
EDITORIAL
published: 12 September 2017
doi: 10.3389/fgene.2017.00093

Frontiers in Genetics | www.frontiersin.org 1 September 2017 | Volume 8 | Article 93

Edited by:

Samuel A. Cushman,

USFS Rocky Mountain Research

Station, United States

Reviewed by:

Samia Elfekih,

Commonwealth Scientific and

Industrial Research Organisation

(CSIRO), Australia

Fernando Cardona,

Consejo Superior de Investigaciones

Científicas (CSIC), Spain

*Correspondence:

Lee F. Greer

lfgreer@gmail.com

†
Present Address:

Lee F. Greer

Department of Anthropology, College

of Humanities and Social Sciences

(CHASS), University of California,

Riverside, Riverside, CA, United States

Specialty section:

This article was submitted to

Evolutionary and Population Genetics,

a section of the journal

Frontiers in Genetics

Received: 13 February 2017

Accepted: 19 June 2017

Published: 12 September 2017

Citation:

Greer LF (2017) Editorial: Genomics of

Experimental Evolution.

Front. Genet. 8:93.

doi: 10.3389/fgene.2017.00093

Editorial: Genomics of Experimental
Evolution

Lee F. Greer *†

Network for Experimental Research on Evolution, Department of Ecology and Evolutionary Biology, School of Biological

Sciences, University of California, Irvine, Irvine, CA, United States

Keywords: experimental evolution, experimental genomics, genomics of domestication, high throughput

genomics, long term experimental evolution, adaptation in experimental in long term experimental evolution

Editorial on the Research Topic

Genomics of Experimental Evolution

Biology as a science is beginning its third century with new genomic foundations. The challenge
of combining experimental evolution with genomics, is being met by a growing number of
researchers, including the contributors to the current Frontier Topics Issue volume on the
Genomics of Experimental Evolution, who in part discuss emerging new strategies. Today,
experimental evolutionary genomic studies have the promise and perhaps the possibility of showing
causal connections within the vast assemblages of genomic data generated.

Although experimental evolution has in a sense been conducted since animal and crop
domestication, an early joining of experimental evolution with genetics was a classic mid-twentieth
century work on selection and genetic drift in fruitflies (Dobzhansky and Pavlovsky, 1957). An
early application of genomics to experimental evolution was conducted on yeast, the application of
microarray gene expression assays (Sniegowski, 1999). The foundations for future experimental
evolutionary genomics studies were laid by multiple-replicated, long-term experiments starting
as early as 1980 in fruitflies (Rose, 1984; Rose et al., 2004) and in 1988 in E. coli (Lenski et al.,
1991; Lenski and Travisano, 1994; http://myxo.css.msu.edu/ecoli/; see also Tenaillon et al., 2016).
Genomic sequencing has since been applied to long term experiments both in bacteria (Barrick
et al., 2009) and in fruitflies (Burke et al., 2010), with a proliferation of similar studies. Such
evolve and resequence studies (Turner et al., 2011) have had a measure of success along with
challenges, subjecting experimental evolution cohorts to full high throughput genome sequencing
and analysis (Schlötterer et al., 2014a,b). Increasingly sophisticated methods are being explored to
analyse adaptive footprints in full genomes (e.g., Topa et al., 2015), assaying of gene expression on
the whole genome level (e.g., Chang et al., 2015), and integration of multiple genomic level data
sets (e.g., Feugeas et al., 2016).

Our contributors have helped address this emerging field’s challenges. The first topic
paper (Pesko et al.) explores how in cell cultures experimental gene variant RNA viruses of
the Mononegavirales order have gene order-dependent varying fitnesses within both immune
compromised and non-compromised prostate cancer cell lines. Using a data re-analysis of
published studies in microbial evolution as well as simulations, the second topic perspective paper,
Couce and Tenaillon consider the basis for the recurring observation in microbial evolution that
fitness adaptation rates decline with adaptation across bacterial, viral, and yeast evolution. This
powerful observation stemming from experimental evolution may inform us at a fundamental level
about the nature of the multi-dimensional adaptive Euclidean space models of adaptation. In our
third topic paper, Matos et al. in their opinion piece discuss how the application of genome-wide
techniques in one of the oldest experimental evolution model organisms, Drosophila, help us
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understand the contours and tendencies of evolution. In
their original research, the fourth topic paper by Graves et al.
explores a very different technical territory by introducing
the implications of microbial life adaptation to the emerging
nanotechnology of heavy metals and their oxides, engineered
nanoparticles (eNPs)—specifically how rapidly Escherichia coli
adapted to silver eNPs. Their findings have implications for the
use of heavymetal eNPs as antimicrobials on targeted and natural
populations of microbes. In the fifth topic paper, O’Rourke et al.
consider operon-based gain-of-function mutations leading to
colony morphology variation in biofilm and planktonic growth
within the Burkholderia cenocepacia pathogen complex, and the
implications for human and agricultural thriving. Deatherage
et al. in the final topic paper, lay out the challenges to identifying
structural variants (SVs) in microbial genome evolutionary
studies, which are more technically difficult to detect than
nucleotide polymorphisms (NPs) and insertion deletions

(indels). They discuss the theory, sensitivity, and simulations
in applying their breseq analysis pipeline to the detection of
SVs.
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