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Background: Dyslipidemia is one of the major forms of lipid disorder, characterized

by increased triglycerides (TGs), increased low-density lipoprotein-cholesterol (LDL-C),

and decreased high-density lipoprotein-cholesterol (HDL-C) levels in blood. Recently,

MicroRNAs (miRNAs) have been reported to involve in various biological processes; their

potential usage being a biomarkers and in diagnosis of various diseases. Computational

approaches including text mining have been used recently to analyze abstracts from

the public databases to observe the relationships/associations between the biological

molecules, miRNAs, and disease phenotypes.

Materials and Methods: In the present study, significance of text mined extracted

pair associations (miRNA-lipid disease) were estimated by one-sided Fisher’s exact test.

The top 20 significant miRNA-disease associations were visualized on Cytoscape. The

CyTargetLinker plug-in tool on Cytoscape was used to extend the network and predicts

new miRNA target genes. The Biological Networks Gene Ontology (BiNGO) plug-in tool

on Cytoscape was used to retrieve gene ontology (GO) annotations for the targeted

genes.

Results: We retrieved 227 miRNA-lipid disease associations including 148 miRNAs.

The top 20 significant miRNAs analysis on CyTargetLinker provides defined, predicted

and validated gene targets, further targeted genes analyzed by BiNGO showed targeted

genes were significantly associated with lipid, cholesterol, apolipoprotein, and fatty acids

GO terms.

Conclusion: We are the first to provide a reliable miRNA-lipid disease association

network based on text mining. This could help future experimental studies that aim to

validate predicted gene targets.

Keywords: microRNA, text mining, interaction network, lipid diseases, dyslipidemia

INTRODUCTION

Dyslipidemia is a common form of lipid disorder; characterized by increased levels of TGs,
increased LDL-C, and decreased level of HDL-C. The low levels of HDL-C and high levels of LD-C
are the most imperative factors for the development of cardiovascular disease (CVD), especially
ischemic heart disease and stroke (Meagher, 2004). The liver is the major organ where cholesterol,
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lipid, and lipoprotein synthesis and metabolism taking place
(Min et al., 2012). Recently, miRNAs have been reported to
modulate these processes (Esau et al., 2006; Moore et al., 2010;
Vickers et al., 2013). The miRNA-122 is identified for the
involvement of the regulation of lipid metabolism (Esau et al.,
2006). A recent study that shows miRNA-27b targeted to 27 of
151 lipid-associated genes. This therefore indicates that miRNA-
27b serves as a key molecule for post-transcriptional hub of
lipid metabolism genes. In mice model, GPAM is one of the key
lipid metabolism gene targeted by miR-27b. The up-regulation of
hepatic miR-27b is associated with decrease GPAM mRNA and
plasma triglyceride (Vickers et al., 2013).

Moreover, miRNA-33a and miRNA-33b have been extensively
identified to be involved in cholesterol and lipid homeostasis.
miRNA33a and miRNA-33b are experimentally characterized
to be located in intronic regions of sterol regulatory elementary
binding protein-2 and 1 (SREBP2, SREBP1), respectively
(Marquart et al., 2010; Najafi-Shoushtari et al., 2010; Rayner
et al., 2010). The finding of hepatic miR-27b is promising
for modulating the endogenous miR-27b level as effective
therapeutic approach in lipid related disorder in further study.

miRNAs are evolutionary conserved and found commonly in
humans, flies, plants, and viruses (Lagos-Quintana et al., 2003).
Signaling proteins, metabolic enzymes, transcription factors are
regulated by miRNAs. The expression levels of miRNAs have
demonstrated their potential usage as biomarkers for various
diseases (Lagos-Quintana et al., 2003). Although there have been
advancements in miRNA profiling, the experimental process
for searching disease related miRNAs is considerably expensive
and time-consuming (Jiang et al., 2010, 2013). Computational
approaches have been proposed to overcome these limitations
and drawbacks in miRNA research. A large number of miRNA
prediction softwares have been developed to predict miRNA by
targeting 3′UTR of mRNA such as, miRanda (Enright et al.,
2004), TargetScan (Lewis et al., 2003), and PicTar (Krek et al.,
2005). The computational prediction algorithms mostly analyze
the binding of miRNA at 3′UTR region of human mRNA.
With the public availability of human genome information
and miRNA bioinformatics tools, a large number of research
publications related to miRNA in human diseases have been
published, and are now in databases such as, PubMed and
Scopus. Text-mining is one of the promising tools for depicting
the body of knowledge from the literature. Naeem et al. (2010)
demonstrated the use of co-occurring based text mining method
for elucidating miRNA-gene association. Murray et al. (2010)
uncovered human miRNA-target interactome (microRNAome),
using natural language processing (NLP) based text-mining,
network analysis, and ontological enrichmentmethods. Goh et al.
(2007) described the involvement of 176miRNAs and their target
genes in the controlling of 368 OMIM disorders using human
disease network. There is a need for data reduction methods i.e.,
text-mining, that utilize validated miRNA-disease associations
from experimental published abstracts which indicates most
significantly disease related miRNAs for experimental study.

We constructed a miRNA-lipid disease association network
using computational approaches; including text-mining
approach with miRNA bioinformatics tools. This is the first

study that delineates the interacting network of miRNAs and the
target genes in human lipid disorders.

MATERIALS AND METHODS

Data Collection
In this study, data was collected from January 1, 2000 to
December 31, 2013. A total of 730 abstracts were collected from
publicly available databases like PubMed and Scopus by using
keywords for lipid diseases/identifier andmiRNA terms. Figure 1
shows the workflow diagram of the present study.

In the present study, the text mining framework was divided
into five main steps, namely:

(i) Information Retrieval (IR)
(ii) Information Extraction (IE) & Scoring
(iii) MicroRNA-disease Network Construction
(iv) Extension of network to predict new miRNA targets
(v) Identification of Gene Ontology (GO) terms for predicted

targets.

Figure 2 shows the text-mining framework into five steps

(i) Information Retrieval (IR)
The fundamental assumption in the field of text mining is that
co-occurrence means association. Based on the co-occurrence
assumption, the associations between different miRNAs and lipid
diseases or identifiers were determined. If a particular miRNA
and lipid disease or identifier were mentioned in the same
abstract, we assumed that they co-occurred and were associated.

Information retrieval highly relies on the keyword
recognition, which is the miRNA name and disease or disease
identifier groups, then the set of keywords used to search within
the databases and retrieve the keywords containing abstracts.
We used different keyword terms for miRNA prefixes, because
of the different patterns of recognition for their names such as:
“MicroRNA,” “MiRNA,” “miR,” prefixed species as “hsa-miR-1,”
as precursor “pre-miR-1,” as loci or variant “miR-1a-1.” Other
variants like “lin-4” and “let-7,” as an abbreviation more than one
miRNA “miR-221/222” and “miR-15& –16,” However, for disease
or identifier groups, we selected the four common lipid diseases
and seven identifiers which are related to the 4 common diseases.
The common diseases are Dyslipidemia, Hyperlipidemia,
Hypercholesterolemia, and Hypertriglyceridemia, while the 7
Identifiers such as, HDL-Cholesterol, HDL, LDL-Cholesterol,
LDL, Triglyceride, Low HDL-C, and High LDL-C, Low HDL-C.
We made a pair of miRNA+disease or miRNA+identifiers for
searching abstracts from both PubMed and Scopus databases
from January 1, 2000 to December 31, 2013, and saved these
as a notepad file (for example: “MicroRNA and Dyslipidemia,”
“MiRNA and Dyslipidemia,” “miR and dyslipidemia,” “hsa-miR
and Dyslipidemia,” and similarly other miRNA recognition
terms).

(ii) Information Extraction (IE) and Scoring
The simplest form of the approach used in our study depend on
the relation of keywords between abstracts is an association based
on the co-occurrence of the keywords in the text. When two
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FIGURE 1 | Workflow diagram of study.

keywords are frequently mentioned in the abstract, an association
relation between keywords is inferred. By using EditPlus software
(https://www.editplus.com/), which is used for manual text
mining or information extraction (IE) from reference abstracts.

The significance level of extracted miRNA-disease association
pairs were computed by one-sided Fisher’s exact tests (Fisher,
1922). The P-value of Fisher’s exact tests (Fisher, 1922) was
calculated based on hypergeometric distribution, as follows:

P = (a+b)! (c+d)! (a+c)! (c+d)!/(a!b!c!d!n!)

where n is denoted the total number of abstracts included in text
mining;

a is the True positive (TP) which represents the number of
abstracts that contain both the miRNA and disease;
b is the False positive (FP) which represents the number of
abstracts that contain only miRNA;

c is the False negative (FN) which represents the number of
abstracts that contain only the disease/identifier;
and d is the True negative (TN) which represents the number
of abstracts that don’t contain either terms.

The P-value, which determines whether a miRNA and disease
have a link, is considered significant as ≤0.05.

(iii) MicroRNA-Disease Network
Construction
One of the commonly used framework to visualize and analyze
biological network is Cytoscape (Shannon et al., 2003). It
provides functionality for representation and integration of
biomolecular network models. In present study, we constructed
the bipartite network by mapping pairs of miRNA-disease
associations based on P-values, and visualized the network by
Cytoscape v3.2.0. Here, the disease groups attributed to a node,
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FIGURE 2 | Text-mining framework.

and miRNAs attributes to an edge. The interaction between
disease and miRNA weighted with corresponding P-values.
Each edge in the network connects a miRNA and one of its
corresponding one or more than one disease group, similarly
each disease group corresponds one miRNA or more than one
miRNAs. Thus, resulting constructed miRNA-disease association
network provides information on whether miRNA is associated
with a disease.

(iv) Extension of Network (New miRNA
Targets Predictions)
Cytoscape has a modular structure and extension of networks
with additional functionalities is possible through apps (formerly
known as plugins). Currently, few Cytoscape apps are available
that either extend networks with other types of molecular
interaction data or focus on one specific type of regulatory
interaction. A new Cytoscape app, CyTargetLinker (Kutmon
et al., 2013) allows users to build regulatory interaction
networks, and allow their inclusion in the network analysis
process.

We used CyTargetLinker v3.0.1 to validate and predict
miRNA target interactions (MTIs) and visualize them in a
graphical way by extension of the network. A regulatory
interaction network (RegIN) is a network containing regulatory
interactions often derived from online interaction databases.
To construct a RegIN with CyTargetLinker on Cytoscape, we
obtained Homo sapiens MTIs from one experimentally validated
database miRTarBase v4.4, which includes 20,942 MTIs, and
from two predicted miRNA databases; MicroCosm v5.0, which
includes 541,039 MTIs and TargetScan v6.2, which includes
511,040 MTIs. The networks are stored in XGMML (the
eXtensible Graph Markup and Modeling Language) format,
which is supported by Cytoscape. Each regulatory interaction
consists of two nodes, a source (regulatory component) and
target biomolecule, connected through one directed edge.
The CyTargetLinker website http://projects.bigcat.unimaas.nl/
cytargetlinker/regins provides a collection of RegINs for different
species and interaction types. Figure 3 shows the workflow
diagram of CyTargetLinker.

In present study, top 20 significant miRNAs selected for
extension of network by CyTargetLinker. The top 20 significant

Frontiers in Genetics | www.frontiersin.org 4 September 2017 | Volume 8 | Article 116

http://projects.bigcat.unimaas.nl/cytargetlinker/regins
http://projects.bigcat.unimaas.nl/cytargetlinker/regins
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Kandhro et al. MicroRNA Interaction Network

miRNAs then divided into four sets (each set contains five
miRNAs) with miRBase accession numbers and used as input file
for CyTargetLinker.

â The first step is to load input file on Cytoscape.
â In the second step, Cytoscape visualize as grid layout,

then we select perfused force directed layout and launch
CyTargetLinker from application manager to integrate
MTIs.

â In the third step the CyTargetLinker integration and
extension of the network process is started. In the
dialogue box before network extension user can add
either targets or regulators or both as default. As a
result CyTargetLinker extracts the RINs from the provided
MTIs. After the extension of network, CyTargetLinker fix
different colors on each edge for targets, regulators, and
MTIs. We can see the detail on control panel, where
color selection and number of MTIs for each databases is
listed.

â In the fourth step the network MTIs can be visualized by
adopting the hide/show and/or overlap threshold function.
The function of hide/show key is enables the temporary
removal of specific MTIs and showing only the interactions
from a subset of loaded MTIs. However, the function of
overlap threshold key is to show only the interactions that are
supported by a defined number of MTIs or more. After the
most targeted MTIs visualized in Cytoscape/CyTargetLinker
RIN network, the targeted MTIs were used to retrieve
the GO for identifying their biological processes. For GO,
another Cytoscape Plug in tool, BiNGO (Maere et al., 2005)
was used.

(v) Gene Ontology
The BiNGO v3.0.3 (Maere et al., 2005) is a Cytoscape plugin
tool used to retrieve the GO annotations for the targeted genes
identified with CyTargetLinker. Figure 4 shows the workflow
diagram of BiNGO Gene ontology analysis.

By using the input list of targeted genes; BiNGO accesses the
overrepresentation of GO categories in a subgraph of a biological
network, which is visualized on Cytoscape. The enrichment of
GO terms in the targeted genes was evaluated with a right-
sided hypergeometric statistical analysis. The hypergeometric test
P-value was set to ≤0.05, and the Benjamini and Hochberg
correction was applied to provide strong control over the false
discovery rate under positive regression dependency of the
test statistics. After statistical analysis, the GO hierarchy was
visualized as overrepresented GO categories.

The main advantages of BiNGO are:

(i) It supports GOSlim ontologies (Consortium, 2004),
(ii) It offers enormous flexibility in the use of ontologies and

annotations,
(iii) It can be integrated with a range of molecular networks

including protein-protein interactions or transcriptional co-
regulation networks,

(iv) It allows networks to be modified, viewed and analyzed in
various ways on Cytoscape.

RESULTS

MicroRNA-Lipid Disease Association
Analysis
In the present study, the associations were identified by co-
occurrence-based manual text-mining approach and significance
was measured by one-sided Fisher’s exact P-values. Significant
associations were used to construct the network on Cytoscape. By
processing 730 publications, we recorded 227 pairs of miRNA-
lipid disease associations. Among these associations, there are
148 miRNAs and 09 (04 diseases, 05 identifiers) groups involved.
Table 1 gives an overview of the number of miRNAs, diseases,
miRNA- lipid disease associations, and a number of papers.

MicroRNA-Lipid Disease Association
Network Construction and Visualization
The construction of bipartite network of miRNA-disease
associations based on the P-values. The P-values of each
association was computed by one-sided Fisher’s exact test,
and were calculated based on hypergeometric distribution. The
bipartite network consists of 157 nodes (corresponding to
disease/identifier and miRNAs) and 227 edges (corresponding
to miRNA-disease associations). We prioritized 148 miRNAs
in 4 diseases and 5 identifier groups and all miRNA-disease
associations shown in Figure 5. The top 20 significant association
network constructed which is based on edge-weighted P-values,
shown in Figure 6. The higher significant P-values correspond
to more thicker edges between each pair. The higher strength
is shown in HDL-Cholesterol and Triglyceride group paired
miRNAs.

The top 20 significant miRNAs-disease pairs selected with a
number of papers by applying the one-sided Fisher’s exact P-
values. Table 2 shows the top 20 significant associations with P-
values. From the nine disease/identifier groups, only four groups
show the higher number of pairs including, HDL-Cholesterol,
Triglyceride, Hyperlipidemia, LDL group as seen in Table 2. The
miRNA-33 family have shows a higher number of papers and
mostly paired in the HDL-Cholesterol group.

Construction of Regulatory Interaction
Network (New miRNA Target Predictions)
by CyTargetLinker on Cytoscape
The CyTargetLinker on Cytoscape used to extend the RIN
network, which augments user knowledge about the new miRNA
target predictions that could be used for further experimental
studies. To get better insight from present top 20 miRNA target
predictions and extend our RegIN, we used CyTargetLinker
Plug in application on Cytoscape. We obtained experimentally
validated MTIs by miRTarBase database and predicted MTIs by
MicroCosm and TargetScan databases, which are described in
Table 3, where the number of nodes, edges, number of validated,
and predicted targets is listed as follows:

We found that CyTargetLinker provides quick and extensive
enrichment of biological network with regulatory information.
At threshold 3 functionality on the control panel, we observed
the defined number of targeted genes that provide regulatory
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FIGURE 3 | Workflow diagram of CyTargetLinker regulatory interaction network.
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FIGURE 4 | Workflow diagram of BiNGO Gene ontology.

interactions of validated and predicted MTIs, and shown in
Table 4 and Figure 7.

The number of defined targeted genes by miRNAs is shown in
Figure 7. The higher to lower number of MTIs are; miRNA-155
targeted 31 genes, miRNA-103 targeted 11 genes, and miRNA-
200c targeted 10 genes. The targeted genes are derived from

validated and predicted MTIs databases. The defined numbers of
each miRNA target genes are listed in Table 5.

Gene Ontology Analysis
Besides the RegIN information, next step to obtain biological
functions of targeted genes for further understanding the
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TABLE 1 | Summary of the number of miRNAs, diseases/identifiers,

miRNA-disease associations, and number of papers.

Components Fisher’s exact

Total No. of miRNAs 148

No. of disease/Identifier groups 9

miRNA-disease occurrence/Associations 227

No. of papers in pairs associations 313

Total No. of papers 414

biological role of the gene. To gain further insight into the
molecular aspects of above listed miRNAs signature in lipid
disorders, we investigated the GO for biological, cellular, and
molecular processes associated with a set of predicted and
validated targeted genes by miRNAs. Surprisingly, we found
more than 90 related GO terms shown in Supplementary
Material among which more than 20 GO terms were significantly
associated with lipids, cholesterol, fatty acid, apolipoproteins,
sterol, and insulin and shown in Table 6. When we narrowed
down searching on molecular and cellular processes related GO
terms, at this stage the GO terms were associated with gene
activity, negative and positive regulation of metabolic process,
regulation of biological process, metabolic processes, cellular
metabolic processes, transportation of lipids, storage of lipids,
cholesterol efflux, and macromolecular biosynthetic processes.

Taken together, integrated results of CyTargetLinker target
genes analyzed by BiNGO GO terms, suggested that the targeted
genes are associated with lipid, cholesterol, lipoprotein, fatty
acid, and insulin that significantly involved in their biological,
metabolic, and cellular processes. It could be elucidated for
their respective pathogenic role and molecular mechanism of
action in lipid, cholesterol, lipoprotein, fatty acid, and insulin
disorders. In addition, the BiNGO results also highlighted GO
terms in cell cycle, cell differentiation, apoptosis/cell death,
signaling pathways, protein and carbohydrate metabolisms,
immune system, and neuronal metabolism. Therefore, annotated
GO terms could help in examining the relationships between
the miRNAs and their targets in cancers, metabolic diseases of
carbohydrate and proteins, immune diseases, and neurological
diseases.

Performance Evaluation
We further compared our study with three other existing
databases. For this purpose, we manually checked, confirmed
and compared Top 20 miRNAs (of present study) with
existing databases such as miR2Disease, miRiaD, and HMDD.
We have found that most of the associations missed in
miR2Disease and HMDD databases, while miRiaD database
missed only few associations shown in Supplementary
Table 2. However, Supplementary Figure 1 shows the
comparison of our study with miRiaD database. The failure
of association in other databases might be due to these
databases present most of the miRNAs associations with
cancers, while few miRNAs associated with metabolic and other
diseases.

DISCUSSION

The present study is applicable to signify associations between
miRNAs and common lipid diseases, where the significant
associations were used to visualize and construct the RegIN. The
text-mining approach is helpful for extracting the information
from huge literature to small subset of extracted information,
which is then used for potential knowledge discovery. Hence,
we may call the subset information as “literature verified”
information.

We are first to provide independently themiRNA-lipid disease
associations with network visualization, extension of network for
predicted/validated target genes with their associated GO terms.
Present study possesses limited number of publication abstracts,
although we retrieved abstracts by January 1, 2000 to December
31, 2013. By processing 730 abstracts, we found 227 pairs of
miRNA-lipid disease associations, and prioritized 148 miRNAs
in nine disease/identifier groups. The major reasons for limited
numbers of publications are (a) failure of experimental studies for
the discovery and identification of miRNA genes and their targets
(Grosswendt et al., 2014), (b) expensive experimental methods
for identifying disease related miRNAs and shown low sensitivity
& specificity (Jiang et al., 2010, 2013). The co-occurrence based
text-mining approach adopted in other studies like, Naeem
et al. (2010) for identifying miRNA and genes co-occurring
in abstracts; Lu et al. (2008) for identifying miRNA-disease
associations; and Jiang et al. (2009) for identifying miRNA-
disease relationships. Although, their approaches were effective
on limited or low number of publications (100 by Lu et al., 2008
and 600 by Jiang et al., 2009), but not for high scale of text-
mining as the number of miRNA research publications increases
regularly. In addition, high false positive rate found in their
studies, which may lead to poor resolution of miRNA-targets.

We found higher strength of miRNAs in HDL-Cholesterol
and Triglyceride groups with higher number of abstracts co-
occurring miRNA-33 family. The expression of intronic miRNA-
33 family (miR-33a and miR-33b) are from the sterol regulatory
element-binding protein (SREBP) transcription factors, which are
known to be involved in cholesterol/lipid homeostasis, and many
cholesterogenic/lipogenic genes like LDL-Receptor, 3-hydroxy-
3-methylglutaryl coenzyme A reductase (HMGCR), fatty acid
synthase (FAS) (Brown and Goldstein, 1997, 2009; Horton et al.,
2002; Osborne and Espenshade, 2009). The conserved target
for miR-33a and miR-33b is adenosine triphosphate binding
cassette A1 (ABCA1) cholesterol transporter. ABCA1 helps to
transport intracellular cholesterol from liver to apolipoprotein
A-1 (apo-A-1) for the synthesis of HDL-C (Maxfield and Tabas,
2005; Wang and Rader, 2007; Tall et al., 2008). At the same
extent, by reverse cholesterol transport (RCT) pathway, HDL-
C transfers from peripheral tissues/macrophages back to the
liver for processing and excretion into bile and feces (Rader
et al., 2009). Both increased TGs and decreased HDL-C levels
are the characteristics of dyslipidemia, found in insulin-resistant
subjects, while the low HDL-C and high TGs level are the
hallmarks of atherogenic dyslipidemia both in diabetic and
non-diabetic populations (Group, 1997; Jeppesen et al., 1997;
Hermans et al., 2012).
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FIGURE 5 | All 227 miRNA-lipid disease associations by P-values. Red circles and green circles represent miRNAs and diseases, blue square represents lipid

diseases/identifiers, respectively, according to the number of corresponding text mined annotated papers. Each linked pair represents a miRNA-disease association

with edge-weighted measurement by P-values to visualize the strength of the miRNA-disease association. The miRNAs either connect one disease or more than one

disease; it shows that a single miRNA or group of miRNAs may be involved with one or more than one disease.
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FIGURE 6 | Top 20 miRNA-lipid disease association of P-values. Red circles

and green circles represent miRNAs and diseases, blue square represents lipid

diseases/identifiers, respectively, according to the number of corresponding,

text-mined annotated papers. Each linked pair represents an miRNA-disease

association with edge-weighted measurement by P-values to visualize the

strength of the miRNA-disease association. The higher strength is shown in

HDL-Cholesterol and Triglyceride groups paired with miRNAs.

By analyzing the top 20 significant miRNAs for the prediction
of predicted and validated target genes by CyTargetLinker on
Cytoscape, we found the higher number of defined targeted
genes as shown in Figure 7. The higher to lower number of
targeted genes by miRNAs listed in Table 5 such as, miRNA-155
targeted 31 genes, miRNA-103 targeted 11 genes, and miRNA-
200c targeted 10 genes.

Further, targeted genes analyzed by BiNGO for GO
annotation, we found more than 90 related GO terms listed
in Supplementary Material, among which more than 20 GO
terms were significantly associated with lipids, cholesterol, fatty
acid, apolipoproteins, sterol, and insulin listed in Table 6. Taking
together the defined number of targeted genes by CyTargetLinker
with GO terms, suggested that validated and predicted target

TABLE 2 | Top 20 significant associations between miRNA and disease P-value

by one-sided Fisher’s exact method.

S. No. miRNAs Disease group No. of papers P-value

1 miRNA-33a HDL-Cholesterol 7 3.40E-05

2 miRNA-33a/b HDL-Cholesterol 7 3.40E-05

3 miRNA-144 HDL-Cholesterol 3 3.40E-05

4 miRNA-223 HDL-Cholesterol 3 3.40E-05

5 miRNA-33b HDL-Cholesterol 3 3.40E-05

6 miRNA-185 HDL-Cholesterol 2 3.40E-05

7 miRNA-96 HDL-Cholesterol 2 3.40E-05

8 miRNA-103 Triglyceride 2 5.60E-05

9 miRNA-122a Triglyceride 2 5.60E-05

10 miRNA-17-92 Triglyceride 2 5.60E-05

11 miRNA-375 Triglyceride 2 5.60E-05

12 miRNA-122 Triglyceride 5 1.59E-04

13 miRNA-33 HDL-Cholesterol 16 2.98E-03

14 miRNA-200c LDL 2 7.69E-03

15 miRNA-126 Hyperlipidemia 2 8.80E-03

16 miRNA-30c Hyperlipidemia 2 8.80E-03

17 miRNA-145 Dyslipidemia 2 1.36E-02

18 miRNA-29b LDL 3 1.80E-02

19 miRNA-155 Hyperlipidemia 2 2.80E-02

20 miRNA-146a LDL 4 3.31E-02

TABLE 3 | CyTargetLinker’s validated and predicted MTIs.

Method Nodes Edges miRTarBase

(experimental

validated MTIs)

MicroCosm

(predicted

MTIs)

TargetScan

(predicted

MTIs)

Fisher’s Set-1 4,356 5,399 361 2,851 2,174

Fisher’s Set-2 4,082 4,941 94 2,756 2,078

Fisher’s Set-3 6,064 8,361 1,043 4,353 2,951

Fisher’s Set-4 4,889 6,295 727 3,315 2,242

TABLE 4 | CyTargetLinker results of defined number of targets by threshold

functionality.

Method and miRNA sets MTIs by (miRTarBase, MicroCosm, TargetScan)

Fisher’s Set-1 22

Fisher’s Set-2 8

Fisher’s Set-3 57

Fisher’s Set-4 25

Total 112

genes could be regulated in vivo by these significant miRNAs
in lipid, cholesterol and fatty acid metabolism and associated
metabolic diseases. In addition, the miRNAs may be regulated
target genes in other non-lipid disorders specially cancers,
neurodegenerative disorders, metabolic disorders; and several
biological, cellular, and molecular impaired functions. Therefore,
for future studies annotated GO terms could help in examining
the relationships between the miRNAs and their targets in
cancers, metabolic diseases of carbohydrate and proteins,
immune diseases and neurological diseases.
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FIGURE 7 | Defined number of predicted and validated target genes from Top 20 significant miRNAs. Among the 20 significant miRNAs, only 18 showed a defined

number of targets at threshold 3 functionality modes on CyTargetLinker and Cytoscape. The miRNAs and their accession numbers are in red circles; pink hexagonal

shapes indicate their regulatory interaction (targeted mRNAs/genes). The different colors of arrows show regulatory interactions for the identification based on miRNA

validated and predicted databases (miRTarBase, MicroCosm, and TargetScan). Each miRNA targets mRNA/genes and the high number of such targets is shown in

(C) where miRNA-155 has 31 targets and miRNA-200c has 11. In (D) miRNA-103 has 11 targets. Single targets also were found as shown in (A) for miRNA-144 and

(B) for miRNA-33b and miRNA-185.
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TABLE 5 | Top 20 significant miRNAs and their predicted and validated targets by

CyTargetLinker extension network analysis.

miRNAs Targets

hsa-miR-122 IGF1R, GPR172A, CCNG1, G6PC3, P4HA1,

ST6GALNAC4

hsa-miR-145 IGF1R, NEDD9, SOCS7, C6orf115, SRGAP1, CLINT1,

RTKN, C11orf9

hsa-miR-33, hsa-miR-33a YWHAH, PIM3, ABCA1, CROT,BTBD2,NPC1,PIM1

hsa-miR-144 FGA

hsa-miR-96 PROK2, TSPAN14, DDIT3, FOXO3A

hsa-miR-223 HSP90B1, NFIA

hsa-miR-185 CDC42

hsa-miR-33b ABCA1

hsa-miR-155 SDCBP, VPS18, CUTL1, TRIM32, MYO10, SAP30L,

RCN2, CEBPB, SOCS1, MBNL3, SMARCA4, PSIP1,

TP53INP1, IKBKE, DET1, DHX40, MAP3K10, WEE1,

HBP1, RAP1A, SPI1, GNAS, KIAA1715, KIAA1411,

FAM104A, TPRKB, HIVEP2, CDC73, CARHSP1,

JARID2, PHC2

hsa-miR-200c BAP1, EP300, MC1R, ZEB1, IKBKB, NTF3, UBE2I,

ZEB2, TBK1, FN1

hsa-miR-122a CCNG1, G6PC3, ST6GALNAC4, IGF1R, P4HA1,

GPR172A

hsa-miR-29b DNMT3A,COL3A1,TBX21, COL5A3, DUSP2, FOS,

MYCN, DNAJB11

hsa-miR-146a TRAF6, IRAK1

hsa-miR-103 ZYX, YTHDC1, ZBTB8, PDK4, RNMT, CCNE1, VPS4A,

TLK1, AXIN2 NP_056519.1, WNT3A

hsa-miR-375 ELAVL4, ABI2, LDHB, PHLDA1, RASD1

hsa-miR-126 IRS1, EGFL7, RGS3, PLK2

hsa-miR-30c UBE2I, CUL2, SOCS1, SERPINE1, TWF1

LIMITATIONS

There are certain limitations in our study as follows:

(1) Limited number of publications in PubMed and Scopus
databases as well as duplicate publications. The limited
numbers of publications in both databases are due to the
limited number of experimental work on disease-related
miRNAs owing to the inherent expensive cost and time-
consuming nature of the work. As the data in Scopus
is limited to only work after 1995, therefore, searching
literature from PubMed is preferable to Scopus.

(2) High false positive rate is found during text mining.
Because, most of the abstracts were mentioned the
keyword microRNA/miRNA but not mentioned lipid
disease/identifier names. Therefore, abstracts should
contains information of both miRNA and disease name.

CONCLUSION

To the best of our knowledge, this study represents the first study
to provide reliable miRNA-lipid disease association network
based on text-mining method. We extracted 227 miRNA-lipid
disease associations between 148 miRNAs and nine common

TABLE 6 | Top significant related gene ontology terms of CyTargetLinker targeted

genes analyzed by BINGO on Cytoscape.

GO ID Description Total

genes

Partner

genes

p-value

9891 Positive regulation of biosynthetic process 55 12 1.83E-06

31324 Negative regulation of cellular metabolic

process

55 12 3.88E-06

9892 Negative regulation of metabolic process 55 12 1.02E-05

44260 Cellular macromolecule metabolic process 55 25 1.33E-05

15248 Sterol transporter activity 20 2 6.56E-05

5159 Insulin-like growth factor receptor binding 24 2 1.57E-04

46627 Negative regulation of insulin receptor

signaling pathway

24 2 2.34E-04

33344 Cholesterol efflux 20 2 2.49E-04

30226 Apolipoprotein receptor activity 8 1 4.50E-04

8286 Insulin receptor signaling pathway 20 2 7.39E-04

30301 Cholesterol transport 20 2 8.68E-04

42632 Cholesterol homeostasis 20 2 1.10E-03

55092 Sterol homeostasis 20 2 1.10E-03

34188 Apolipoprotein A-I receptor activity 20 1 1.12E-03

6629 Lipid metabolic process 20 5 1.93E-03

55088 Lipid homeostasis 20 2 2.18E-03

5319 Lipid transporter activity 20 2 2.32E-03

10887 Negative regulation of cholesterol storage 8 1 2.70E-03

5899 Insulin receptor complex 24 1 2.70E-03

32869 Cellular response to insulin stimulus 20 2 3.17E-03

34186 Apolipoprotein A-I binding 20 1 3.37E-03

10875 Positive regulation of cholesterol efflux 8 1 3.59E-03

32365 Intracellular lipid transport 8 1 3.59E-03

10874 Regulation of cholesterol efflux 8 1 4.04E-03

32373 Positive regulation of sterol transport 8 1 4.04E-03

32376 Positive regulation of cholesterol transport 8 1 4.04E-03

34204 Lipid translocation 20 1 4.49E-03

10885 Regulation of cholesterol storage 8 1 5.38E-03

34380 High-density lipoprotein particle assembly 20 1 5.61E-03

43559 Insulin binding 20 1 5.61E-03

10888 Negative regulation of lipid storage 8 1 6.28E-03

70325 Lipoprotein receptor binding 8 1 7.17E-03

31325 Positive regulation of cellular metabolic

process

8 3 7.27E-03

32868 Response to insulin stimulus 20 2 8.31E-03

9893 Positive regulation of metabolic process 8 3 8.42E-03

32370 Positive regulation of lipid transport 8 1 8.51E-03

6869 Lipid transport 20 2 1.05E-02

34185 Apolipoprotein binding 20 1 1.23E-02

10876 Lipid localization 20 2 1.23E-02

16071 mRNA metabolic process 24 3 1.30E-02

32368 Regulation of lipid transport 8 1 1.74E-02

9892 Negative regulation of metabolic process 24 4 2.70E-02

lipid diseases/identifiers from bulk published data. In the present
study significant groups such as, HDL-C, dyslipidemia and
triglyceride should be evaluated further for identifying the
complex involvement of miRNAs and disease development.
We also constructed extended RegIN from top 20 significant
text-mined miRNAs using CyTargetLinker on Cytoscape that
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provides experimentally validated and predicted miRNA gene
targets. Further, these miRNA gene targets are involved in
the regulation of lipid, cholesterol, lipoprotein, and fatty acid
biological processes, which are confirmed by BiNGO analysis on
Cytoscape.

The current study sets the groundwork for future
experimental studies to validate the targeted mRNAs/genes,
since they have been predicted with CyTargetLinker but not
experimentally validated. Future experimental studies could
walk around the biological functions and primary molecular
mechanism of miRNAs in the development, progression,
diagnosis and prognosis of lipid and cholesterol, lipoprotein, and
fatty acid disorders.
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