of the aforementioned
tools is the best strategy for maximizing performance while minimizing the loss of time
and resources in subsequent in vivo and in vitro experiments for functional validation of
miRNA-target interactions.

Keywords: in silico prediction, TargetScan, miRanda-mirSVR, Pita, RNA22, non-coding RNA, bioinformatics

INTRODUCTION

MicroRNAs (miRNAs) are a large class of small non-coding RNAs [∼22 nucleotides (nts)]
that post-transcriptionally regulate gene expression. They were first identified in the context of
Caenorhabditis elegans development (Lee et al., 1993), and they are now known to regulate most
biological process in animals, plants, and even certain viruses (Lee et al., 1993; Sunkar et al., 2005;
Jia et al., 2008). Their function ranges from cellular proliferation and differentiation to response
to environmental stimuli and diseases such as cancer (Qiu et al., 2012; Shenoy and Blelloch, 2014;
Reddy, 2015). Therefore, identification of their target genes is important for understanding their
role in the complex biological regulatory pathways regulated by miRNA-target interactions.
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In animals, a sequence of approximately seven nts in the
5′ region of the miRNA (ranging from nts 2 to 8), known as
the seed region, guides the miRNA to its target mRNA. Five
types of perfect Watson–Crick pairing of seed matches have
been described so far, namely, 8-mer, 7-mer-m8, 7-mer-A1,
6-mer, and offset-6-mer in the descending order of the strength
of their matches (Agarwal et al., 2015). The 8-mer site is a
perfect match for nts 2–8, with an adenine at relative nt 1
in the mRNA. The 7-mer-m8 is a perfect match for nts 2–8,
whereas the 7-mer-A1 is a perfect match for nts 2–7, with an
adenine at relative nt 1 in the mRNA. The weaker 6-mer and
offset-6-mer are perfect matches for nts 2–7 and 3–8, respectively.
The adenosine at relative nt position 1 of the mRNA supports the
miRNA-mediated regulation, even if the opposing nt does not
form a Watson–Crick pairing (Baek et al., 2008). In addition to
the seed-based interactions, recent studies also reported miRNA
regulation through non-seed interactions, demonstrating that the
3′ region of the miRNA transcript might be equally important as
the seed sequence for securing target recognition (Tay et al., 2008;
Nelson et al., 2011; Chi et al., 2012; Clarke et al., 2012; Broughton
et al., 2016).

Irrespective of seed or non-seed match, miRNA pairing is
largely prevalent with elements at the 3′ untranslated region
(UTR) of target genes. However, studies have identified miRNA
pairing to sites outside the 3′UTR, both in the coding region
(Tay et al., 2008; Schnall-Levin et al., 2010; Gartner et al., 2013;
Hausser et al., 2013) and in the 5′UTR (Lytle et al., 2007; Orom
et al., 2008; Devlin et al., 2010; Zhou and Rigoutsos, 2014) of
the mRNA. Such findings showed that although the 3′UTR is the
main site of miRNA pairing, the whole mRNA transcript should
be inspected when predicting miRNA-target interactions.

Currently, several in silico tools are available for identifying
putative miRNA targets. The main parameters used by these tools
can be gathered and divided into three groups: duplex features,
local context features, and global context features (Betel et al.,
2010). Duplex features encompass seed match, 3′ contribution,
seed pairing stability (SPS; Betel et al., 2010), heteroduplex free
energy, and p-value (Miranda et al., 2006). These parameters
evaluate the hybridization of the miRNA to its target gene.
Seed match evaluates the number of nts that can bind to the
mRNA target in the seed region. The 3′ contribution evaluates
the possibility of binding at the 3′ position of the miRNA (Witkos
et al., 2011). The SPS evaluates the types of nts compose the
seed region (Garcia et al., 2011). The heteroduplex free energy
evaluates whether the minimum free energy between the miRNA
and its target is sufficient to establish hybridization, and the
p-value evaluates whether the probability of a selected interaction
has been predicted by chance.

Local context features include mRNA sequence properties that
directly influence target recognition, such as site accessibility
(SA) and presence of flanking AU. SA evaluates the capacity of
the mRNA to unfold into a potential secondary structure in the
region containing the miRNA cognate sequence, which is known
as the miRNA recognition element (MRE; Kertesz et al., 2007).
The flanking AU corresponds to the number of A and U nts
flanking the MRE region. High concentrations of flanking A and
U nts enhance miRNA regulation (Grimson et al., 2007).

Global context features aggregate mRNA sequence properties
with indirect influence on target recognition, such as whole
transcript length, 3′UTR length, transcriptome abundance,
pairing position at the 3′UTR, and sequence conservation.
Sequence length evaluates the total length of the string analyzed,
since the chances of false prediction increases with target length
(Miranda et al., 2006). The 3′UTR length, as the name suggests,
evaluates the length of the 3′UTR of the potential miRNA targets,
since larger 3′UTRs are regulated more stringently than shorter
ones (Sandberg et al., 2008). Transcriptome abundance evaluates
the number of MREs of a miRNA within the transcriptome.
Pairing position evaluates the position of the MRE within
the 3′UTR, because MREs near the ends of the 3′UTR have
stronger regulatory potential (Grimson et al., 2007). Finally,
sequence conservation evaluates the extent of conservation of
the MREs among species. Together, all these binding metrics
decisively regulate the determination of potential miRNA-target
pairs.

Despite the availability of several target prediction tools that
use distinct parameters and strategies to search for putative
targets, consensus about the best tool is lacking. In fact,
experimental validation (the usual step after target prediction)
has revealed many false-negative predictions, implying that
further improvement of prediction tools is required. To
circumvent this caveat, researchers use diverse strategies for
determining putative miRNA targets, including intersection
and union of predictions. However, this approach is being
used indiscriminately, without well-defined criteria and rigorous
comparative tests to assess the performance of the prediction
strategies. Thus, whether union or intersection of results obtained
from multiple tools improves the overall quality of target
prediction is yet unknown.

Here, we compared the performance of four widely used
target prediction tools to identify the strategy that best predicts
miRNA targets. Our results would assist researchers in selecting
the correct candidates for subsequent experimental validation of
miRNA-target interactions.

MATERIALS AND METHODS

Target Prediction Tools Data
We used TargetScan (TS), miRanda-mirSVR (MR), Pita
(PT), and RNA22 (R22) pre-computed predictions, which are
freely available online. TS, MR, and PT consider seed-based
interactions in the 3′UTR, whereas R22 also considers non-seed
based interactions (full-length matches) in the whole transcript.

These tools were selected based on their recognized popularity
among researchers and the presence of an update policy (i.e.,
data is updated when new miRNAs and/or parameters are
reported). We exclusively used the best predictions from each
database to maximize the quality of predictions (summarized
in Table 1). In detail, the best predictions were those with
conserved sites for TS. TS considers different cutoffs for
conservation, according to seed match; for example, it is ≥0.8
for site 8-mer, ≥1.3 for site 7-mer-m8, and ≥1.6 for site
7-mer-A1, whereas sites 6-mer and offset 6-mer are always
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TABLE 1 | Summary of the target prediction tools analyzed.

TargetScan miRanda-mirSVR Pita RNA22

Website targetscan.org microrna.org genie.weizmann.ac.il https://cm.jefferson.edu/rna22/

Version v7.1 (06/2016) V3.3a (08/2010) V6 (08/2008) V2 (04/2015)

Predictions
downloaded

Conserved sites Good mirSVR score,
Conserved miRNA

Seed 7- or 8-mer and
conservation score 0.9
or higher

Base pair: >12 Folding energy:
≤ −12 kcal/mol p-value: ≤ −0.1
miRbase 21/Ensembl 78

Reference Lewis et al., 2005 Enright et al., 2003 Kertesz et al., 2007 Miranda et al., 2006

classified as non-conserved1. Best predictions of MR present
good mirSVR score (≤ −0.1) and conserved sites (PhastCOns
score >0.57; Betel et al., 2008). PT ranks those with seed
match to 7- or 8-mer and conservation score ≥0.92 as best
predictions, whereas R22 best predictions comprise those with
base pair minimum value of 12, folding energy max value of
−12 kcal/mol, max p-value of 0.1, and miRbase 21/Ensembl 78
databases.

Gene names predicted were converted to the Ensembl gene ID
to standardize the annotations from all tools. We also combined
the outputs of the tools to evaluate union and intersection
approaches. The unions tested were TS + MR + PT + R22,
TS + MR + PT, TS + MR + R22, TS + PT + R22,
MR + PT + R22, TS + MR, TS + PT, TS + R22, MR + PT,
MR + R22, and PT + R22. The intersections tested were
TS + MR + PT + R22, TS + MR + PT, TS + MR + R22,
TS+ PT+ R22, MR+ PT+ R22, TS+MR, TS+ PT, TS+ R22,
MR+ PT, MR+ R22, PT+ R22, and majority vote. The majority
vote consists of counting any target that was predicted by at least
two of the four tools.

Performance Evaluation
In order to evaluate the performance of each tool and the
combinatorial method, we downloaded the validated miRNA
target dataset for the human genome from miRTarBase3;
v6 – 09/2015; Chou et al., 2016). Then, we selected 10
miRNAs with the highest number of validated targets,
including miR-155-5p (224 validated targets), miR-145-5p
(129 validated targets), miR-21-5p (115 validated targets),
miR-34a-5p (101 validated targets), miR-29a-3p (96 validated
targets), miR-125b-5p (83 validated targets), miR-124-3p
(83 validated targets), miR-24-3p (83 validated targets), miR-
17-5p (74 validated targets), and miR-1-3p (73 validated
targets). This analysis was limited to these 10 miRNAs due
to the few number of validated targets available to the other
miRNAs, which inclusion would prejudice the power of the
statistical analysis. We analyzed only “strong validations”
assigned by miRTarBase, which refer to miRNA-target
interactions validated using reporter assays, western blot
and/or quantitative polymerase chain reaction (qPCR). We did
not include “less strong validations,” such as those reported
using microarray, pSILAC, and next generation sequencing
(NGS)-based experiments (e.g., Ago HITS-CLIP, degradome-seq,

1http://www.targetscan.org/faqs.Release_7.html
2https://genie.weizmann.ac.il/pubs/mir07/mir07_data.html
3http://mirtarbase.mbc.nctu.edu.tw

CLASH, PAR-CLIP, and iPAR-CLIP) to enforce maximum
stringency.

We calculated the sensitivity, specificity, precision,
and performance of each target prediction tool and their
combinations. The performance was calculated using Matthews
correlation coefficient (MCC):

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP (true positive) is the number of validated targets
predicted, FN (false negative) is the number of validated targets
not predicted, FP (false positive) is the number of predicted
targets that were not validated, and TN (true negative) is the
number of genes that were neither predicted nor validated.
Sensitivity and specificity are mathematical functions that
measure the quality of binary classifications. Since in silico target
prediction tools are binary classifiers, these two functions can be
used to evaluate the quality of each tool. Sensitivity measures a
tool’s ability to identify bona fide miRNA targets, while specificity
measures the capacity of the tool to correctly exclude a gene target
that is not regulated by the miRNA (Parikh et al., 2008).

Knowledge about the proportion of true predictions within
the total number of miRNA targets predicted is also important.
Therefore, precision is calculated to evaluate the number of true
targets among all predicted targets (Powers, 2007). Finally, MCC
can combine all these values to generate a unique comparable
number. MCC is a recognized measure that is used to evaluate
the quality of binary classifiers (i.e., true targets/false targets),
and it is often used to classify miRNA target prediction tools
(Bandyopadhyay and Mitra, 2009; Fan and Kurgan, 2015).

The sensitivity, specificity, and precision values range from
0 to 1, with near zero values indicating low quality results and
values near one representing high quality results. MCC ranges
from −1 to 1, which represent low quality and high quality
predictions, respectively. Values near zero indicate predictions
that are similar to random predictions. To calculate these values,
we randomly selected 70 validated targets as the true set and
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70 non-validated genes as the negative set for each miRNA,
with reposition. This generated 1,400 genes (700 true and 700
false) for each replicate (N = 5). Finally, the average of the five
replicates was calculated and subjected to statistical analysis (see
Supplementary Table S1 for individual values from each replicate
and each miRNA).

To confirm whether the specificity values of the tools were
biased due to the lack of false predictions in literature, we
performed a control test by predicting putative targets in a
random strings analysis. Toward this objective, we generated four
different groups with 1,000 random strings each, totaling to 4,000
random strings. Groups of variable length (500, 1,000, 2,500,
and 5,000 nts each) were tested because length highly influences
the chances of false prediction (Miranda et al., 2006). Then, we
downloaded the source code of each tool and locally ran the
predictions of the ten miRNAs with the same parameters used for
the best predictions of the pre-computed data, with the exception
of the “conservation score” for TS, MR, and PT, and the “mirSVR
score” for MR, which was not available on the miRanda source
code (Table 1).

Statistical Analysis
To compare the performance of each tool and the combinatorial
method, we used one-way analysis of variance (ANOVA) and the
Tukey test for multiple comparisons (p-value < 0.05) since the
data presented a Gaussian distribution.

RESULTS

Target Prediction Outputs
Each target prediction tool noticeably generated different results.
TS and MR had the highest number of mutual targets (310
predicted and 303 validated). The number of targets predicted
by TS, MR, and PT (99 validated and 2 non-validated) was
equivalent to the number predicted by all tools together
(97 validated and 2 non-validated) (Figure 1A). MR itself
predicted the highest number of targets among all the tools,
of which 433 were validated and 33 were non-validated. PT
predicted the lowest number (234 validated and 6 non-validated),
TS predicted 366 validated and 11 non-validated targets, and R22
predicted 325 validated and 60 non-validated. R22 predicted the
highest number of validated targets not identified by any other
tool (81; with 60 non-validated), followed by MR (61 validated
and 15 non-validated), TS (28 validated and 1 non-validated),
and PT (2 validated and 0 non-validated). Interestingly, of the
81 validated targets predicted exclusively by R22, 56 possessed
non-canonical sites, 34 of which had sites only outside the
3′UTR (either seed-based or full-length), and 22 targets with
sites inside the 3′UTR but with a mismatch in the seed
region.

The majority of intersections consistently returned a lower
number of predicted targets than any other approach, with the
exception of the intersection of TS + MR (304 validated and
7 non-validated) and majority vote (406 validated and 19 non-
validated), which predicted more targets than PT. All the unions
predicted more targets than any other approach (Figure 1B),

except for TS + PT (390 validated and 12 non-validated), which
predicted less targets than MR and majority vote.

The four tools were able to recover much more true
predictions than false predictions (366 validated and 11
non-validated for TS; 433 validated and 33 non-validated for
MR; 234 validated and 6 non-validated for PT; 325 validated
and 60 non-validated for R22). However, approximately 18%
of the validated targets (123) were not predicted by any tool.
Supplementary Table S2 shows the predicted targets of the 10
miRNAs by each tool.

Sensitivity, Specificity, and Precision of
the Methods
Table 2 summarizes the sensitivity, specificity, and precision
of all tools and methods. All methods showed striking
specificity (>0.85) and precision (>0.80), but variable sensitivity.
Considering the four tools individually, MR showed the highest
sensitivity (0.62) and R22 showed the lowest specificity (0.89) and
precision (0.81). TS and PT showed similar values of specificity
and precision, but PT showed a significantly lower sensitivity.

The union of the four tools undoubtedly returned the best
sensitivity, with TS + MR + PT + R22 and TS + MR + R22
returning values above 0.80. Interestingly, the increase in
sensitivity had no negative impact in the specificity and precision
indexes. By contrast, the intersection of tools resulted in low levels
of sensitivity, except for the intersection of TS+MR and majority
vote that showed higher sensitivity than PT alone. Overall, there
was no improvement in specificity and precision upon using the
intersection approach, with values closely resembling to those
obtained by PT or TS alone.

For the random strings control analysis, the specificity of
all tools decreased with increase in string length (Table 3),
which corroborates the data from Miranda et al. (2006). When
the results from all string lengths were summed, the tools had
worse specificity values than their pre-computed data. However,
the human 3′UTR ranges from 200 to 2,500 nts in length
(average = 1,040 nts; Kotagama et al., 2015). Thus, when we
summed the results only from 500, 1,000, and 2,500 nts, the
specificity of TS, MR, and PT approached, while R22 equaled,
to those observed in their pre-computed data. Therefore, these
results suggest that the differences in specificities observed for
TS, MR, and PT are more likely to be related to the lack of
the conservation parameter (mirSVR score parameter for MR),
which were not evaluated by R22, than to a bias in validation
experiments.

Evaluating the Performance of the
Methods
All methods showed performance score values higher than 0,
although intersections of TS+MR+ PT+ R22, TS+ PT+ R22,
MR + PT + R22, and PT + R22 showed the lowest performance
scores among all methods (i.e., below 0.3; Figure 2). Majority
vote showed the best performance among all intersections,
which were similar to TS and MR. MR showed slightly
higher performance than TS, whereas R22 showed the lowest
performance among the individual tools, followed by PT.
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FIGURE 1 | Target prediction output comparison. (A) Venn diagram of the number of validated and non-validated targets predicted by each tool, as well as the
number targets that were not predicted. (B) Total number of validated and non-validated targets predicted by each tool and combinatorial approach. Venn diagrams
from all replicates are available at Supplementary Data Sheet S1.

TABLE 2 | Sensitivity, specificity, and precision of the target prediction methods.

Method Tool Sensitivity Specificity Precision

Individual tool TargetScan 0.524 ± 0.004 0.984 ± 0.005 0.971 ± 0.004

miRanda-mirSVR 0.617 ± 0.012 0.954 ± 0.006 0.930 ± 0.010

Pita 0.336 ± 0.009 0.992 ± 0.004 0.977 ± 0.011

RNA22 0.336 ± 0.009 0.893 ± 0.019 0.805 ± 0.027

Union TS + MR + PT + R22 0.825 ± 0.008 0.862 ± 0.020 0.857 ± 0.017

TS + MR + PT 0.710 ± 0.006 0.949 ± 0.007 0.933 ± 0.009

TS + MR + R22 0.822 ± 0.007 0.862 ± 0.020 0.857 ± 0.017

TS + PT + R22 0.757 ± 0.038 0.879 ± 0.028 0.863 ± 0.023

MR + PT + R22 0.784 ± 0.006 0.865 ± 0.019 0.853 ± 0.018

TS + MR 0.706 ± 0.006 0.949 ± 0.008 0.932 ± 0.009

TS + PT 0.558 ± 0.007 0.983 ± 0.005 0.970 ± 0.009

TS + R22 0.716 ± 0.004 0.885 ± 0.21 0.862 ± 0.21

MR + PT 0.624 ± 0.016 0.954 ± 0.006 0.931 ± 0.010

MR + R22 0.773 ± 0.008 0.865 ± 0.019 0.851 ± 0.019

PT + R22 0.613 ± 0.005 0.889 ± 0.020 0.847 ± 0.023

Intersection TS + MR + PT + R22 0.139 ± 0.006 0.998 ± 0.003 0.984 ± 0.018

TS + MR + PT 0.279 ± 0.014 0.994 ± 0.003 0.980 ± 0.010

TS + MR + R22 0.201 ± 0.007 0.995 ± 0.005 0.976 ± 0.022

TS + PT + R22 0.150 ± 0.006 0.997 ± 0.002 0.976 ± 0.016

MR + PT + R22 0.151 ± 0.005 0.997 ± 0.003 0.978 ± 0.018

TS + MR 0.435 ± 0.013 0.989 ± 0.004 0.976 ± 0.009

TS + PT 0.298 ± 0.012 0.993 ± 0.003 0.978 ± 0.009

TS + R22 0.249 ± 0.006 0.992 ± 0.004 0.969 ± 0.014

MR + PT 0.312 ± 0.013 0.993 ± 0.003 0.977 ± 0.010

MR + R22 0.285 ± 0.008 0.981 ± 0.001 0.940 ± 0.005

PT + R22 0.164 ± 0.004 0.996 ± 0.003 0.974 ± 0.018

Majority vote 0.581 ± 0.11 0.973 ± 0.005 0.955 ± 0.008

TS, TargetScan; MR, miRanda-mirSVR; PT, Pita; R22, RNA22.
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TABLE 3 | Specificity values of random string predictions.

Strings length TargetScan miRanda-
mirSVR

Pita RNA22

500 nt 0.9489 0.9446 0.8874 0.9338

1,000 nt 0.8966 0.8903 0.7917 0.8766

2,500 nt 0.7668 0.7550 0.5562 0.7466

5,000 nt 0.5846 0.5596 0.3081 0.6008

500 + 1,000 +
2,500 + 5,000

0.7992 0.7874 0.6359 0.7895

500+ 1,000+ 2,500 0.8708 0.8633 0.7451 0.8523

Each length contains 1,000 strings with random sequence of ATCG nucleotides.

The unions TS + MR + PT + R22, TS + MR + PT,
TS + MR + R22, MR + PT + R22, and TS + MR
achieved the highest performances with no statistical differences
between them (see Supplementary Table S1 for a detailed data
of MCC score for each individual miRNA and the combinatorial
approach).

DISCUSSION

Similarities and Singularities of Each Tool
The four tools predicted a considerable number of similar targets,
with only a few exclusive targets. As expected, the number of
correct predictions was more than those of false predictions,
which indicated the elevated accuracy of the tools. However, a
considerable subset of validated targets (around 18%) was not
recovered in the outputs of any tool, indicating the existence
of biological and/or methodological aspects that have not yet

FIGURE 2 | Performance (MCC) of the methods analyzed. TS,
TargetScan; MR, miRanda-mirSVR; PT, Pita; R22, RNA22. Values with the
same letter do not differ among each other.

been addressed by prediction strategies and algorithms. These
results also demonstrated that prediction tools have a tendency of
identifying certain interactions between miRNA and target genes,
but lack the ability to predict other putative interactions.

Comparison of the strategies showed that intersection of
TS, MR, and PT predicted twice the number of targets than
the intersection of the four tools, whereas R22 predicted the
highest number of exclusive interactions. These findings are
related to the similarity in features of the three seed-based
and 3′UTR-specific algorithms for target prediction, especially
between TS and MR than with R22. Moreover, most of the
targets predicted exclusively by R22 were predicted either outside
the 3′UTR or they referred to non-seed based interactions,
showing that the use of approaches with distinct search
strategies may provide valuable information about miRNA-target
interactions.

Similarly, the low number of targets predicted by PT may be
due to the low number of features used by its algorithm. Also, TS,
MR, and R22 use input from the human genome version hg19
(released in 02/2009), whereas PT uses an older version (hg18,
released in 03/2006). This may also explain the lower sensitivity
of PT and demonstrates the importance of regularly updating the
database.

Each tool has a unique set of learning attributes (see Table 4
for more details); however, we noticed that for TS, MR, and
PT (that focus on the 3′UTR) the missing features in one tool
appeared after an update. For instance, the most recent update
of TS (TargetScan 7.1, 2016) uses 16 features that are considered
important for miRNA target recognition, which generates a score
called the “Weighted Context ++ Score” (WCS). The mirSVR
score (version 3.3a, 2010) is a new ranking system that scores
targets predicted by miRanda using seven features to improve
the MR approach. PT was last updated in 2008 (version 6) and
considers only five parameters to perform the target prediction.
R22 (version 2, 2015), which focuses on the entire transcript and
full-length matches, uses a completely different subset of features,
which may explain the differences in the targets identified by R22
and the other tools.

Individually, MR showed the best performance with the
best balance between sensitivity, specificity, and precision, thus
making it the optimal individual choice in most cases. However,
TS and PT showed better precision with the lowest number of
false positives. Thus, they could also be used if the objective
is to select only few target genes for validation. In this case,
TS provides a larger amount of predicted genes that can be
selected for further analysis than PT. R22 showed inferior
performance compared to those of other tools owing to its
slightly lower specificity and precision. However, R22 is a
unique tool that takes into account non-seed based matches
and sites outside the 3′UTR, making it a valuable choice for
searching putative non-canonical interactions. It is noteworthy
that this analysis is somewhat limited by the number of
miRNAs investigated and increasing the number of miRNAs
might give a more comprehensive picture of miRNA-target
predictions.

Throughout the analysis, all tools demonstrated both positive
and negative aspects (summarized in Table 5). For instance,
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TABLE 4 | Summary of the learning attributes of each tool.

Groups Attributes TargetScan miRanda-mirSVR Pita RNA22

Duplex features Seed match X X X X

3′ contribution X X X X

SPS X

Heteroduplex free energy X

p-value X

Local context features SA X X X

Flanking AU X X X

Global context features TA X

Paring position X X

3′UTR length X X

Sequence length X

Conservation X X X

– Others X X

SA, site accessibility; TA, transcriptome abundance.

TABLE 5 | Positive and negative aspects of the target prediction tools analyzed.

Tool Positive aspects Negative aspects

TargetScan - Friendly user database
- Highest number of organism available

- Predictions are the similar for all members of a miRNA family
- Not possible to change parameter cutoffs

miRanda-mirSVR - Possible to change parameter cutoffs in source code only - Database not so friendly
- mirSVR score not available in source code

Pita - Possible to change parameter cutoffs
- Enable online predictions of users miRNA and 3′UTR

- Not shows interactive view of miRNA-target pairing

RNA22 - Friendly user database
- Allows predictions in multiple sources
- Possible to change parameter cutoffs

- Source code takes too long to run

TS has a practical and user-friendly online database, containing
the highest number of species that can be analyzed among
all tools. However, TS assigns the same targets for miRNAs
with similar seed (miRNAs of the same family), which is a
drawback considering that the 3′ region of the miRNA has
an important impact on target recognition (Broughton et al.,
2016). Additionally, TS does not allow users to change the
parameter cutoffs neither in the online data nor in the source
code. MR offers the possibility of changing input parameter
cutoffs in the source code, although it is not possible to do so in
the pre-computed data. However, the miRanda database is less
user-friendly than TS, which causes difficulty in simultaneous
visualization of several targets. Moreover, the mirSVR scores are
not available in the source code. PT allows the user to manipulate
input parameter cutoffs in both online data and source code.
This tool also enables online predictions of user 3′UTR and
miRNA queries that were not pre-computed. However, PT’s
online applications do not possess any interactive view of the
miRNA-target pairing, relying only on the statistical numbers
of the predictions. Finally, R22 has a user-friendly database that
allows predictions of distinct RNA classes and database versions.
Additionally, users are allowed to manipulate input parameter
cutoffs in both online data and source code, although it is
possible to only filter a miRNA sequence but not an mRNA target
online. The disadvantage of R22 is that its source code has an

increased the run time compared to those of other tools (data not
shown).

Intersection versus Union
There is no consensus regarding the gold standard for miRNA
target prediction. The main questions are whether a tool that is
superior to the existing tools exists and whether the intersection
or union of two or more tools should be used to acquire more
reliable results. According to Witkos et al. (2011), mixing the
results from distinct tools decreases the performance of the
prediction. They also indicate that the intersection of the results
from two or more tools improves specificity at the cost of
decreasing sensitivity, whereas the union of two or more tools
increases the number of true targets as well the number of false
targets detected, which decreases the specificity. Therefore, they
suggest using a single target prediction tool. However, several
researchers use the intersection approach (D’Aurizio et al., 2016;
Wang et al., 2016) to avoid false-positive prediction regardless
of the loss in sensitivity. Therefore, the use of single tool and
an intersection of distinct tools are currently the most common
methods of target prediction.

Our analysis revealed that the intersection strategy showed the
lowest performance. All intersections showed results that were
inferior to the predictions of the individual tools (Figure 2).
The lowest performance was obtained by intersections of PT
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and R22. This may be due to the low sensitivity level of
PT (Figure 1A and Table 2) in addition to the differences
in the true targets identified by R22 and the other tools.
Thus, intersections involving these tools exclusively identify few
overlapping targets. Conversely, the intersections of TS + MR
and majority vote, which do not depend on PT and R22, showed
better performance, although they were inferior to those of TS
and MR alone.

The methods with the best performance were the unions of
TS + MR + PT + R22, TS + MR + PT, TS + MR + R22,
MR + PT + R22, and TS + MR, with no significant difference
between them (Figure 2). Interestingly, all validated targets
predicted by PT (with the exception of two targets) were also
predicted by one of the other tools (Figure 1A). Thus, inclusion of
PT is not required for the union approach. The main difference
between the unions of TS + MR + R22 and TS + MR was in
the balance of sensitivity and specificity/precision. The union of
TS + MR + R22 has high sensitivity (0.82) but lower specificity
and precision (0.86 for both), whereas the union of TS + MR
has lower sensitivity (0.71) but high specificity and precision
(0.95 and 0.93, respectively). Therefore, the choice of the best
approach depends on the intended use of the target prediction
output.

Researchers perform target prediction analysis for two main
reasons. First, to support the subsequent experimental validation
of the miRNA–mRNA interaction predicted in silico. Second,
to select the best candidates for gene ontology enrichment
analysis and to identify biological processes that require the
activity of these miRNAs. Both objectives demand caution during
target prediction analysis. Experimental validation of miRNAs is
time-consuming and costly, and therefore, selection of correct
positively predicted targets is fundamental for this functional
analysis. On the other hand, the quality of gene ontology
enrichment analysis strongly depends on the number of inputs.
The use of low number of genes as input often does not
return results since the data is too scanty to obtain statistically
significant values. The TS + MR union provides greater
specificity and precision levels, and is recommended for the
majority of analyses related to experimental validation of target
sites. The TS + MR + R22 union has greater sensitivity, and
is appropriate for performing subsequent functional enrichment
analysis. Additionally, the TS + MR + R22 union can detect
non-canonical interactions (outside 3′UTR and/or full-length
match) and is also recommended for exploratory analysis or
when most of the targets of the studied miRNA have been
validated (although the last option has not yet been fully
accomplished). The only disadvantage of using the union of
two or more tools is that the scores of these tools (WCS
from TS, mirSVR from MR, and minimum free energy and
p-value for R22) are composed of different parameters and
do not correlate with each other. Therefore, this approach
cannot be used if the final predictions require ranking. In
such cases, a single tool should be selected according to
the experimental design. For most cases, MR offers the best
performance.

The poor performance of the intersection approach
demonstrates the importance of sensitivity in miRNA target

prediction. Until recently, target prediction tools provided
outputs with hundreds of false-positive targets per miRNA,
which fuelled efforts for enhancing the overall quality of
predictions. However, our data shows that the last available
updates of the tools have high specificity and precision levels,
independent of the method used to combine the data. Thus, the
new challenge is to improve the sensitivity of the analysis without
decreasing specificity and precision. Since all the parameters
governing miRNA-target interaction are not known, the tools
use severe cutoffs in the existing parameters (e.g., no mismatch
in the seed region) to eliminate false positive predictions, which
results in the exclusion of several correct targets. Identification
of new features involving miRNA-target recognition may allow
these tools to attenuate these cutoffs and increase the range
of putative true targets. For example, it is well known that the
3′UTR undergoes alternative polyadenylation (aPa), resulting
in transcripts with distinct 3′UTR length in different tissues
(Di Giammartino et al., 2011; Yeh and Yong, 2016), which
may affect miRNA recognition and regulation. Recent studies
showed that conserved miRNA sites are preferentially enriched
immediately after aPa sites, and thus, 3′UTR shortening is a
potential escape mechanism from miRNA-mediated regulation
(Hoffman et al., 2016). TS has already considered aPa sites
in its last update; however, since data for the majority of
species is still scarce, researchers consider the data for only few
cell types and extrapolate those results to a whole organism
(Agarwal et al., 2015). In addition, certain interactions are
influenced by chromosomal architecture. Considering that
chromosomes reside in specific locations inside the nucleus
(called chromosome territories; Cremer and Cremer, 2001, 2010)
that vary among cell types (Marella et al., 2009), the miRNA-
mediated regulation of a gene can fluctuate depending on the
proximity of these two mature molecules in the cytoplasm. Study
of these and other unknown properties of cellular and genomic
parameters can improve the sensitivity of target prediction
tools.

CONCLUSION

Current versions of the miRNA target prediction tools evaluated
in this study possess high specificity and precision, generating
results with negligible false positive rate. This shows that
further use of the intersection strategy to obtain high quality
predictions is not required. We also found that several
true targets were not identified by these tools, necessitating
the union of several tools for improving sensitivity. Thus,
improvement of sensitivity should be the objective of the next
updates.

Overall, the unions of TS + MR, as well as that of
TS + MR + R22 provided better results in miRNA target
prediction in terms of higher specificity and precision, whereas
the latter offers remarkable sensitivity. Therefore, we recommend
using these approaches prior to designing target validation
experiments. However, the union approach should be avoided
when ranking of the output is required. In this scenario, MR
provided the best performance.
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