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The fundamental role of human Toll-like receptors (TLRs) and NOD-like receptors (NLRs),
the two most studied pathogen recognition receptors (PRRs), is the protection against
pathogens and excessive tissue injury. Recent evidence supports the association
between TLR/NLR gene mutations and susceptibility to inflammatory, autoimmune,
and malignant diseases. PRRs also interfere with several cellular processes, such as
cell growth, apoptosis, cell proliferation, differentiation, autophagy, angiogenesis, cell
motility and migration, and DNA repair mechanisms. We briefly review the impact of
TLR4 and NOD1/NOD2 and their genetic variability in the process of inflammation,
tumorigenesis and DNA repair, focusing in the gastrointestinal tract. We also review the
available data on new therapeutic strategies utilizing TLR/NLR agonists and antagonists
for cancer, allergic diseases, viral infections and vaccine development against both
infectious diseases and cancer.

Keywords: toll-like receptors (TLRs), nod-like receptors (NLRs), DNA damage response (DDR), single nucleotide
polymorphism (SNP), mutation, inflammation and tumorigenesis

INTRODUCTION – INNATE IMMUNE SYSTEM AND GENOMIC
VARIABILITY

The human innate immune system is activated when pathogen recognition receptors (PRRs)
recognize either pathogen-associated molecular patterns (PAMPs), or danger-associated molecular
patterns (DAMPs) (Akira et al., 2006; Kawai and Akira, 2011). PRRs are in both cell membranes and
cytosol of macrophages, fibroblasts, mast cells, dendritic cells, and circulating leucocytes (Newton
and Dixit, 2012). They include members of the Toll-like receptors (TLRs), nucleotide-binding,
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and oligomerization domain containing receptors (NOD-like
receptors, NLRs), retinoic acid-inducible gene(RIG) I-like RNA
helicases, C-type lectins, and AIM2-like receptors(ALRs) (Saxena
and Yeretssian, 2014) (Figure 1).

Available data have shown that genetic variability
influences the susceptibility and evolution of several human
diseases, like autoimmune diseases or infections, by affecting
numerous cellular processes hence modulating the response to
environmental and intrinsic factors (Orr and Chanock, 2008).
Diseases associated with deficiencies in a single gene are not
common in the population, therefore many epidemiological
studies are now focused on the diversity of the contributing
factors of complex illnesses (Orr and Chanock, 2008), responsible
for most of the human morbidity and mortality. It is generally
accepted that multiple genetic defects contribute to the
phenotype of complex diseases, while the effects of single
polymorphisms are usually veiled. Powerful tools such as
high throughput expression profile analysis and genome-wide
association studies (GWAS) are currently implemented to
investigate the different polymorphisms and their interactions
that culminate to disease development (Mayerle et al., 2013; Kim
et al., 2014).

In this review, we highlight the impact of genetic diversity
encoded in the TLR4 and NOD1/NOD2 loci to the progression
of inflammation, tumorigenesis and the process of DNA repair,
focusing in the gastrointestinal tract.

TOLL-LIKE RECEPTORS

There are 10 members of TLRs, type I transmembrane
glycoproteins, in humans (TLR1–TLR10) (Janssens and Beyaert,
2003). Their extracellular domain contains leucine-rich repeats
(LRRs) expressed by cells of the innate immune system, which are
involved in ligand binding (Bowie and O’Neill, 2000), while the
intracellular tail contains a Toll/interleukin (IL)-1 receptor (TIR),
that mediates downstream signaling. TLRs are well conserved
across species and were first described in Drosophila (Medzhitov
et al., 1997). They recognize bacterial and viral PAMPs in the
extracellular environment (TLR1, TLR2, TLR4, TLR5, TLR6)
or endolysosomes (TLR3, TLR7, TLR8, TLR9, TLR10) (O’Neill,
2006). Different TLRs serve as receptors for diverse ligands
(Mitchell et al., 2007). TLRs are essential for the initiation of
protective immunity against infections. Nevertheless, aberrant
TLR responses may contribute to inappropriate acute and
chronic inflammation and to systematic autoimmune diseases.
In addition, it has become apparent that endogenous molecules
released by dying cells or by some pathological conditions
activate TLRs, further promoting inflammatory or autoimmune
diseases (Kawai and Akira, 2010; Koberlin et al., 2016) (Figure 1).
Despite the extensive study of TLRs in the gastrointestinal
tract, the exact location and function of individual TLRs in
various disease states is still evolving (Fukata and Abreu,
2008).

TLR4 is an essential member of the TLR family, which
responds to bacterial lipopolysaccharide(LPS), a component of
the outer membrane of Gram(–) bacteria(Akira et al., 2006).

TLR4 POLYMORPHISMS

Recent studies, conducted in several populations, have shown
associations between TLR polymorphisms and the risk of gastric
cancer (GC) (Table 1A). Some of these polymorphisms, such
as TLR4rs4986790 (Asp299Gly), TLR4rs4986791 (Thr399Ile),
TLR4 rs10759932, CD14 -260C/T, and TLR2-196to-174del appear
to be associated with gastric precancerous lesions which may
lead to intestinal type GC (Castano-Rodriguez et al., 2013).
Especially two of the above polymorphisms, TLR4rs4986790 and
TLR4rs4986791, disrupt the normal structure of the extracellular
domain of TLR4, resulting in a protein with reduced binding
affinity to the ligands of Helicobacter pylori (El-Omar et al., 2008).

Data are few regarding TLR4 polymorphisms and H. pylori–
associated diseases. Analyzing a population from Northern
India, Achyut et al. (2007) concluded that TLR4rs4986791
substitution may be a risk factor for gastritis and precancerous
lesions, while they reported a significant association between
TLR4rs4986790 and neutrophil infiltration. In another study
from Hungary, Hofner et al. (2007) found no association of
TLR4 polymorphisms between H. pylori positive patients with
or without gastritis or duodenal ulcers. Two studies in children
by Tseng et al. (2006) and Moura et al. (2008), reported no
association between TLR4rs4986790 and risk of infection. Based
on the current evidence, it seems likely that these polymorphisms
have a marginal or no impact in H. pylori acquisition risk
and associated inflammation. However, a blunt IgA antibody
production against H. pylori infection was observed in Greek
patients with TLR4 polymorphisms, suggesting that a defect
or dysregulation of humoral mucosal defense may be present
(Manolakis et al., 2010).

The lack of significant effects of the TLR4 polymorphisms in
infections is not uncommon among Europeans. Indo-European
populations are frequently (6–14%) double heterozygous
for both polymorphisms (Ferwerda et al., 2007), and
TLR4rs4986790/TLR4rs4986791 haplotype may not functionally
differ from wild type TLR4. Conversely, TLR4rs4986790 was
frequently found (10–18%) among African populations, with
only 2% having TLR4rs4986791 co-segregation (Bochud et al.,
2009; Bhuvanendran et al., 2011). Disparities between Europeans
(co-segregation) compared to Asian and African populations
(lack of co-segregation) may explain the significant associations
noted for endemic diseases in Asia and Africa.

Sato et al. (2012) reported that the genetic variation
TLR4rs11536889 (+3725G/C) may contribute to the translational
regulation of TLR4 and influences the response to LPS. According
to Liu et al. (2011), TLR4rs10759932 decreases the expression of
FOXP3, a marker for regulatory T (Treg) cells that are increased
in H. pylori gastritis and probably contribute to H. pylori
persistence (Jang, 2010).

Regarding colorectal cancer (CRC), Abuli et al. (2013)
reported 20 susceptible SNPs in 18 risk loci for CRC, among
which were TLR gene polymorphisms. The GG genotype
of TLR4rs4986790 and the TT genotype of TLR4rs4986791
polymorphisms might be correlated with an increased risk of
CRC, and may serve as biomarkers (Pimentel-Nunes et al.,
2013; Sheng et al., 2015; Semlali et al., 2016) (Table 1A). In
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FIGURE 1 | Pathogen-associated molecular patterns (PAMPs) [microbial nucleic acids, including DNA (e.g., unmethylated CpG motifs),
double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), 5′-triphosphate RNA, lipoproteins, surface glycoproteins, and membrane components
such as peptidoglycans, lipoteichoic acid, lipopolysaccharide (LPS), and glycosylphosphatidylinositol] and DAMPs [endogenous molecules normally
found in cells and released during cell death, such as ATP, uric acid, the cytokine IL1a, heparin sulfate, RNA, and DNA] (Kawai and Akira, 2010; Tang
et al., 2012) bind to TLRs and NLRs, activate NF-κB and AP-1 transcription factors and lead to the production of pro-inflammatory cytokines that
perpetuate inflammation and induce tissue damage. DAMPs are localized within the nucleus and cytoplasm (HMGB1), cytoplasm alone (S100 proteins),
exosomes (heat shock proteins, HSP), the extracellular matrix (hyaluronic acid), and in plasma components such as complement (C3a, C4a, and C5a), but also, they
can be mimicked by release of intracellular mitochondria, consisting of formyl peptides and mitochondrial DNA (with CpG DNA repeats) (Tang et al., 2012). Different
TLRs serve as receptors for diverse ligands (Mitchell et al., 2007).
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TABLE 1A | Genetic polymorphisms in the TRL4 signaling pathway that have been studied in relation to gastric cancer and CRC.

Polymorphism Reference Type of cancer Sample size/population OR/ 95% CI

rs4986790 (Asp299Gly) Qadri et al., 2013 GC 330/ Indian 1,15 /0,66–2,03

rs4986790 (Asp299Gly) de Oliviera et al., 2013 GC 440/ Brazilian 2,01 /1,06–3,81

rs4986790 (Asp299Gly) Santini et al., 2008 GC 322/ Italian 0,97 /0,37–1,14

rs4986790 (Asp299Gly) Hold et al., 2007 GC 395/ Caucasian 2,10/1,10–4,20

rs4986791(Thr399Ile) Qadri et al., 2013 GC 330/ Indian 1,39/0,70–2,78

rs4986791(Thr399Ile) de Oliviera et al., 2013 GC 440/ Brazilian 1,81 /0,64–5,15

rs4986791(Thr399Ile) Santini et al., 2008 GC 322/ Italian 3,62 /1,27–6,01

rs10116253 Castano-Rodriguez et al., 2013 GC 310/ Chinese 0,56 /0,34–1,00

rs10759931 Castano-Rodriguez et al., 2013 GC 310/ Chinese 0,56 /0,33–0,97

rs10759932 Castano-Rodriguez et al., 2013 GC 310/ Chinese 0,59 /0,34–1,04

rs10983755 Kim et al., 2013 GC 974/ Korean 1,41 /1,01–1,97

rs11536889 Kupcinskas et al., 2011 GC 349/ Caucasian 1,03 /0,62–1,71

rs1927911 Huang et al., 2014 GC 511/ Chinese 0,37 /0,21–0,70

rs2149356 Castano-Rodriguez et al., 2013 (170) GC 310/ Chinese 0,59 /0,34–1,02

rs10759931 GG vs AA+GA Sheng et al., 2015 CRC 1198 cases + 1290 controls Asian and caucasian 1,95/1,00–3,77

Thr399Ile TT vs CC Sheng et al., 2015 CRC 619 cases + 632 controls Asian and caucasian 4,99/1,41–17,65

Thr399Ile C carriers Sheng et al., 2015 CRC 619 cases + 632 controls Asian and caucasian 4,50/1,27–15,87

rs10759931 Semlali et al., 2016 CRC 115 case + 112 controls/Saudi Arabian 0.086/0.04–0.18

rs10759931 Pimentel-Nunes et al., 2013 CRC 193 cases + 278 controls/Portugueses 3.30/1.18–9.28

GS, Gastric cancer; CRC, Colorectal cancer; OR, Odds ratio; NS, Not specified; CI, confidence intervals.

TABLE 1B | Genetic polymorphisms in the NOD-like receptor signaling pathway that have been studied in relation to gastric cancer.

Polymorphism Reference Type of cancer Sample size/population OR/ 95% CI

NLRP3 rs3806265 Castaño-Rodríguez et al., 2014a,b GC 310/Chinese 3.33/1.09–10.13

NLRX1 rs10790286 Castaño-Rodríguez et al., 2014a,b GC 310/Chinese 4,00/1,66–9,61

NOD2 rs7202124 Companioni et al., 2014 GC 1649/Caucasian 0,97/0,37–1,14

NOD1 rs2907749 Wang et al., 2012 GC 456/ Chinese 0,50/0,26–0,95

NOD1 rs5743336 Kupcinskas et al., 2011 GC 324/ Caucasian 1,01/0,48–2,16

NOD2 rs2066844 (R702W) Angeletti et al., 2009 GC 326/Caucasian 4,1/1,75–9,42

NOD1 rs2075820 (E266K) Hofner et al., GC 211/ Caucasian 1,06/0,66–1,73

GC, gastric cancer; OR, odds ratio; CI, confidence intervals.

addition, a study by Wang et al. (2010) suggested that high
immunohistochemical expression of TLR4 in colorectal tumors is
associated with liver metastases and poor prognosis. In contrast,
Nihon-Yanagi et al. (2012), support that TLR2 is mainly involved
in colon tumorigenesis. Similar, apparently controversial results
have been reported for other factors involved in gastrointestinal
carcinogenesis (Evangelou et al., 2014). Taken together, we
assume that TLRs are involved in colon cancer development and
further work is needed to clarify their exact role.

NOD-LIKE RECEPTORS (NLRS)

The NLR family includes NODs, NLRPs (also called NALPs),
IL-1β-converting enzyme (ICE)-protease activating factor
(IPAF), neuronal apoptosis inhibitor factors (NAIPs), and MHC
class II transactivator (CIITA)(Ting et al., 2006). These molecules
are in the cytoplasm and survey for the presence of intracellular
pathogens. In humans, there are 22 known NLRs associated with
many diseases (Zhong et al., 2013; Kim et al., 2015). There are

four distinct domains in every NLR: a central NACHT (NAIP,
CIITA, HET-E, and TP-2), an N-terminal domain that facilitates
oligomerization, the ligand sensing LRRs on the C-terminal
and the effector domain, which may be pyrin domain (PYD),
caspase recruitment domain family (CARD), or baculoviral IAP
repeat (BIR). Each NLR contains different effector domain which
mediates signal transduction to downstream targets leading to
activation of inflammatory caspases by inflammasomes or NF-κB
by NODs. NAIP contains BIR domain, IPAF, while some of the
NALP family contain CARD domain and most NALPs contain
PYD domain (Saxena and Yeretssian, 2014).

NOD1 (NLRC1) and NOD2 (NLRC2) were the first NLRs
reported. NODs initiate the activation of MAPKs and NF-κB
via interaction with serine-threonine kinase RICK and activation
of kinase TAK1 (Inohara et al., 2005). These two molecules
(NOD1-NOD2) are essential for tissue homeostasis and host
defense against bacterial pathogens (Philpott et al., 2014).
Interestingly, single-nucleotide polymorphisms (SNPs) in the
NOD2 (CARD15) gene are considered as a significant risk factor
in Crohn’s disease (Ogura et al., 2001). NOD1 is expressed in

Frontiers in Genetics | www.frontiersin.org 4 May 2017 | Volume 8 | Article 65

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-08-00065 May 25, 2017 Time: 12:13 # 5

Spanou et al. TLR4/NOD Signaling and DDR/Inflammation

both hematopoietic and non-hematopoietic cells, while NOD2
is restricted to hematopoietic and some specialized epithelial
cells, like Paneth cells of the small intestine (Ogura et al.,
2003).

In addition, NODs seem to be essential for host defense against
non-invasive Gram (-) bacteria, such as H. pylori (Viala et al.,
2004). Upon activation, both NOD1 and NOD2 self-oligomerize
and, through homotypic CARD-CARD interactions, recruit the
CARD containing adaptor receptor-interacting protein kinase
2 (RIP2 or RIPK2), leading to the formation of a ‘Nodosome’,
a multi-protein signaling complex that results in NF-κB
and MAPK-mediated inflammatory and antimicrobial response
(Magalhaes et al., 2011; Keestra et al., 2013). In addition, NLR
activation leads to formation of a molecular scaffold complex
termed inflammasome. Three human inflammasomes have been
described based on the involved NLR protein: the NLP1, the
NLP3 and the IPAF. All of them activate caspase-1, a protein
essential for the transformation of the pro-IL-1β and pro-IL-18
to the mature cytokines IL-1β and IL-18, which play central role
in inflammatory processes (Fukata et al., 2009) (Figure 1).

NLR POLYMORPHISMS

The four most studied polymorphisms of NOD2 are:
rs2066842C/T, rs2066844C/T, rs2066845C/G, rs2066847insC
(Table 1B). As they are in coding region, they affect the function
of NOD2, by altering the primary amino acid sequence (Liu
et al., 2014). These four polymorphisms were initially associated
with increased risk of Crohn’s disease (Hugot et al., 2001)
and ulcerative colitis (Gazouli et al., 2005). Kurzawski et al.
(2004) first linked NOD2 polymorphisms with CRC. Subsequent
studies were inconsistent regarding the association of the
NOD2 polymorphisms with risk of multiple cancers such as
gastric, endometrial, breast, ovarian and laryngeal. A meta-
analysis by Liu et al. (2014) suggested that NOD2rs2066844C/T,
rs2066845C/G, and rs2066847insC polymorphisms may be
associated with increased cancer risk, especially gastrointestinal
(Table 1B). NOD2 polymorphisms have been correlated with
dysplastic changes of gastric mucosa in the presence of H. pylori
(Hnatyszyn et al., 2010); carriers also have increased prevalence
of early onset breast and lung cancer (Lener et al., 2006).

On the other hand, no mutations in the NOD1 gene have been
associated with intestinal inflammation or CRC. Oppositely, a
study by Chen et al. (2008) in a murine model of colitis-associated
colon cancer revealed a basic anti-tumorigenic function of
intact NOD1. Nevertheless, NOD1 polymorphisms have been
associated with the development of atopic eczema, asthma and
increased serum IgE concentration (Hysi et al., 2005), while
polymorphisms in the intronic region of NOD1 have been linked
with the age of IBD onset (McGovern et al., 2005).

THE DNA DAMAGE RESPONSE (DDR)

It is vital for every cell to protect the integrity of all
the encoded information it hosts and enable the accurate

transfer of genetic material during cell division. Given that all
human cells are exposed to a multitude of genotoxic insults,
endogenous and exogenous (Jackson and Bartek, 2009), a
highly conserved and advanced DNA recognition and repair
network, against a variety of DNA lesions is in operation.
The DDR is a complex network of molecular mechanisms,
which identifies the genetic damage and induces biochemical
pathways which cause cell cycle arrest (so-called control points,
checkpoints), promotes repair of lesions in the genetic material,
or, alternatively, proceeds to the activation of anti-tumor barriers,
apoptosis and senescence (Halazonetis et al., 2008; Gorgoulis
and Halazonetis, 2010; Evangelou et al., 2013; Velimezi et al.,
2013).

Among all types of genetic damage, the double-stranded
breaks (DSBs) constitute the greatest threat to the cell. The
presence of DSBs results in the DDR activation having as
a key effector the tumour-suppressor protein p53 (Rodier
et al., 2007). DSBs can be induced by various stimuli
such as ionizing radiation, activated oncogenes, or defective
telomeres and are very harmful, even fatal, for the cell.
Early activation of DDR in human precancerous lesions
highlights the importance of this network in preventing cancer
progression (Gorgoulis et al., 2005; Bartkova et al., 2006;
Halazonetis et al., 2008; Gorgoulis and Halazonetis, 2010).
However, continuous activation of DDR constitutes a sustained
“pressure” eventually leading to the mutation of the TP53
gene and loss of the anti-tumor barriers elicited by DDR,
providing an explanation for the extremely high rate of TP53
mutations in sporadic solid tumors and initiation of DDR
in advanced cancers (Halazonetis et al., 2008; Negrini et al.,
2010).

THE INTERACTION BETWEEN DDR AND
IMMUNE SYSTEM

Pathogen recognition receptors are major sensors of innate
immunity but they also affect adaptive immune responses. In
addition, many PRRs seem to interfere with several cellular
processes such as cell growth, apoptosis, cell proliferation,
differentiation, autophagy, angiogenesis, cell motility and
migration (Kutikhin et al., 2014). Currently there is a
strong interest in investigating the impact of PRRs in the
process of DNA repair. Undoubtedly, DDR and the immune
system are parts of the same protective mechanism aiming to
maintain cellular integrity against endogenous and exogenous
threats. DAMPs or PAMPs engagement to TLRs leads to
DDR activation, by induction of activator protein-1(AP-1)
and inflammatory mediators such as IL-12, IL-18, and IL-23,
known downstream effectors of TLR signaling (Harberts
and Gaspari, 2013). Nevertheless, aberrant activation of the
protective mechanism can be harmful not only for the cellular,
but also for the whole organismal systemic homeostasis resulting
in chronic, even fatal, diseases. Indeed, the state of chronic
inflammation observed in many pathologies, such as neoplasia
and autoimmunity, may be partially attributed to persistent
DDR stimulation (Pateras et al., 2015). From all the above it is
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conceivable that a common initiating point is potentially shared
between malignancies, connective tissue diseases and infectious
diseases.

The role of DDR in the pathogenesis of autoimmune
diseases is well established (Solier and Pommier, 2014;
Gunther et al., 2015; Souliotis et al., 2016). According to a
recent report (Funabiki et al., 2014), lupus-like features were
developed spontaneously in a mutant mouse line bearing
MDA5 (RIG-I-like receptor) gain of function mutation in the
absence of the appropriate viral ligand, thus providing direct
evidence connecting dysregulation of PRRs with autoimmunity.
Furthermore, it is well-established that chronic infection or
chronic inflammation is a major driving force in 20% of
human cancer and TLR/NLR signaling pathways serve as a link
between chronic inflammation and cancer such as colorectal
and other tumors (Wang et al., 2006; El-Omar et al., 2008;
Goto et al., 2008; Lowe et al., 2010; Yang et al., 2010; Cui et al.,
2014).

Based on recent reports (Wang et al., 2013; Ahmad
et al., 2014), TLR4 may both upregulate and downregulate
specific DNA repair proteins, in various ways in a cell specific
manner. Intracellular TLRs, such as TLR7, TLR8, TLR9
stimulated by imidazoquinolines, ssRNA, anti-phospholipid
antibodies, bacteria, viral CpG-DNA, and IgG-chromatin
complexes (Kutikhin, 2011), signal via the protein encoded by
myeloid differentiation primary response gene 88 (MyD88)
and also modulate DNA repair in a specific manner.
Regarding the NLRs, Licandro et al. (2013) reported that
the ectodomain of NLRP3 recognizes certain DAMPs, leading
to inflammasome formation and to the development of aseptic
inflammation. Taken together, the above presented data
imply that PRRs, and especially TLR4, TLR7, TLR8, TLR9,
and NLRP3, may be important regulators of DNA repair
machinery.

On the other hand, it is worth mentioning that DDR in turn,
controls human TLR gene expression. Menendez et al. (2011)
studied p53 responsiveness in primary human lymphocytes from
healthy volunteers and found that most of the TLR genes respond
to p53 via canonical as well as non-canonical promoter binding
sites. They also observed considerable inter-individual variability
suggesting that DNA and p53 metabolic stresses can diversely
modulate the innate immune system as well as downstream
cytokines.

TARGETING TLRS AND
NLRS-THERAPEUTIC IMPLICATIONS

Toll-like receptor (TLR) agonists are being developed for the
treatment of cancer, allergic diseases, viral infections, but also
as adjuvants for vaccines against infectious diseases and cancer
(Romagne, 2007) with considerable success. For example, BCG
(Bacillus Calmette-Guerin) and Imiquimod, used as treatment
for bladder cancer and basal cell carcinoma, respectively, contain
several TLR agonists that contribute to their antineoplastic
efficacy (Uehori et al., 2003; Geisse et al., 2004; Dunne et al., 2011;
Vacchelli et al., 2012).

Monophosphoryl lipid A (MPL), a TLR4 agonist purified
from Salmonella Minnesota LPS is used as an adjuvant, to
enhance adaptive immune responses, in human licensed vaccines
against papillomavirus (HPV) and hepatitis B virus (HBV)
infections (Maisonneuve et al., 2014). Moreover, promising
ongoing research in this field investigates the potential of other
TLR agonists, either alone or in combination, as adjuvants in
vaccines against bacterial, viral and neoplastic diseases (Cooper
et al., 2008; Maisonneuve et al., 2014).

Agonists to TLR7/8/9, have been successfully tested in
adults as novel therapeutics for allergies, asthma and allergic
rhinitis, because they induce a strong Th1 response (Hennessy
et al., 2010; Aryan et al., 2014). A single-stranded DNA-
based synthetic oligodeoxynucleotide that activates TLR-9 in
intestinal immunocytes, and induces the production of anti-
inflammatory cytokines has been administered topically during
lower GI endoscopy in patients with ulcerative colitis, refractory
to standard therapy, with promising results (Atreya et al., 2016).

On the other hand, inappropriate TLR stimulation is observed
in chronic idiopathic inflammatory and autoimmune diseases.
Thus, TLRs antagonists aiming to attenuate the exaggerated
inflammatory response have been tested for potential clinical
benefit in acute and chronic infections, including sepsis, with
variable success (Rossignol and Lynn, 2005; Opal et al., 2013;
Savva and Roger, 2013).

TLR antagonists may also prove to be of benefit in treatment of
autoimmune diseases, especially Systemic Lupus Erythematosus
(SLE), although clinical data are not yet available (Kanzler
et al., 2007; Wu et al., 2015). It is worth mentioning that
hydroxychloroquine, an anti-malarial agent with acknowledged
anti-inflammatory properties used for years as treatment of SLE
and rheumatoid arthritis (RA), has been recently found that is a
potent TLR inhibitor. TLR blockage has also been studied in acute
respiratory distress syndrome (ARDS), acute lung injury, RA,
asthma, myocardial ischemia reperfusion injury, inflammatory
bowel diseases, and pain management (Dunne et al., 2011;
Connolly and O’Neill, 2012).

In contrast to TLRs, the effect of NLR agonists or antagonists
has not yet been tested in humans. Nevertheless, data from
basic research show that manipulation of the NLR associated
molecular pathways holds promise as future therapeutic target for
the treatment of inflammation and cancer.

CONCLUSION – FUTURE
PERSPECTIVES

Nonetheless, the pleiotropic actions, redundancy, complex
interactions, and the possibility of functional mutations of
the involved molecules should always be kept in mind
when interpreting the outcome of any therapeutic attempt.
Intuitively, augmenting a weak or attenuating an excessive
inflammatory reaction, by targeted therapeutic interventions
may fine-tune host’s response and control disease progression.
As briefly outlined above, TLRs and NLRs are key molecules
involved in the inflammatory process and suitable candidates
for therapeutic manipulation. Available data thus far point
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out that their therapeutic potential has been only partially
exploited.

Nonetheless, it must always be kept in mind the
pleiotropic actions, redundancy, complex interactions and
the possibility of functional mutations of the involved
molecules, in order to interpret the outcome of any therapeutic
attempt. Future research should shed more light on the
complex evolving operation of the PRRs and the associated
molecular pathways in various disease states, in order
to timely select the appropriate targets for therapeutic
intervention.
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