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Bacteria have evolved to efficiently interact each other, forming complex entities known
as microbial communities. These “super-organisms” play a central role in maintaining
the health of their eukaryotic hosts and in the cycling of elements like carbon and
nitrogen. However, despite their crucial importance, the mechanisms that influence
the functioning of microbial communities and their relationship with environmental
perturbations are obscure. The study of microbial communities was boosted by
tremendous advances in sequencing technologies, and in particular by the possibility to
determine genomic sequences of bacteria directly from environmental samples. Indeed,
with the advent of metagenomics, it has become possible to investigate, on a previously
unparalleled scale, the taxonomical composition and the functional genetic elements
present in a specific community. Notwithstanding, the metagenomic approach per se
suffers some limitations, among which the impossibility of modeling molecular-level (e.g.,
metabolic) interactions occurring between community members, as well as their effects
on the overall stability of the entire system. The family of constraint-based methods,
such as flux balance analysis, has been fruitfully used to translate genome sequences in
predictive, genome-scale modeling platforms. Although these techniques have been
initially developed for analyzing single, well-known model organisms, their recent
improvements allowed engaging in multi-organism in silico analyses characterized by
a considerable predictive capability. In the face of these advances, here we focus on
providing an overview of the possibilities and challenges related to the modeling of
metabolic interactions within a bacterial community, discussing the feasibility and the
perspectives of this kind of analysis in the (near) future.

Keywords: microbial communities, metabolic modeling, constraint-based modeling, metabolic interactions,
microbiome, mcFBA

METABOLIC-BASED INTERACTIONS AND THE MICROBIOME

The advent of high-throughput sequencing platforms (NGS) represents one of the most significant
milestones in the field of microbial ecology. The possibility of determining genomic sequences
directly from environmental samples, circumventing the culturability issues related to most
of the bacterial species, allows to investigate the composition of the microbial communities
from taxonomical (microbiome) and functional (metagenome) point of view. Metagenomics, in
particular, can be used to identify the metabolic potential of a microbial community in terms of the
presence of genes encoding enzymes involved in specific metabolic pathways.
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Metabolic interactions are pivotal for maintaining the
community processes functions and for structuring the ecology
of the host-microbiome unit (Harcombe et al., 2014; Ponomarova
and Patil, 2015; Zelezniak et al., 2015). For example, in
a community of oceanic plankton the exchange of 2,3-
dihydroxypropane-1-sulfonate from the diatom Thalassiosira
pseudonana to a bacterium from the Roseobacter clade has
been demonstrated (Durham et al., 2015). Concerning the host-
associated microbiota, whose implications for human health and
development are well established (Lupton, 2004; Sonnenburg
et al., 2005; Ley et al., 2006; Frank et al., 2007; Candela et al., 2008;
Turnbaugh et al., 2008; Fukuda et al., 2011; Kozyrskyj et al., 2011;
Olszak et al., 2012; Yatsunenko et al., 2012), its composition is
the result of complex (and poorly understood) interactions which
often depends on metabolic effectors occurring at the molecular
level between host and microbes, deriving from long-term co-
adaptation and short-term changes of environmental conditions
(as exemplified in the hologenome theory; Theis et al., 2016) In
the human gut microbiota, one of the most illuminating examples
is fucose, a sugar commonly found as glycan component
in epithelial cells of the mammal intestine (Terahara et al.,
2011). Glycan fucosylation, induced by the presence of specific
symbionts (such as Bacteroides thetaiotaomicron; Bry et al.,
1996), has a role in the foraging of commensal bacteria and,
consequently, in the stability of gut microbiota. In turn, a fucose-
exposed microbiota improves its host health through different
mechanisms, such as the production of short chain fatty acids and
the inhibition of pathogen colonization (Pham et al., 2014).

TOWARD PREDICTIVE MODELS IN
MICROBIAL ECOLOGY

Microbial communities can be considered “complex adaptive
systems” (Song et al., 2014), where individuals and populations
interact, giving rise to system’s higher-order (emergent)
properties. Communities are in fact comprised of a network of
spatially distributed agents (cells) that respond concurrently to
the actions of others (cells). Thus, the behavior of the system
(the community) can arise from a variety of interactions
(e.g., mutualism, antagonism, parasitism, etc.) between agents
and their local environment. In fact, sociomicrobiology is
moving from the analysis of single model systems (e.g.,
Dictyostelium discoideum, Myxococcus xanthus, Pseudomonas
aeruginosa; West et al., 2006) to more complex models, as
those related to host–microbe interaction and to microbial
consortia (Wyatt et al., 2016). In recent years, the application
of conceptual frameworks from market economy theory has
become popular, trying to predict the evolution of a microbial
community (including the cross-talk of their members) over
time (Werner et al., 2014; Tasoff et al., 2015). At the same time,
various approaches for mathematical modeling of microbial
communities have been applied, including Lotka–Volterra
models, evolutionary game models, thermodynamically based
models, non-linear regression models, trait-based modeling
and stoichiometric modeling (reviewed in Song et al., 2014).
Tools for the simulation of microbial community behavior have

also been developed (Lardon et al., 2011) which may include
interaction between host and the microbiota (as the eGUT
http://www.biosciences-labs.bham.ac.uk/kreftlab/eGUT.html)
or “simpler” environments resembling a Petri-dish context
(Harcombe et al., 2014). In general, modeling of communities
may rely on top-down or bottom-up approaches, defined as
population-level models (PLMs) and individual-based models
(IBMs), whereas PLMs are best applied to homogeneous
environments and IBMs are mostly useful when heterogeneous
environments are considered (Hellweger et al., 2016). The
possible outcomes of a predictive microbial ecology model
are many, from biomedicine, environment science, and
biotechnology (i.e., metabolic engineering), paving the way for
“synthetic ecology” (Zomorrodi and Segre, 2016). In this sense,
artificial microbial communities can be designed, being geared
toward precise and efficient bio-performances and, at the same
time, maintaining the resilience and the complexity of “near”
native microbial communities. Under this view, practices such
as bacteriotherapy (Cammarota et al., 2014) and extra-terrestrial
life support projects (Hendrickx et al., 2006) could be tightly and
efficiently programmed.

However, these mechanistic models are mostly based on
sharp functional definitions of microbial groups (e.g., glucose
utilizers, cellulolytic, methanogens, etc.) that are often difficult
to reconcile with detailed microbiological and metagenomic
data. Indeed, (i) the very same microbial strain can have many
different functional abilities (even contrasting, e.g., nitrogen
fixation and denitrification in rhizobia; Delgado et al., 2007),
(ii) the same functions may be carried out by phylogenetically
distant organisms (e.g., nitrogen fixation), and (iii) the microbial
strains of a given species can harbor different metabolic
abilities (due to the dispensable genome fraction; Medini
et al., 2005). Moreover, other important challenges include the
identification of (molecular) interactions of populations as well
as the quantification of fluxes of nutrients and energy among
individuals and populations (Hanemaaijer et al., 2015). It is
then crucial to have accurate descriptions (or predictions) of the
metabolic phenotypes expressed by either a given microbial strain
or groups of organisms present in the microbiome.

ACCURATE PHENOTYPIC PREDICTIONS
WITH CONSTRAINT-BASED METABOLIC
MODELING

The presence of curated repositories integrating biochemical
and genetic knowledge (Kegg, Biocyc; Kanehisa and Goto, 2000;
Caspi et al., 2016), together with the increased performances
of modern genome annotation tools allows reconstructing the
metabolic network of an organism from genome sequence
data and literature information. More specifically, Genome-
scale Metabolic network Reconstructions (GEMREs) integrate,
by means of a mathematical formal representation, the set of
metabolic reactions occurring in the cell, including information
concerning metabolites, biochemical constraints and metabolic
enzymes encoding genes (Fondi and Liò, 2015a). This is done by
drafting (i) the list of the biochemical reactions that the organism
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can carry out (resumed from genome annotation and literature
information) together with the constraints of those reaction
(e.g., reaction reversibility), (ii) an organism-specific biomass
assembly reaction, based on the relative abundancies of biomass
constituents, and (iii) inputs and outputs (exchanged fluxes) from
and to the external environment. A reconstruction, including
all these information, can be exported in a computable format
(such as JSON or SBML) and queried with different constraint-
based (CB) methods to obtain quantitative predictions of growth
phenotypes.

The most commonly used CB technique is flux balance
analysis (FBA) (Orth et al., 2010), which relies on modeling the
biochemical system under investigation with a stoichiometric
matrix and a flux vector. This is a compact representation of the
reactions as a linear system of differential equations, reporting the
association between metabolites and reactions together with the
corresponding stoichiometric coefficients. Under FBA a pseudo-
steady state condition is assumed, to let the net sum of production
and consumption rates of internal metabolites be 0. Under this
assumption, it is possible to identify a feasible flux of metabolites
optimizing a given objective function (e.g., biomass production).
The predictions obtained with this approach can, in turn, be
used to design targeted experiments and gain insights into the
role of genes in different conditions. Moreover, experimental
results (such as growth phenotypes, differential expression data,
and metabolic profiles) can be easily integrated into the model
with well-defined protocols to perform accurate condition- or
tissue-specific simulations.

Given the relative simplicity of this kind of analysis and
the close relationship with the biology of model organisms,
this approach (with slight variations) has been widely used in
bioengineering, physiology, and genome-scale synthetic biology
(Hjersted et al., 2007; Feist and Palsson, 2008). For example,
the yields of economically important cofactors can be predicted
in different conditions (Varma and Palsson, 1993), alternative
optimal flux distributions can be identified by means of Flux
Variability Analysis (Mahadevan and Schilling, 2003), as well as
for prediction of pathogenicity (Bosi et al., 2016) and metabolic
rewiring in relation to an environmental adaptation (Fondi
et al., 2016). Considering the results that can be obtained with
such techniques, as the genome sequencing and biochemical
characterization of whole microbial communities becomes
increasingly more feasible, the application of CB methods to
microbial communities is turning out as a very promising
field.

METABOLIC MODELING OF MICROBIAL
COMMUNITIES

In the last years, a number of works describing diverse aspects
of multi-organism metabolic modeling has testified the growing
interest in this field (Biggs et al., 2015; Heinken and Thiele,
2015). Despite the approximations made when analyzing single
organisms become more relevant for community modeling, the
possibility of integrating meta-omics data (i.e., metagenomics,
transcriptomics, proteomics, metabolomics, and fluxomics) on

a highly predictive, systems-based framework allowed gaining
important insights into basic aspects of microbial ecology
(Fondi and Liò, 2015b). These include the prediction of
competition/cooperation patterns (Freilich et al., 2011; Chiu
et al., 2014), the characterization of symbiotic interactions
(Heinken et al., 2013; Shoaie et al., 2013) and the emergence of
community response following nutrient modulations (Zhuang
et al., 2011). More practical applications include the prediction
of probiotics contrasting Clostridium difficile infections (Steinway
et al., 2015), insights into pathogenesis mechanisms (Bordbar
et al., 2010) and the metabolic engineering of consortia to achieve
optimality in bioremediation or synthetic biology (Brenner et al.,
2008; Brune and Bayer, 2012).

A defining feature of community modeling is the sharp
increase in complexity with respect to single-organism CB
analyses. In other words, the simplistic assumptions at the
basis of FBA (i.e., steady-state, biomass production as objective
function) become challenging when applied to model multi-
organism metabolic interactions. This made necessary the
development of innovative approaches, which are briefly
described in Table 1. Overall, these methods differ in the
scope and complexity of the analyzed community. For instance,
dynamics methods based on dFBA are highly predictive for
time-resolved analyses, but require a number of parameters
which effectively limit their application to small (two or three
organisms), well-characterized systems. On the other hand,
the enzyme-soup approach relies on simplistic assumptions
and limited a priori knowledge of the system under study,
making it suited for analyzing complex microbial communities
(such as the gut microbiota). Overall, current approaches
for community metabolic modeling can be divided into: (i)
quantitative methods, having a high predictive potential but being
limited to simple systems due to parameterization and/or a
priori knowledge required and (ii) large-scale methods, providing
mostly qualitative insights but applicable to complex microbial
communities.

This simple distinction highlights one current limitation of
metabolic modeling methods, that is, the lack of quantitative
methods easily scalable to large-scale communities. Although
the presence of experimental data (such as meta-omics) can
be exploited to improve the biological significance of the
predictions obtained in face of the increasing complexity,
the development of novel innovative methods overcoming
the current limitations is indeed a priority. This includes
also (i) the combination of different approaches to obtain
hybrid methods optimizing the trade-off between quantitative
predictions and scale of the systems and, (ii) the development
of integrative frameworks to better combine meta-omics data
with metabolic reconstructions. An example of the latter
is the dynamic modeling of gut microbiota composition to
identify bacteria inhibiting C. difficile, performed integrating
longitudinal metagenomics data with the network expansion
method (Steinway et al., 2015).

Another technical challenge limiting the application of CB
methods to complex communities is the quality of GEMREs that
can be used. In fact, prediction of metabolic fluxes maximizing
a defined objective function requires high-quality metabolic
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TABLE 1 | Overview of the different approaches adopted to perform metabolic modeling of microbial communities.

Approach Description References

Compartmentalization A logical extension of the multiple compartments for organelles in eukaryotic reconstructions. This approach
combines multiple GEMREs in a single large stoichiometric matrix, defining a compartment for each
organism and transport reactions for the shared metabolites. The objective function used in this case is a
linear combination of the individual biomass functions.

Stolyar et al., 2007;
Bordbar et al., 2010,
Klitgord and Segre, 2010;
Shoaie et al., 2013

Community
objectives

This strategy, which is implemented in the OptCom tool, extends the Compartmentalization approach
introducing an objective function designed at the community level. This allows to effectively model trophic
interactions (e.g., commensalism, parasitism, mutualism, etc.) between members of the community, via a
series of nested, bi-level optimizations.

Zomorrodi and Maranas,
2012; Shoaie et al., 2013,
El-Semman et al., 2014

Dynamic
analysis

Instead of using FBA (whose central assumption is the steady state condition), this dynamic approach relies
on dFBA, which allows compounds being accumulated or depleted. Instead of producing static “snapshot”
of the metabolic states, the dFBA framework provides a dynamic description of the adaptation to changing
conditions and nutrients availability. To cope with this totally different framework, a modified version of
OptCom has been tailored to carry out dynamic analyses (dOptCom). Despite the interesting results
obtained with this approach, the application of dFBA is severely hindered by two factors: (i) it is
computationally demanding and (ii) it requires some kinetic parameters (e.g., for growth-limiting
metabolites). A major consequence is the reduced scale of the system that can be analyzed with this
approach, with respect to other methods.

Tzamali et al., 2011;
Zhuang et al., 2011, Hanly
et al., 2012; Chiu et al.,
2014, Hanly and Henson,
2014; Harcombe et al.,
2014

Spatially
resolved

This approach introduces the study of bacterial spatial diffusion and the resulting structure of (simple)
microbial communities. COMETS, for example, uses dynamic flux balance analysis (dFBA) to perform
time-dependent metabolic simulations of microbial ecosystems, bridging the gap between stoichiometric
and environmental modeling.

Gorochowski et al., 2012;
Harcombe et al., 2014,
Phalak et al., 2016

Enzyme soup Radically different from the other methods, the enzyme-soup approach completely neglects any
inter-organism boundary concept. Reactions are not assigned to different species, as the whole community
is treated as a “soup” of enzymes. Since a number of biomass components are shared in the community,
the biomass function has a generalized formulation, representing the biomass of the whole community. In
accordance with its premises, this approach focuses on depicting the metabolic potential of microbial
communities, bypassing the problem of inter-organism interactions. Due to the simple nature of its
assumptions, this method can be easily applied to large complex communities, given the experimental
support of meta-omic data.

Taffs et al., 2009;
Tobalina et al., 2015

Graph-based Methods defined as graph-based have been used to identify competition or cooperation patterns between
bacteria. According to this framework, the stoichiometric matrix is used to generate graph connecting
metabolites, with edges directed from substrates to products. Nodes with in-degree/out-degree ratio equal
to 0 represent metabolites (seeds) which are consumed but not produced, and therefore must be supplied
to the network. The assessment of seed sets for multiple organisms allows to evaluate the metabolic basis
of competition/cooperation. Since inferences are made regardless of stoichiometry and flux analysis, this
approach shows a remarkable robustness when applied to poor-quality reconstructions, which might affect
conclusions made using FBA-based methods.

Borenstein et al., 2008;
Levy and Borenstein, 2013

Network
expansion

This method encompasses an agglomerative algorithm (Network Expansion), which iteratively add reactions
to an initial set of reactions/metabolites, aiming at identifying emergent properties of the growing metabolic
network. The algorithm has been adapted to suit the case of microbial community analysis, studying the
properties of pairwise combinations of bacteria. Basically, starting from an initial set of reactions from both
the microbes, this method iteratively expands the network with a pool of reactions from both organisms,
under the assumptions that metabolic intermediates can be shared. The application of this method allowed
to identify emergent biosynthetic capacities for a large number of bacterial pairs.

Handorf et al., 2005;
Christian et al., 2007,
Steinway et al., 2015

reconstructions (generated with precise protocols; Thiele and
Palsson, 2010) to achieve consistency with the actual biology of
the organisms accounted by the reconstruction. However, the
model typically requires further refinement (such as integration
of literature and/or extant physiological data to identify potential
gaps) and validation steps, which can be quite time (and resource)
consuming. Resultantly, the protocol used to obtain GEMREs of
single organisms cannot be extended to large datasets due to the
long time required to carry out these analyses and/or potential
knowledge gaps for some organisms (such as unculturable
bacteria) hindering the application of bottom-up reconstruction
approaches.

General strategies have been developed to rapidly obtain
GEMREs for many organisms. These are based on automatic

reconstruction from genomes (or binned metagenomic contigs),
or comparative approaches relying on orthologous genes with
“reference” organisms for which high-quality GEMREs are
available. Either way, the obtained draft-quality GEMREs
require additional refinement steps to fill potential reaction
gaps. Perhaps the most notable example of such large-
scale analysis is the metabolic reconstruction of 773 human
gut microbes using a semi-automatic comparative metabolic
reconstruction method (Magnusdottir et al., 2017). Although
the analysis of these GEMREs revealed good consistency
with known functional features of gut microbiota (e.g.,
carbon source compounds degradation; Flint et al., 2012), the
authors specified the infeasibility of this approach to recover
(accurate) quantitative predictions, due to the absence of
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species/condition-specific information (i.e., the breakdown of
biomass components). On the other hand, qualitative insights
such as prediction of growth-supporting media seem to be less
affected by this kind of approximations (Feist and Palsson,
2010).

Altogether, this points to the need of (i) established protocols
(such as Thiele and Palsson, 2010) to develop and curate
GEMREs for large-scale datasets and (ii) public resources to
facilitate this task (see Magnusdottir et al., 2017). In particular,
we specifically stress the lack of a data repository describing
the biomass composition of different organisms in a variety of
conditions. Indeed, such knowledge could be easily integrated
in existing reconstruction pipelines and would allow obtaining
more biologically relevant GEMREs.

STRENGTHS AND WEAKNESSES OF
COMMUNITY MODELS

Knowledge-driven metabolic engineering of bacterial
communities is an emerging field which might shed light
on some of the most puzzling biological questions regarding
clinical problems (e.g., drug–bacteria interactions; Ye
et al., 2014), industrial production design (e.g., enhancing
secondary metabolites production; Kim et al., 2016), and
environmental safety/health (e.g., bioremediation; Rein
et al., 2016) (Figure 1). Several efforts have been directed
at characterizing the interactions between bacterial pathogens
and their host, aiming at designing probiotic formulations
to recover damaged communities (such as the human gut
microbiota following C. difficile infection; Buffie et al., 2015),
or able to directly suppress pathogen proliferation (Buffie
et al., 2015). The metabolic repertoire shared by complex
bacterial communities, such as those living in the human
gut, has been explored using semi-automated approaches to
reconstruct a large set of metabolic models intertwining genomic,
metagenomic, and metabolic information (Magnusdottir
et al., 2017). Microbial consortia can, in principle, perform
complex reactions requiring multiple steps that can be cell- or
community-specific (Brenner et al., 2008). Understanding the
communication systems underpinning bacterial communities
represents a crucial step for the rational design of microbial
consortia able to maximize the production of different
compounds or for the production of hybrid communities,
composed of natural and engineered bacteria, to be used in
bioremediation processes (Brune and Bayer, 2012). Despite
all the advances made in the integration of omics data into
community-level models, more work is needed to overcome
limitations imposed by current computational and experimental
procedures.

Rational design of engineered microbial communities can be
translated into specific services (e.g., bioremediation, metabolites
productions, protection against pathogens, etc.). However,
this requires the precise annotation of metabolic functions
to the species present in the communities, and this can
be not feasible, especially when complete and annotated
genomes are missing. Despite the recent progress in genome

reconstruction from metagenomes (Nielsen et al., 2014),
the gap between omics information acquired and reference
genomes assembled and available in public databases is still
to be filled. Methods for binning metagenomic sequences
into taxonomic groups are mainly based on the different
DNA composition (i.e., unsupervised methods combining k-mer
frequencies with coverage information; Alneberg et al., 2014) or
on pairwise comparisons with taxonomic annotated sequences
(i.e., supervised methods based on sequence similarity; Brady and
Salzberg, 2009; Wood and Salzberg, 2014). Even if these methods
can be used for partitioning genomes into different “biological
units,” thus allowing metabolic models reconstruction, at present
it is not feasible to recover all the genomes that compose an
entire natural community and, consequently, perform metabolic
modeling of the whole microbial community. Another bottleneck
in community level metabolic modeling is the generation
of a model for each component of the community. Indeed,
microbial consortia are composed by thousands of strains and
producing a different, curated and reliable model for each
strain would be very demanding in terms of costs and time
(Figure 1). For this reason, the automatic generation of models
from genomic and metagenomics data is a mandatory step
to increase the resolution power of the community model,
especially in natural environment where, in principle, every single
cell takes part in maintaining the homeostasis of a particular
niche.

On the other hand, while genomics and metagenomics
have provided many insights into the role of bacteria in
determining potential functional features of a given environment,
they both provide a static snapshot of a community, thus
failing to deliver a dynamic and fully functional representation.
Consequently, obtaining an accurate dynamic model of a
community would require longitudinal metagenomics or, more
in general, methods to infer growth dynamics of single
bacterial species from metagenomics (Korem et al., 2015).
However, this might not be straight-forward, since time-
resolved metagenomics shows that some species can grow
faster than others increasing their abundance quickly enough
to significantly change the whole community structure (Bacci
et al., 2015). Therefore, given the paradigm of CB metabolic
modeling, this could effectively represent a problem when trying
to infer the metabolic phenotype of a microbial community.
Similarly, it is unlikely that all the members of a microbial
consortium are optimally geared toward biomass production.
As a consequence, the steady-state assumption (that is the
foundation of FBA analyses) may not hold true during
simulations.

All these factors force to discuss about which assumptions
made in the context of single-organism metabolic modeling
can be still tolerated when trying to accurately infer the
(metabolic) dynamic of a bacterial community. Indeed, each
framework proposed hitherto takes into account different aspects
of microbial interactions leaving to researchers the burden of
choosing the kind of model that best fits their needs; this decision
should be primarily based on the information available as well as
on the resolution level that is possible to achieve (Figure 1). As
‘omic sciences become more and more affordable and sensible,
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FIGURE 1 | Overview of the main steps and applications in bacterial community metabolic modeling. Microbiomes with environmental, clinical, and industrial
relevance (top panel) are selected and models are chosen based on a balance between the desidered model accuracy and the complexity of the microbiome (central
panel). Then modeling is applied and combined with information from metagenomic data and genome sequences (and phenotypic/biochemical information) from
cultivated microorganisms (lower panel).
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their integration into community-level metabolic models is
mandatory to achieve a systems level understanding of
these biological entities. This highlights the necessity of a
working scheme designed to handle large-scale, community-level
reconstructions and to derive quantitative insights.
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