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Type 1 diabetes is an auto-immune disease resulting in the loss of pancreatic β-cells

and, consequently, in chronic hyperglycemia. Insulin supplementation allows diabetic

patients to control their glycaemia quite efficiently, but treated patients still display an

overall shortened life expectancy and an altered quality of life as compared to their

healthy counterparts. In this context and due to the ever increasing number of diabetics,

establishing alternative therapies has become a crucial research goal. Most current

efforts therefore aim at generating fully functional insulin-secreting β-like cells using

multiple approaches. In this review, we screened the literature published since 2011 and

inventoried the selected markers used to characterize insulin-secreting cells generated

by in vitro differentiation of stem/precursor cells or by means of in vivo transdifferentiation.

By listing these features, we noted important discrepancies when comparing the different

approaches for the initial characterization of insulin-producing cells as true β-cells.

Considering the recent advances achieved in this field of research, the necessity to

establish strict guidelines has become a subject of crucial importance, especially should

one contemplate the next step, which is the transplantation of in vitro or ex vivo generated

insulin-secreting cells in type 1 diabetic patients.

Keywords: β-cells, differentiation, stem cells, type 1 diabetes, β-cell markers

INTRODUCTION

Diabetes affects 422 million people worldwide and its increasing prevalence is predicted to reach
552 million patients by 2030 (Whiting et al., 2011; Zhou et al., 2016). The most common feature
associated with diabetes is also its principal diagnosis: chronic hyperglycemia. Type 2 diabetes
results from a combination of insulin resistance in target organs and defective β-cells (Bergman
et al., 2002), while type 1 diabetes is due to the autoimmune-mediated loss of the pancreatic insulin-
secreting β-cells, leading to insufficient glucose disposal (WHO, 1999). For both pathologies, the
loss of insulin activity causes an imbalance in glucose homeostasis, eventually resulting in multiple
cardiovascular complications (Hanefeld et al., 1996; Alwan, 2010; Pascolini and Mariotti, 2012).
In the case of type 1 diabetes, the hyperglycemia can be efficiently managed by means of insulin
supplementation, but patients still display an overall shorter life expectancy and a relatively altered
quality of life (Lind et al., 2014; Morgan et al., 2015). In this context, finding an alternative to daily
injections of exogenous insulin has become a crucial research goal. Toward this goal, many current
efforts focus on β-cell replacement therapies using different strategies, alongside the development
of efficient ways to protect such newly generated cells from the autoimmunology inherent to type 1
diabetes (detailed by Desai and Shea, 2016).
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During the last decade, impressive progresses have been made
toward the generation of functional insulin-secreting β-like cells
(Vieira et al., 2016). Most of the strategies employed initially
relied on deciphering the molecular mechanisms underlying β-
cell (neo) genesis and applying this knowledge to in vitro or in
vivo (trans) differentiation: the purpose being to drive progenitor
cells (either stem cells or multipotent cells) or differentiated
cells toward a β-cell phenotype. To validate the identity of the
resulting “β-like” cells, a number of tests have been employed,
ranging from marker gene analyses to functional challenges.
However, while browsing the recent literature, we noticed
important differences between the features examined by various
authors. Importantly, our survey indicates that the number of
key features assessed to establish whether neo-generated insulin-
producing cells are indeed “true” β-cells has not progressed in
the last years. These observations clearly establish the need of an
“initial β-cell profiling.”

DATA ANALYSIS

Methodology
Our analyses were focused on the following β-cell features:

- Glucose Stimulated Insulin Secretion (GSIS) was confirmed
when the authors reported at least one insulin and/or C-peptide
ELISA measurement increasing upon glucose stimulation,
or when an improved response for mice subjected to an
intraperitoneal or oral glucose tolerance test was observed. Of
note, the sole presence of C-Peptide as a sign of GSIS was not
considered.

- Gene expression of bone fide β-cell markers was validated
when RT-PCR, transcriptomics analyses or immunolabeling
was used.

- Mice reverting from an established diabetic state (NOD/Akita
background, streptozotocin or alloxan treatment) to stable
euglycemia due to the presence of neogenerated insulin-
producing cells validated the feature “Hyperglycemia
Recovery.” This could be achieved either by in vivo
transdifferentiation or allogenic transplantation of in vitro
differentiated cells.

Fifty-nine original publications were manually selected
following multiple Pubmed searches (https://www.ncbi.nlm.
nih.gov/pubmed/) using the keywords “β-cells,” “pancreas,”
“differentiation,” “stem-cells and markers” in various
combinations, limiting the searched period from January
2011 to March 2017 (list in Table 1).

Validation of β-Cell Features
Aiming to summarize the β-like cell features assessed, a survey
of the recent literature reporting β-like cell neogenesis was
conducted by analyzing all the data provided by the authors
in order to deliver an accurate compilation. In the resulting 59
original publications, all the properties used to characterize neo-
generated β-like cells were inventoried, ranking them by year of
publication and the frequency of their use as a validation tool
(Table 2).

TABLE 1 | References of the publications analyzed in this survey, listing the

source cell types employed for insulin- producing cell neogenesis.

References Cell type

IN VITRO DIFFERENTIATION OF STEM CELLS

Iskovich et al., 2011 BM-SC

Thatava et al., 2011 iPSC

Talavera-Adame et al., 2011 mESC

Chen et al., 2011 mESC

Criscimanna et al., 2012 f-LSC

Santamaria et al., 2011 hESC

Jeon et al., 2012 iPSC

Lima et al., 2012 mESC

Bose et al., 2012 hESC

Liu and Lee, 2012 hESC

Wei et al., 2013a hESC

Wei et al., 2013b hESC

Tsai et al., 2013 BM-SC

Nair et al., 2014 mESC

Lahmy et al., 2014 iPSC

Ebrahimie et al., 2014 mESC

Niknamasl et al., 2014 iPSC

Shahjalal et al., 2014 iPSC

Hua et al., 2014 hESC

Shaer et al., 2014 M-SC

Van Pham et al., 2014 hPSC

Rezania et al., 2014 hESC

Pagliuca et al., 2014 hPSC

Khorsandi et al., 2015 BM-SC

Jian et al., 2015 M-SC

Pezzolla et al., 2015 hESC

Russ et al., 2015 hESC

Cardinale et al., 2015 iPSC

Agulnick et al., 2015 hESC

Bruin et al., 2015 hESC

Abouzaripour et al., 2016 f-LSC

Salguero-Aranda et al., 2016 mESC

Rajaei et al., 2016 hESC

Manzar et al., in press iPSC

IN VIVO CONVERSION OF MATURE CELLS

Talchai et al., 2012 Intestinal cells

Banga et al., 2012 Sox9+ cells

Al-Hasani et al., 2013 Pancreatic alpha-cells

Courtney et al., 2013 Pancreatic alpha-cells

Chera et al., 2014 Pancreatic delta-cells

Smid et al., 2015 Pancreatic cells

Duan et al., 2015 Intestinal cells

Miyazaki et al., 2016 Pancreatic acinar cells

Yang et al., 2017 Liver cells

Ben-Othman et al., 2017 Pancreatic alpha-cells

Li et al., 2017 Pancreatic alpha-cells

IN VITRO DIFFERENTIATION OF NON-STEM CELLS

Shyu et al., 2011 Pancreatic cells

Zou et al., 2011 Amniotic fluid cells

(Continued)
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TABLE 1 | Continued

References Cell type

Ravassard et al., 2011 Fetal pancreatic buds

Kim et al., 2012 Fibroblasts

Akinci et al., 2012 Pancreatic exocrine cells

Lima et al., 2012 Pancreatic exocrine cells

Liu et al., 2013 Liver cells

Kim et al., 2013 Pancreatic duct cells

Wilcox et al., 2013 Pancreatic α-cells

Bouchi et al., 2014 Gut progenitor cells

Sangan et al., 2015 Pancreatic α-cells

Corritore et al., 2014 Pancreatic duct cells

Yamada et al., 2015 Pancreatic duct cells

Teichenne et al., 2015 Pancreatic acinar cells

mESC: mouse embryonic stem cells BM-SC: bone marrow stem cells

iPSC: induced pluripotent stem cells BT-SC: biliary tree stem cells

hESC: human embryonic stem cells Endo-SC: endometrial stem cells

f-LSC: fibroblast-like limbal stem cells EC-SC: embryonal carcinoma stem cells

hPSC: human pluripotent stem cells M-SC: mesenchymal stem cells

Insulin and β-Cell Function
Expectedly, insulin expression was the only feature commonly
displayed by all reported neo-generated β-like cells. Interestingly,
the responsiveness of such β-like cells to glucose stimulation
was assessed in 88% of the publications analyzed, indicating
a satisfying physiological response for most of these newly
generated cells. However, the recovery upon induced
hyperglycemia was validated in only 46% of the publications
listed. In the case of insulin-secreting cells generated in vitro
and challenged in vivo, this can most likely be attributed to
transplantation-related issues and the need to host immune-
deficient mice, in vitro differentiated allogeneic or xenogeneic
cells being rejected upon graft in wild-type animals. In the case of
in vivo transdifferentiation, on the contrary, the immunological
rejection is bypassed by the creation of autologous β-like cells,
and consequently the hyperglycemic recovery was assessed in all
publications except one.

Transcription Factors
The Pdx1 gene appeared second in ranking, while being a
disputed proof of completed β-cell differentiation (Table 2).
Indeed, during the course of pancreas morphogenesis, Pdx1 is
first detected in all pancreatic progenitor cells, its expression
being subsequently detected in mature β-cells (Ahlgren et al.,
1996, 1998). Pdx1 should therefore not be considered as a mature
β-cell marker in approaches aiming at recapitulating pancreas
development, as one cannot exclude that an undifferentiated
proportion of the cells still expresses this transcription factor. We
consequently suggest that its presence should solely be assessed
in insulin-secreting cells using double labeling.

During pancreas development, an initial expression in
pancreatic/endocrine precursors and a subsequent expression
in mature β-cells is in fact a feature displayed by numerous
transcription factors considered as bona fide β-cell markers.

Indeed, HlxB9, Nkx6.1, Pax4, MafA, Nkx2.2, Isl1, NeuroD1,
Pax6, Foxa2 are all involved in pancreas organogenesis, their
expression being maintained at adult age in β-cells (for the first
four) and additional cell subtypes (for the remaining-Ahlgren
et al., 1997; Naya et al., 1997; Sander et al., 1997, 2000; Sosa-
Pineda et al., 1997; Sussel et al., 1998; Li et al., 1999; Edlund,
2002; Henseleit et al., 2005; Zhao et al., 2005). It is thus necessary
to validate their expression in insulin-secreting cells either using
(q)RT-PCR after FACS sorting or immunohistochemical analyses
coupled to insulin detection.

Enzymes and Hormones
In the pancreas, glucokinase is expressed in mature α- and β-
cells, such enzyme being involved in glucose-sensing (Pierreux
et al., 2006). PC1/3 and PC2 correspond to enzymes essential
for proinsulin processing and are thus necessary for the normal
function of mature β-cells (Marzban et al., 2004; Ugleholdt
et al., 2006). Iapp is co-released with insulin by β-cells
and acts as a satiation signal (Akesson et al., 2003), while
urocortin3 is a hormone secreted by β-cells, acting to induce
somatostatin secretion by δ-cells (van der Meulen et al., 2015).
Altogether, these proteins are involved in the β-cell metabolism
and function, and therefore should mostly be expressed only
in mature insulin-secreting cells. Accordingly, they represent
markers of the maturation state of differentiated insulin-
secreting cells and they should therefore be tested in a more
systematic way to ascertain a terminally-differentiated β-like cell
phenotype.

Channels
Even though they are not markers of differentiation or
maturation per se, potassium channels Kir6.1 and Kir6.2 and
ATPbinding cassette channel Sur1 are required for proper insulin
secretion (Proks et al., 2002; Kefaloyianni et al., 2013). Coupled to
GSIS assessment, the presence of these proteins should be used in
order to establish optimal β-like cells response to glucose.

DISCUSSION

Following the outstanding progresses made in the fields of
stem-cell differentiation and in vivo trans-differentiation, human
applications appear increasingly conceivable. However, one could
only contemplate such an exciting clinical outcome after ensuring
that the neo-generated insulin-secreting cells are genuine and
could therefore fully replace endogenous β-cells. The features
displayed in Table 2 rank the common features classically
assessed in neo-generated insulin-secreting cells which, taken
together, could theoretically constitute an “initial profiling” for
β-like cells. Obviously, numerous additional aspects of the β-cell
phenotype should be considered when aiming at establishing a
standard validation protocol for β-like cells.

Regarding the prerequisites listed in Table 2, as previously
discussed, appropriate levels and correct localization of the β-
cell-specific marker genes undoubtedly should be confirmed by
immunohistochemistry using double labeling, especially in the
case of developmental transcription factors. Concerning insulin
itself, since its release in response to a stimulus is the main
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TABLE 2 | Summary of the features assessed in neo-generated β-like cells ranked both chronologically and by frequency.
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2011 100 100 75 50 75 63 38 13 50 63 38 25 25 13 13 13 25 0 13 0 0

2012 100 90 80 60 70 80 70 80 50 40 40 60 30 30 30 30 30 30 20 20 0

2013 100 100 88 50 75 63 75 63 63 63 13 13 38 38 13 13 0 13 13 0 0

2014 100 100 92 85 38 38 46 38 31 31 38 15 46 31 23 23 23 23 23 15 23

2015 100 83 92 42 42 33 50 50 42 17 42 25 17 33 33 25 25 17 0 25 0

2016 100 100 100 50 25 0 0 0 25 0 25 75 0 0 50 25 0 0 0 0 0

2017 100 75 100 75 25 50 25 50 75 25 0 0 25 25 0 25 25 0 0 0 25

Total 100 93 88 59 53 49 49 46 46 36 32 29 29 27 24 22 20 15 12 12 7

For each year, the percentage of publications having validated a particular feature is displayed. GSIS, Glucose Stimulated Insulin Secretion; HG recovery, HyperGlycemia recovery, see

Methodology for a description of the validation criteria.

Color gradient reflecting the percentage of validated features.

property requested from β-like cells, careful examination of its
glucose-stimulated secretion and proper storage of insulin are
essential. For the latter, the visualization of secretory vesicles
by electronic microscopy appears as a valuable tool. Combined
with the PC1/3, PC2, and C-peptide expression analyses, proper
processing of proinsulin could be convincingly demonstrated.
In addition, the analysis of single insulin-producing cells
could provide cues on their ability to behave as endogenous
β-cells.

While global proteomic and transcriptomic analysis of neo-
generated cells would give detailed information about their state
of differentiation, one of the main issues is the heterogeneity of
β-cells both in human and rodents (Rutter et al., 2015; Dorrell
et al., 2016; Roscioni et al., 2016). A detailed analysis of these
aspects, as well as a list of putative routine experiences, are
described by James D. Johnson in his elegant review detailing the
remaining steps prior to reaching clinical applications (Johnson,
2016). This report provides a thorough analysis of the current
state-of-the-art from the point of view of a β-cell biologist, also
highlighting the need for standardized protocols validating β-like
cells functionality.

In addition to the initial profiling of neo-generated β-like
cells, systematic single-cell next generation transcript sequencing
(RNA-seq) would be the most decisive validation for β-like cells,
providing the complete expression profile of these cells and thus
their state of differentiation. Importantly, this transcriptomic
phenotyping would not only assess the activation of necessary
features, it would ensure the correct repression of non-β-
cell genes, including the disallowed genes known to interfere
with appropriate β-cell functionality (Pullen and Rutter, 2013;
Lemaire et al., 2016; Pullen et al., 2017).

A chronological display of the average number of features
assessed in neo-generated β-like cells is provided in Figure 1.
Importantly, this ranking clearly shows a scattering in the
number of validated features, the average values not increasing
in time (which would be indicative of an enhanced scrutiny

FIGURE 1 | Graphical representation of the number of β-like features

validated, per year of publication. The data displayed represent the average

number of validated markers ± range, for each year of publication (from the list

displayed in Table 2).

cells over time). These discrepancies clearly reflect the lack of
a canonical list of features to be validated. We thus propose to
systematically assess most (if not all) of the features displayed
in Table 2 as an initial roadmap toward the establishment of the
β-cell identity.
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