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In order to understand gene function in bacterial life cycles, time lapse bioimaging is

applied in combination with different marker protocols in so calledmicrofluidics chambers

(i.e., a multi-well plate). In one experiment, a series of T images is recorded for one visual

field, with a pixel resolution of 60 nm/px. Any (semi-)automatic analysis of the data is

hampered by a strong image noise, low contrast and, last but not least, considerable

irregular shifts during the acquisition. Image registration corrects such shifts enabling

next steps of the analysis (e.g., feature extraction or tracking). Image alignment faces

two obstacles in this microscopic context: (a) highly dynamic structural changes in the

sample (i.e., colony growth) and (b) an individual data set-specific sample environment

which makes the application of landmarks-based alignments almost impossible. We

present a computational image registration solution, we refer to as ViCAR: (Vi)sual (C)ues

based (A)daptive (R)egistration, for such microfluidics experiments, consisting of (1) the

detection of particular polygons (outlined and segmented ones, referred to as visual

cues), (2) the adaptive retrieval of three coordinates throughout different sets of frames,

and finally (3) an image registration based on the relation of these points correcting both

rotation and translation. We tested ViCAR with different data sets and have found that

it provides an effective spatial alignment thereby paving the way to extract temporal

features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an

image registration with 99.9% of image closeness, based on the average rmsd of 4.10−2

pixels, and superior results compared to a state of the art algorithm.

Keywords: bio-imaging, time-lapse imagery, microfluidics, adaptive, landmark-free, image registration

1. INTRODUCTION

With the advent of technologies that permit advances in microscopy, either for high-resolution
data acquisition or automation of processes, the volume, and complexity of bioimage data has
increased to the point that it is no longer feasible to retain relevant information without the use
of a computer (Peng et al., 2012). In the context of microfluidics experimentation, in particular
the cell growth of microcolonies, and gene expression is investigated for several cell generations.
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This investigation requires the extraction, and the visualization
of quantitative cell-specific data at different time points (Wang
et al., 2010; Klein et al., 2012; Tarnawski et al., 2013; Mekterović
et al., 2014).

Recent studies focus on understanding phenotypic
heterogeneity of isogenic bacteria (Ackermann, 2015).
Particularly, this entails investigating the history of a bacterial
microcolony, i.e., Sinorhizobium meliloti, a soil bacterium, which
is few micrometers long.

To study cellular responses of S. meliloti to dynamic
environments (i.e., stress), microfluidic devices (e.g., hosting
growing bacteria) have become paramount experimental
platforms to survey single cell changes (Yin and Marshall, 2012).
The acquisition, analysis, and interpretation of high-resolution
time-lapse microscopy images, acquired in such experiments,
triggers specific questions to algorithm development ranging
from registration (also referred to as image alignment in
bioimage informatics) to visualization.

To not fall outside of the scope of this paper, we briefly
review methods of similar spatial resolution. We found the
following registrationmethods pertaining to: (1) live fluorescence
microscopy of a single cell (Yang et al., 2008; Tektonidis et al.,
2015), (2) histochemical staining based on cellular structures
(Cooper et al., 2007), yet not about cell lineage on the population
scale.

Moreover, promising methods relevant to other spatial
resolutions have also been found, yet requiring either an
a posteriori insight of the data or an evaluation of the
algorithms’ adaptability for higher-resolution images. Moreover,
other automatic methods, such as TurboReg (Thévenaz et al.,
1998) are designed to minimize the mean-square difference
(between the target and the source image), are esteemed fast,
and robust. Yet such automatic solutions would be unable to
handle the highly dynamic image content of bacterial growth (see
Figure 1) without preprocessing steps, and by solely relying on
one metric between the consecutive images.

Other scientific works exist for cell lineage analysis yet do
not address the registration problem explicitly (Wang et al.,
2010; Klein et al., 2012; Hakkinen et al., 2013; Mekterović et al.,
2014) or deal with sparser data (Hand et al., 2009). Image
alignment (i.e., registration) is of course a full blown field. In
our survey of microscopy cell-lineage related work, we found one
candidate method. It is an automatic approach to track, and align
Arabidopsis Thaliana’s growing sepals (Fick et al., 2013). The
employed data set used to demonstrate its effectiveness contains
comparably sparse cells where “in time cells stop dividing.”
In our case, due to the biological question (i.e., population
heterogeneity) that underlies the biomovies, the fluorescence
of each bacteria varies (see Figure 1). Moreover, each data set
comprises a bacterial colony that goes through a particular type
of exponential growth called doubling. Hence, each generation of
bacterial cells is twice as numerous as the previous generation.
We are in the special case of a highly dense population, even if
deaths still occur. This in fact influences the performance of state
of the art methods for image registration.

In one S. meliloti experiment, a series of images is recorded
at T equidistant time points t1 · · · tT (see Figure 1 for three

examples). These images are acquired for one selected visual field
in the microfluidics device and the image data represents to some
extent a new kind of bioimage analysis problem. Its novelty lies
not only in tackling high resolution image data, where each pixel
represents 60 nm, but also in handling different limiting factors
at the same time. These range from a low signal to noise ratio, or
SNR, in the image data, its variability (e.g., different background
among experiments and the image contents change), to the focus
shift due to vibrations and/or variations in temperature over time
in the acquisition. The variability in the image content is due to
both the background change of the used microfluidics chambers
and the rapid changes in the sample (i.e., exponential bacterial
growth).

To track and analyse the development of single cells, the
correction of the spatial shift is a prerequisite for manual
annotation or automatic segmentation of dividing cells or
visualization. This paper presents the first robust and data-
driven method to registering time lapse images in phase contrast
microscopy by finding major cues in the image space. In turn, it
enables us to conduct the next step in data analysis, i.e., to extract
biological information at the microscopic scale.

2. MATERIALS

The data at hand is acquired at the LOEWE center for Synthetic
Microbiology by phase contrast microscopy using a 100×
objective (Schlüter et al., 2015a). One frame is generated every
30 min. Each image is taken using a TIRF laser to reduce the
noise, increasing therefore the SNR. Each time series comprises
one colony of finally 200–300 individuals. Four data sets are
considered in this paper. The first couple D1 and D2, comprises
115 images each in the context of the heterogeneity experiment
(Schlüter et al., 2015b). The second one DS1 and DS2 are
unpublished data sets from another experiment. They are used to
illustrate the aforementioned background and content variability.

The output images {It} (t as time index) are written as RGB
images in TIF format, uncompressed (∼6 MB of size each)
and bearing dimensions of Ir×c with r(rows) = 1004 px and
c(columns) = 1002 px. We implemented the ViCAR algorithm
in Python. Specific packages were employed, such as OpenCV for
computer vision (Bradski and Kaehler, 2008). Required packages
are listed at https://github.com/ghattab/vicar.

3. METHODS

3.1. Preprocessing
As a first step in the ViCAR registration process, a customized
pipeline of standard filter operations is applied to each image
It so as to reduce noise, and increase the contrast between
the background and the structural elements of the image. The
preprocessing steps involve many constants, which are in this
example set to moderate values. We chose these constants, after
conducting a sensitivity analysis, that is to vary the constants and
verify their incidence on the resulting images. The whole process
is illustrated in Figure 2, so as to probe for particular polygons
and expand their respective shapes in the input image.
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FIGURE 1 | A set of original image frames in RGB color space for both openly accessible data sets, D1 (A–C), and D2 (D–F), respectively. A manual annotation is

tedious, and proves to be impossible before even reaching the middle time point of the time series. This is due to both a compromised sentience of individual bacteria,

and sample spatial shift.

(a) RGB to greyscale transformation (Figure 2B)
(b) Denoise Bilateral Filtering (Tomasi and Manduchi, 1998)

(Figure 2C)

• spatial closeness σ spatial = 75
• radiometric similarity σ range = 75
• diameter δ = 10 px of each pixel neighborhood that is used

during filtering.

(c) Contrast Limited Adaptive Histogram Equalization
(CLAHE) (Pizer et al., 1987) (Figure 2D)

• tile size τ = 102 pixels
• contrast limit of 2, to clip and uniformly distribute any

histogram bin above that limit.

Next, for each image It a binary image Ît is computed to serve as
a basis for finding polygons.

(d) Adaptive mean thresholding (Figure 2E)

• block size τ = 112 pixels
• a constant c = 2 is subtracted from the weighted mean in

order to prevent noise to pop up at background regions.

(e) Dilation (Serra, 1982) (Figure 2F): morphological operation
in each image It with a 3×3 window.

(f) Border clearing (Figure 2G): it replaces all elements
alongside, or stemming from the borders of the binary image
with background pixels.

(g) Masking (Figure 2G): a binary mask of image dimensions
(r × c) is initialised. It contains a circle of origin o =

(
r

2
,
c

2
) and diameter d =

3

5
· r to removing any

connected components external to its perimeter using a
bitwise comparison.

3.2. Polygon Finding
We employ the output binary images Î1, . . . , Ît , . . . , ÎT to find the
polygons Ptj. Each polygon has an index j and a time index t. In
each image, the border following algorithm by (Suzuki and Abe,
1985) is used to obtain closed boundaries, that is, the polygons
which are depicted in Figure 2 as connected components. For
the sake of clarity, the polygon index t is omitted for polygons
in the next sections. Once all polygons are found throughout the
time-series, they are filtered based on their individual perimeter-
to-area ratio. We define the perimeter, area, and the ratio in the
following sections.

3.2.1. Polygon Perimeter

The perimeter of a polygon S is:

S =

N∑
n= 1

|Cn| (1)

With the number of sides N, or smooth curves, equal to the
number of vertexes n, and the length of a smooth curve |Cn|.
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FIGURE 2 | Example result of the preprocessing steps Dataset 1 (D1). (A) Quadrants of image I23 are delimited, by opaque white lines. The bottom right quadrant is

rendered as a false-color image, so as to highlight edges in the image space. (B) The quadrant of interest is gray-scaled. We observe the particular polygons, as

square-like polygons. They are an intrinsic part of the microfluidics chamber. (B–G) show the output of each preprocessing step on this particular quadrant. (C) The

bilateral filter preserves edges, and reduces noise by employing a smoothing filter. (D) The contrast limited adaptive histogram equalization, or CLAHE, is used to

improve the contrast of the image. This favors the contrast between the background, and the square-like polygons. (E) The adaptive mean threshold, computes

thresholds for regions of the image with varying illumination. It results in a binary image, and a clear outline of the particular polygons. (F) Dilation, as a morphological

operation, probes, and expands the square-like shapes contained in the input image. (G) Border clearing, and masking depict no effects. Such a coupling serves as a

validation step so to palliate for any great image variability (e.g., rotation of objects entering/exiting the field of view).

3.2.2. Polygon area

For any simple polygon, the area A can be calculated:

A =

N∑
k= 0

(xk+ 1 + xk)(yk+ 1 − yk)

2
(2)

With the number of vertexes n and the k-th vertex
(xk, yk). Since the first vertex of the boundary C happens

to also be the last vertex, this results in a summation
of n + 1 terms where: (xn+ 1, yn+ 1) = (x0, y0) Given
Green’s Theorem, we compute for a piecewise smooth
curve C forming the boundary of a region D the
area A:

A =

∮
C
x dy (3)
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3.2.3. Perimeter-to-area ratio

To find a particular kind of outlined polygons, which we refer to
as visual cues. For each polygon Pj ∈ P1, . . . , PJ with the number
of polygons J, we introduce the perimeter-to-area ratio:

rj =
Sj

Aj
(4)

With Sj, and Aj, the perimeter, and area of a polygon Pj,
respectively. The perimeter-to-area ratio rj is a descriptor of
shape irregularity and is polygon size dependent. If holding shape
constant, an increase in size results in a decrease in ratio. We
only retain polygons satisfying the following empirically derived
threshold:

rj < 5× 10−2 (5)

This threshold permits to consistently find particular polygons
with a lowest complexity. As a consequence, the polygons
found in the microfluidics data considered here, are the spacers,
i.e., squares, and square-like (see Figure 2). In contrast, if
complex polygons are found (e.g., self-intersecting polygons)
they are retained only if no other polygons satisfy the
aforementioned threshold. All retained polygons are referred to
as visual cues.

3.3. Registration
Registration happens in a pairwise manner It , It+ 1, and
adaptively based on the number of visual cues J across all image
points T. All indexed intervals are registered to the reference
image, i.e., I1. Registration results are depicted in Figure 3.

3.3.1. Interval Adaptability

To correct for spatial shift the algorithm is defined to handle
two different cases: Case a: all images contain the same number
of J visual cues, then the computation iterates using a reference
polygon as explicated in section 3.3.2, else Case b: intervals
of consecutive images contain different numbers J and J′ of
visual cues: In each interval, the aforementioned method in
case a is handled independently and iteratively while using the
reference polygon for registering all intervals to the first image.
One requirement to this adaptability is the minimum of two
consecutive images with J visual cues.

3.3.2. Reference polygon

Image registration requires reference coordinates for
correspondence among the consecutive image points of the
time-series. By coupling both border clearing and circle masking,
we obtain polygons that are mostly in the image center (see
preprocessing section 3.1). The first reference coordinate is
found by ordering all coordinate pairs (along both x, and y axes).
The first reference coordinate xj= 0 at t = 1 is used as the first
visual cue, which is the reference for the registration. To obtain
further visual cues, first, a decision is made based on the number
of visual cues J, three scenarios are possible: Scenario a: one
visual cue is found, we use an oriented bounding box (OBB)
to retain three coordinate pairs. Scenario b: two visual cues are
found, we use an OBB for both, and retain the first coordinate

pair from each polygon along one axis, and scenario c: in the case
of three, or more visual cues, we extract their respective centers.

3.3.3. Affine Transform

From each image It , visual cues xt , yt , zt are extracted to apply the
affine transform to It+ 1, mapping the points xt+ 1, yt+ 1, zt+ 1 to
xt , yt , zt .

This way, we first transform the phase contrast images and
then their corresponding RGB channels. Which is similar to
strategies applied in multi-tag fluorescence microscopy, like
e.g., Raza et al. (2012). Once the alignment is done, we evaluate
the robustness of our approach. It is conducted on preprocessed
and transformed images, where only visual cues are observable,
as seen in Figure 4.

3.4. Evaluation
To assess the performance of the ViCAR approach, we evaluated
the results by addressing both: (a). the spatial shift, by computing
the pairwise root mean square difference for all T images
compared to I0, the reference image, and (b) the average
elapsed time ViCAR took to preprocess, and align one image.
Results obtained with ViCAR are compared to those obtained
with a Probabilistic Hough Transform (PHT) based method in
Table 1.

(1) Image closeness: 8, in pixels, can be formulated as follows:
8 = 100−(rmsd×100/r). Using the average root mean square
difference, noted rmsd, as a measure to assess how accurate
is the spatial presence of the visual cues in It compared to I1.

(2) Performance: Elapsed computation time (1tc), in seconds,
is computed using real system time by subtracting initial
from final. The evaluation was carried out on all the
aforementioned data sets. It ran on a MacBook Air (Mid
2013) with a 1.7 GHz Intel core i7 and 8 GB 1600MHzDDR3
memory.

(3) Comparison to state of the art method: In particular,
the probabilistic hough transform (PHT). Since, it has
been extensively proven to be successful (Yam and Davis,
1981; Sun et al., 2014), with complexity and memory
requirements lower in higher dimensions. The PHT based
method comprises of the following steps: (a) reduce each
image to a set of edges using an edge detector (i.e., Canny),
(b) apply the Hough process (particularly, the PHT), (c)
retain a best fitted subset of points (i.e., four points), and
(d) a geometric transformation (e.g., using the least-squares
method).

(4) Visual verification: The dataset is visualized in a space-time
cube, as proposed in (Pretorius et al., 2016), before and after
ViCAR has been applied. Using a SIFT operator (Lowe, 2004)
and a customized preprocessing pipeline, approximations for
cell positions are computed in each image It . These positions
were subject to the visualization shown in Figure 5. The x−
and y−axis represent the original image plane. The z-axis
represents the time t. The lowest point in each (a) or (b)
represents the single cell in the first image I0. The original
data suggests a shift of the entire colony inside the chamber.
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FIGURE 3 | The effectiveness of ViCAR is demonstrated for data sets D1 (A), D2 (B), and two other data sets DS1, and DS2 (C,D) from another experiment. The

upper half in (1) each image (A–D) shows one aligned image frame selected from four different data sets, recorded in four different experiments. For the sake of

interpretability, we show results after applying the adaptive threshold. In the lower half (2), we also show an overlay of the non-aligned image with an opacity of 50 %

so the shift can be seen. The examples show the robustness of our adaptive visual cues based approach. This indeed justifies using a flexible algorithm so as to

handle the varying number, and positions of distractors.

TABLE 1 | Benchmark results for bacterial time series (Datasets: D1, D2, DS1,

and DS2) using both approaches: Probabilistic hough transform (PHT) and Visual

cues adaptive registration (ViCAR).

PHT based ViCAR

1tc (s)* rmsd (px) 8 (%) 1tc rmsd 8

D1 1.3 13.9 98.6 0.64 4.10−2 99.9

D2 —** — — 0.65 6.10−2 99.9

DS1 0.7 19.2 98.1 0.36 4.10−2 99.9

DS2 —** — — 0.44 5.10−2 99.9

The PHT based approach fails due to disappearing elements of the image space crucial

to the PHT based registration.

*Average elapsed time per image, in seconds. ** Method failed.

After ViCAR has been applied, the correct colony location
and spatial distribution can be visually analyzed.

4. RESULTS

The examples in Figure 1 back the necessity of preprocessing
steps. We report an example result of the preprocessing steps
in Figure 2. In Figure 3 we show how all visual cues are
correctly aligned, for two different time points among the four
aforementioned data sets (D1-D2, DS1-DS2). This figure is a
noteworthy evidence to the adaptability and robustness of this
registration approach.
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FIGURE 4 | Temporal change of the found polygons before, and after ViCAR’s registration for data set D1. Such square-like polygons represent the structure of the

microfluidics chamber. The polygons are either shown in gray, in teal blue, or are outlined in black. Gray polygons represent the square-like polygons of the

microfluidics chamber without applying a registration. Teal blue polygons depict the overlay of the polygons found in the reference image Î1. Teal blue polygons are

positioned in the foreground of black polygons, resulting into the impression of an outline. (A) In the first time point, we observe only one set of visual cues. This is

explained by the fact that the first image serves as reference for the registration. (B–D) Throughout the temporal progression of the time-series, we observe a

distancing of both gray, and black outlined polygons, making explicit the spatial shift. By employing the first image as reference, we observe a correct overlay of the

first image polygons, shown in teal blue.

As reported in Table 1, the state of the art based approach,
namely employing the PHT, resulted in correct performances
on D1, and DS1. Whereas, on D2, and DS2, the state of the
art method has proven to fail. This is mainly due to data set
variability where either the data contains no lines, or a detected
line disappears after an elapsed time. It is inappropriate to use the
PHT based approach since it requires a prerequisite of the image
data. To conclude, ViCAR achieved a satisfying performance,
close to 100%, and proved its adaptability on different data sets.

5. DISCUSSION

Compared to other registration methods in biomedical
imaging, our method requires neither a parametric model
of the data (e.g., brain atlas, alignment of brain MRI scans)
(Ashburner et al., 1997; Abdelmoula et al., 2014), nor
explicit landmarks (e.g., anatomical landmarks in medical
imaging Zhang et al., 2015, or developmental biology
Mkrtchyan et al., 2013). ViCAR works, and has demonstrated
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FIGURE 5 | Cell positions as a 3D scatter-plot for data set 1 (D1) before our ViCAR’s method (A), and after (B). The x− and y−axis represent the original image plane,

and the pixel coordinates while the z-axis represents time. Each dot represents the position of an image feature computed with the SIFT operator (Lowe, 2004).

Thereby the dots in one z-plane (i.e. at one time point tz ) approximate the spatial distribution, and density of the bacterial colony at this time point. On the left side

(A) the bacterial colony seem to move or shift inside the chamber. A visual inspection of the original data shows that this is not the case but an artifact of the

misalignment. On the right (B), the ViCAR - aligned is displayed, showing the actual spatial colony development over time.

promising results for upcoming high-throughput image data
analysis.

The employed image data are highly dynamic with a
considerable amount of noise, and sometimes a lack of focus
regardless of the high-end microscope that is being used. For
these reasons, other methods have failed to register such time-
lapse image data. An improvement of image quality might be
possible using differential interference contrast microscopy, yet it
is not possible to get the same quality at the same magnification.

ViCAR relies on consistently finding polygons that are part of
the background. Condition to a reevaluation of the preprocessing
pipeline, ViCAR will adapt to different experimental setups as
well. The polygon finding step is capable of handling any size,
shape, and number of polygons. To find the special polygons
we refer to as visual cues, the perimeter-to-area ratio retains
the polygons with least complexity. A limiting factor lies at the
transformation step, where two consecutive images bearing the
same number of visual cues are required (c.f. section 3.3).

In special yet few cases, where image content and background
vary greatly, it is necessary to reduce the circle mask parameter
[see 3.1(g)] so to limit the cues to the central image area. The
amount of visual cues J assumes they are the same ones. If the
shift is larger than half the width of the first image, there is no
guarantee that the algorithm will work since the first visual cues
that have been found may, or may no longer be in the visual
field. This aspect is to be considered for these exclusive cases,
we reckon it is rather a special case than being a negative aspect
of this paper. Due to these reasons, ViCAR has the strength of
coupling state of the art image processing steps to a particularly
flexible algorithm.

Using a perimeter-to-area ratio based filtering proved robust
in the filtering step. This step warrants a better adaptability of
ViCAR. If deemed decisive, the use of further shape descriptors
would permit for an extended structural analysis. To conclude,

the reported performance denotes a particularly fast and robust
approach that is morphology-free, and generalisable.

6. AVAILABILITY AND IMPLEMENTATION

The data (Schlüter et al., 2015b) is accessible at http://doi.org/10.
4119/unibi/2777409 under the Open Data Commons Attribution
License (ODC-By) v1.0. The data-driven software approach is
freely available for download at http://github.com/ghattab/vicar
under the MIT License. It is implemented in Python, and
supported on UNIX-based operating systems.
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