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To date, gene-based rare variant testing approaches have focused on aggregating

information across sets of variants to maximize statistical power in identifying genes

showing significant association with diseases. Beyond identifying genes that are

associated with diseases, the identification of causal variant(s) in those genes and

estimation of their effect is crucial for planning replication studies and characterizing

the genetic architecture of the locus. However, we illustrate that straightforward

single-marker association statistics can suffer from substantial bias introduced by

conditioning on gene-based test significance, due to the phenomenon often referred

to as “winner’s curse.” We illustrate the ramifications of this bias on variant effect size

estimation and variant prioritization/ranking approaches, outline parameters of genetic

architecture that affect this bias, and propose a bootstrap resampling method to correct

for this bias. We find that our correction method significantly reduces the bias due to

winner’s curse (average two-fold decrease in bias, p < 2.2 × 10−6) and, consequently,

substantially improves mean squared error and variant prioritization/ranking. The method

is particularly helpful in adjustment for winner’s curse effects when the initial gene-based

test has low power and for relatively more common, non-causal variants. Adjustment for

winner’s curse is recommended for all post-hoc estimation and ranking of variants after

a gene-based test. Further work is necessary to continue seeking ways to reduce bias

and improve inference in post-hoc analysis of gene-based tests under a wide variety of

genetic architectures.

Keywords: next-generation sequencing, SKAT, burden test, case-control, winner’s curse

INTRODUCTION

In recent years, numerous gene-based rare variant tests of association (hereafter GBTs) have been
proposed that seek to aggregate genotype-phenotype association signals across rare variants within
a gene to improve the overall evidence of genotype-phenotype association within a gene of interest
(Li and Leal, 2008; Madsen and Browning, 2009; Morris and Zeggini, 2010; Price et al., 2010;
Zawistowski et al., 2010; Ionita-Laza et al., 2011; Pan and Shen, 2011;Wu et al., 2011; Lee et al., 2012;
Greco et al., 2016). These tests can be broadly grouped into two categories: length (burden) tests and
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joint (variance component) tests based on a geometric
interpretation of the hypotheses being tested (Liu et al.,
2013). These tests have been motivated by technological
advances allowing measurement of rare variants inexpensively
and accurately, and by the ongoing search for the genetic basis of
many common, complex diseases (Manolio et al., 2009; Schork
et al., 2009; Eichler et al., 2010).

For case-control studies considering rare variants, single-
marker tests do not yield adequate power. GBTs attempt to
address the low power problem by testing the null hypothesis
that the population minor allele frequency vector in the cases
is the same as the controls for a set of variants within a gene
of interest. By simultaneously testing all variants within a gene,
multiple testing penalties are reduced as compared to single-
marker tests, and power may be improved since aggregating
signals frommultiple variants associated with the phenotype may
lead to improved ability to detect the association. However, a
practical problem exists: when GBTs find significant evidence of
association with the phenotype, few, if any, standard approaches
exist to identify which variant or subset of variants within that
gene are truly responsible for increasing or decreasing disease
risk, or to provide unbiased estimates of the true effect of these
variants.

To date, most work has focused on the problem of fine-
mapping regions of interest in an independent sample after
initially identifying regions as significant in a genome-wide scan
in a discovery sample (Maller et al., 2012; Hormozdiari et al.,
2014; Li et al., 2015). Approaches for prioritizing variants in a
region of interest for further study include filtering of variants
based on prior biological information [e.g., non-synonymous,
location (exon vs. intron), predicted deleterious effects (Phen
Score)] (Zhan and Liu, 2015), methods designed primarily
for common variants (Hormozdiari et al., 2014), and, more
recently, Bayesian approaches. Bayesian approaches include
those that yield posterior probabilities that single nucleotide
polymorphisms (SNPs) are associated with the phenotype
(Larson et al., 2016), a risk index for each SNP under the
assumption that there is a single causal variant (Maller et al.,
2012; Beecham et al., 2013) or allowing for an arbitrary number
of causal variants in each region of interest (Quintana et al.,
2011). To date, few, if any, rigorously developed frequentist
methods exist to identify the most likely causal variant(s) in a
gene after a GBT—what we call “post-hoc analysis of a GBT.”
In addition to the potentially low power of any single-marker
post-hoc rare variant strategy, another compounding issue is that
of winner’s curse. Winner’s curse—also referred to as regression
to the mean or selection bias—is bias in parameter estimates
after the identification of a statistically significant association
(Liu and Leal, 2012). It has been attributed to using the same
data for both significance testing and parameter estimation (Xu
et al., 2011), and occurs, for example, when parameters are
only estimated for the most highly ranked markers (Tan et al.,
2014). When testing common genetic variants (e.g., GWAS),
research has shown that as power increases, bias in parameter
estimates decreases (Xiao and Boehnke, 2009). Recent work (Liu
and Leal, 2012) has documented the phenomenon in estimates of
average genetic effect after GBTs, but does not explore potential

bias in single-marker test statistics, which is of particular
concern given the low power of analysis strategies involving rare
variants.

Three general classes of methods exist for addressing and
correcting winner’s curse in single-marker tests of common
variants. Replication (independent, split-) sample approaches
propose that parameter estimates be obtained from a different
sample than was used to test significance. These approaches
yield unbiased parameter estimates by looking at an independent
replication sample (Goring et al., 2001; Bowden and Dudbridge,
2009), or splitting the initial sample (Sun and Bull, 2005; Faye
et al., 2011; Poirier et al., 2015), in each case using one sample
for testing and the other for parameter estimation. However,
the sample-splitting methods reduce power since not all of the
data is being used to assess significance (Sun and Bull, 2005),
and the practicalities (time, money) involved in obtaining a
replication sample can be prohibitive for many research groups
(Liu and Leal, 2012). Furthermore, while approaches involving
an independent replication sample may be viable for common
variants, they may not be plausible for rare variants. For example,
many rare variants are population-specific (Gravel et al., 2011),
which leads to the potential of not observing rare variants in
either the discovery or the replication samples. Likelihood-based
bias correction methods also exist for common variants (Zollner
and Pritchard, 2007; Ghosh et al., 2008; Zhong and Prentice,
2008; Xiao and Boehnke, 2009), though recent discussion of these
approaches for rare variants have been concerned with challenges
in computational tractability of power calculations and the
impact of these limitations on resulting correction methods
(Liu and Leal, 2012). Finally, there exist bootstrap resampling
bias correction methods, which use bootstrap resampling to
estimate the bias of a “naïve” (winner’s-curse-afflicted) estimator
and then define a bias-corrected estimator by subtracting the
estimated bias from the naïve estimator. Many variations of this
general bootstrap resampling bias correction framework have
been proposed and applied in the context of estimation of single-
marker effect sizes for common variants (Sun and Bull, 2005;
Yu et al., 2007; Sun et al., 2011; Xu et al., 2011; Faye et al.,
2013; Zhou and Wright, 2015), and more recently to estimation
of the average genetic effect for a GBT (Liu and Leal, 2012).
Since the work of Liu and Leal (2012) focuses on estimating
and correcting for the overall bias of the entire gene’s effect
on the phenotype, to date no evaluation of the presence of
winner’s curse or the application of this bootstrap bias correction
framework (or any other winner’s curse correction strategy)
has been documented in the important context of post-hoc
estimation of single-marker effect sizes for rare and common
variants.

In this paper, we document the presence of winner’s
curse on naïve post-hoc strategies for single-marker tests
performed after significant GBTs. Using both analytic
methods and simulation we confirm the presence of the
bias, quantify it, and establish the key factors related to
this bias. We then propose a bootstrap resampling and
estimation strategy that adjusts the estimates of individual
rare variant effects and leads to improved post-hoc variant
prioritization.
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METHODS

Two-Step Approach
We propose a two-step approach to conducting post-hoc analysis
of a GBT (gene-based rare variant test of association).

Step 1: Apply a GBT of genotype–phenotype association to a
set of variants of interest. Often the set of variants of interest will
be the set of all variants within a gene. Prior work has shown
that most GBTs can be classified into one of two broad classes
of tests: length (burden; collapsing; linear) or joint (variance
components; quadratic) (Liu et al., 2013). We implemented one
burden test (Qburden,weighted, or Qbw for short) and one variance
components test (QSKAT,weighted, or Qsw for short) in our analysis,
selected in order to represent these two broad classes of testing
methods. We used the SKAT R package to conduct all tests (Lee
et al., 2016) using asymptotic properties of the tests to determine
statistical significance. In particular, as implemented in the SKAT

R package, Qbw ≈
m∑

i=1
wiDi and Qsw ≈

m∑
i=1

wiD
2
i , where

Di = f+i − f−i is the difference between the minor allele
frequencies among cases (+) and controls (−) for variant i, and
there arem variants in the gene of interest. Following others (Wu
et al., 2011), we used variant weights based on a beta distribution

density function with parameters 1 and 25: wi = 25
(
1− fi

)24
where fi is the population minor allele frequency for variant i,
for both Qbw and Qsw.

Step 2: Post-hoc analysis. For all genes yielding a significant
p-value in Step 1, (p < α), we considered single-marker, variant

level statistics, T̂i: (1) D̂i = f̂+i − f̂−i (the difference in minor

allele frequencies) and (2) D̂2
i =

(
f̂+i − f̂−i

)2
. These variant

level statistics, Ti, are functions of the observed minor allele

frequency in the cases (f̂+i = f̂cases,i =
C+
i

2N+ ) and controls (f̂−i =

f̂controls,i =
C−
i

2N− ), where N+ and N− are the total number of

cases and controls in the sample, respectively, and C+
i and C−

i are
the number of minor alleles observed in the cases and controls,
respectively.

General Framework for Understanding the
Behavior of Post-hoc Approaches
Single-marker statistics at Step 2, which are a function of
observed single-marker minor allele frequencies, often perform
less than optimally (e.g., they are biased; see the Results
Section). In the Appendix (in the Supplementary Material;
Sections A.1 and A.1.1 for a general argument, and A.2 for
an argument specifically relevant to our simulation study)
we provide a detailed demonstration that, under a set of
weak assumptions, a Step 1 GBT (Q) followed by a single-
marker statistic Ti leads to the following relationship for

Bias
(
T̂i

)
, the observed bias of the post-hoc statistic T̂i at

variant i:

Bias

(
T̂i

)
=

Bias (Q)

V (Q)

(
wiVar (Ti) +

∑
j 6=i

wjCov(Ti,Tj)

)
. (1)

This relationship demonstrates that the bias of the naïve Step 2
statistic can be decomposed into an overall gene bias/variance

term, and then a unique term for each variant in the gene. The
variant-specific term depends on the minor allele frequency and
relative risk of the variant, the choice of weights for the GBT,
and the strength of LD between the variant of interest and other
variants in the gene. The overall gene bias term in Equation (1)
is the observed bias of the GBT (i.e., for a given, observed value
of the test statistic Q), and due to winner’s curse will often be
quite large when we perform post-hoc estimation only after a
significant Step 1 test. This in turn will result in a large post-hoc

bias in single-marker statistics T̂i.

Bootstrap Resampling Bias Correction
Approach
Recently, a bootstrap resampling approach was proposed
to estimate and adjust for bias in single-marker tests on
common variants in GWAS studies (Sun and Bull, 2005). An
extension of this approach for GBTs calculates an unbiased
estimate of the average genetic effect at the locus of interest
(Liu and Leal, 2012). Our proposed approach is in the
spirit of these earlier efforts, but applied to GBTs, with
a goal of attaining unbiased post-hoc estimates for single
variants.

The three-part bias correction approach is as follows:
Part 1. Calculate the GBT of interest, Q, on the sample

of N = N+ + N− subjects across a set of m variants
of interest (often, all variants in a gene). If the test yields a
significant association statistic (pQ < α) continue to Step 2.
Otherwise, stop: there is no need for post-hoc single-marker
analysis.

Part 2. Calculate naïve single-marker association

statistics T̂i for all variants, i=1, ...,m. These
statistics will frequently be biased toward showing
stronger association than is actually present in the
population (due to winner’s curse).

Part 3. Take b= 1, ..., B bootstrap resamples of the N subjects,
separately resampling cases and controls so that each bootstrap
sample again has N+ cases and N− controls. This will yield N∗

b

subjects occurring at least once in the b th bootstrap sample and
NR
b

= N − N∗
b
not present in the b th bootstrap sample (the

residual sample). Note that, on average, NR
b
≈

(
1
3N

)
. For each

bootstrap sample, compute the GBT, Q∗
b
, using the same gene-

based rare variant test Q as in Part 1. If the GBT is significant
on the bootstrap sample, compute the same single-marker post-

hoc statistics used in Part 2 on the bootstrap (T̂∗
ib
) and residual

(T̂R
ib
) samples. The bias in the single-marker test statistic T̂i can

then be estimated for each bootstrap sample as B̂iasb

(
T̂i

)
=

T̂∗
ib
− T̂R

ib
, b = 1, . . . , B.

In general, the distribution of B̂iasb

(
T̂i

)
across the bootstrap

samples b = 1, . . . , B can be used to adjust for the bias of

the naïve statistics T̂i: T̂i,adjusted = T̂i − f (B̂iasb

(
T̂i

)
), where f

could be the mean, median or other univariate summary statistic
summarized across the significant (pQ∗

b
< α) bootstrap samples.

In our analyses we followed the spirit of Liu and Leal (2012) and
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calculated our bias-adjusted estimates using

T̂i,adjusted =





max


T̂i − median

b : p
Q*
b
<α

(
B̂iasb(T̂i)

)
, 0


 if T̂i > 0

min


T̂i − median

b : p
Q*
b
<α

(
B̂iasb(T̂i)

)
, 0


 if T̂i < 0.

Figure 1 provides a visual overview of the bootstrap resampling
approach.

Simulated Data
Our theoretical work in the General Framework for
Understanding the Behavior of Post-hoc Approaches Section
demonstrates the behavior of post-hoc single-marker test
statistics under very general assumptions. However, in order to
illustrate this behavior and to evaluate the performance of our
proposed bootstrap resampling bias correction approach we
conducted a simulation study under a simpler set of scenarios.
Our simulation study considered 50 different combinations of
minor allele frequencies and relative risks. We also considered
10 different distributions of minor allele frequencies f across
sets of 10 variants (representing one “gene”): (a) All 10 SNPs are
“rare” (two levels resulting from either all f = 0.01% or all f =
0.1%), (b) one common neutral variant and nine rare variants
(four levels resulting from all combinations of common variant
f = 5% or f = 1% and rare variants f = 0.01% or f = 0.1%) or
(c) two common (one neutral; one risk increasing) variants and
eight rare variants (four levels resulting from all combinations of
common variant f= 5% or f= 1% and rare variants f= 0.01% or
f = 0.1%). For each distribution of minor allele frequencies we
considered five different relative risk distributions (% variants
Risk Increasing: % Neutral: % Risk Decreasing): (1) 20:80:0, (2)
50:50:0, (3) 80:20:0, (4) 20:60:20, and (5) 0:100:0, for a total of
50 different combinations. Relative risk λ for all risk variants
is determined by the minor allele frequency, f. Namely, for
risk increasing variants we used the following combinations of
(f , λ): (5%, 1.2), (1%, 1.5), (0.1%, 2) and (0.01%, 8). For risk
reducing variants we used (5%, 1/1.2), (1%, 1/1.5), (0.1%, 1/2)
and (0.01%, 1/8). For all simulations we used 1,500 cases and

1,500 controls, and simulated all variants independently. We
performed 10,000 simulations for each of the 50 simulation
settings (see Supplementary Table 1 for details on each of the 50
simulation settings).

Analysis of Simulated Data
We applied Step 1 and Step 2 (see theTwo-Step Approach Section)
to each simulated data set. In particular, we computed p-values
for each GBT Qbw and Qsw. Step 1 power was computed as the
proportion of the 10,000 simulated data sets yielding p-values
less than the significance level. We considered two different
significance levels (α): 0.01 and 0.0001. If the Step 1 test was
significant we performed bootstrap resampling (Step 2) for that
test: We computed adjusted and unadjusted versions of the post-
hoc statistics (D̂i or D̂

2
i ) for each simulation that was significant at

Step 1. Bias is computed as the average of the difference between
the single-marker statistic and its expected value. Expected values
for each simulation setting are reported in Supplementary Table
1, and their general form is derived in the Appendix (Section
A.2). MSE is computed as the average of the squared difference
between the estimated single-marker statistic and its expected
value.

Software
Corresponding R functions that implement the bootstrap
correction approach proposed here are available at:
http://www.dordt.edu/statgen.

RESULTS

Changes in Bias and MSE
Across 50 simulation settings and four different Step 1% testing
situations (both of Qbw and Qsw at 1% and 0.01% significance
levels; a total of 200 situations), 161 of these 200 situations yielded
more than one simulation out of 10,000 with a significant Step 1
result. Averaging across each of the 10 variants in each of these
161 situations showed improvements in the overall bias andMSE
of D̂i [average bias before adjustment = 5.7 × 10−4 vs. average
bias after adjustment = 3.1 × 10−4, with paired t-test p < 2.0 ×
10−16; MSE: 9.7 × 10−6 (unadjusted) vs. 5.5 × 10−6 (adjusted)
with paired t-test p < 2.0 × 10−16] and D̂2

i [average bias: 1.0 ×

FIGURE 1 | Flow chart depicting the bootstrap resampling approach. A high-level overview of the steps involved in the proposed bootstrap resampling approach to

adjust for winner’s curse in post-hoc single variant analyses.
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10−5 (unadjusted) vs. 3.7 × 10−6 (adjusted) with paired t-test
p < 2.0 × 10−16; MSE: 2.7 × 10−9 (unadjusted) vs. 1.1 × 10−9

(adjusted) with paired t-test p = 2.2 × 10−16]. In short, the bias
and MSE are, on average, halved across all settings. Thus, on
average we have reduced, but not eliminated, the bias in these
statistics [both 3.1× 10−4 (average adjusted bias in D̂i) and 3.7×
10−6 (average adjusted bias in D̂2

i ) are significantly different than
zero].

Table 1 provides an overall view of improvements to bias
and MSE (when at least one variant is causal) for two possible
combinations of Step 1 and Step 2 test statistics: Qbw followed by
Di and Qsw followed by D2

i . On average, 84% of variants show
reduction in bias and MSE after applying our bootstrap bias
correction strategy. Importantly, across all scenarios considered
there are considerably more variants helped by our correction
strategy than hurt, and the typical magnitude of improvement
is substantially larger (2–150 times) than the typical magnitude
of decline. In other words, the method substantially reduces
the bias (and MSE) for most variants, and for those variants
it is not helping, the increase in bias (or MSE) is relatively
small. Supplementary Table 2 provides results for all four
possible combinations of Step 1 and Step 2 test statistics,
and Supplementary Figure 1 provides a complementary visual
overview. Results across the 10 simulation settings with no
causal variants are contained in Supplementary Table 3 and
show a generally similar pattern as in Table 1. In essence, the
improvements in bias for null simulation settings can be thought
of as making the resulting distribution of post-hoc variant effect
estimates “more noisy,” which is good for genes containing no
causal variants.

Figure 2 illustrates a specific simulation setting with five rare
(MAF= 0.01%) risk-increasing (relative risk= 8) SNPs, four rare
(MAF = 0.01%) neutral (relative risk = 1) SNPs, and one more
common (MAF = 1%) neutral SNP. In this setting, all variants
show improvement, with relative improvement in bias between
two- and six-fold and relative improvement in MSE between 1.1-
and 2.3-fold after implementation of our bias correction strategy.
In particular, we note that the common neutral variant (“SNP 6”)
has the largest reduction in MSE, representing a decrease in both
bias and variance. Across all combinations of Step 1 tests and Step
2 post-hoc statistics (depicted for SNP 6 in Figure 2C), our bias-
corrected statistics are closer on average to their expected value
than the unadjusted/naïve statistics (i.e., they are less biased).
The improvement of our bias-correction approach is especially
evident for SNP 6 when we follow up Qbw with D̂i or Qsw with
D̂2
i . However, across all SNPs we see that even when bias is not

reduced by much, our bias correction strategy still reduces MSE,
reflecting a small reduction in bias accompanied by an additional
reduction in variance.

In order to illustrate when bias adjustments are more or less
beneficial, we stratify the results by power of the GBT and by
MAF and relative risk of the variant. In the Appendix (especially
A.1.1 and A.1.3) we discuss the impact of GBT power on bias and
MSE of naïve post-hoc single-marker test statistics. Specifically,
whenGBT power is lowwe expect to seemore bias, and as a result
it seems that with low GBT power there is correspondingly more
room for improvement in bias. In Table 2 (two pairs of Step 1

and Step 2 statistics) and Supplementary Table 4 (all pairs of Step
1 and Step 2 statistics), we see that themagnitude of improvement
in bias or MSE was often larger when GBT power was low (<0.2)
compared to when it was high (≥0.2). Interestingly, though,
this is not always true, and in many instances our bootstrap
bias correction provides improvement for a similar proportion
of variants across levels of GBT power. Supplementary Table 5
stratifies the simulation results by both minor allele frequency
and relative risk. In general, relatively more common variants
with larger relative risks were helped by the bias correction
procedure (more were adjusted in the correct direction and the
relative amount of adjustment was better). Figure 3 provides
a corresponding visual illustration. In both panels we see that
the scatterplots have a funnel shape, which shows us that the
bias of post-hoc single-marker statistics (unadjusted or adjusted)
tends to decrease with increasing power of the Step 1 test. We
also see that the variants with larger bias tend to have larger
MAF. Furthermore, in comparing the two panels (unadjusted vs.
adjusted) we see that the bias of the adjusted post-hoc statistics
tends to be smaller than the bias of the unadjusted post-hoc
statistics, as all points in the right panel are shrunk toward zero.

Changes in Rank
We have focused primarily on improvements to the bias and
MSE of post-hoc single-marker statistics after our proposed post-
hoc adjustment strategy. However, we note that a reasonable
approach taken to identify causal variants after a significant GBT
involves ranking of individual markers within the gene. Figure 4
illustrates the overall results (as measured by the percent of times
the top-ranked variant is causal) of ranking all variants before
and after adjustment. We see that ranking improves in many
cases, and often substantially, after our bootstrap bias correction
approach (as shown by the number of points above the y= x line,
and their distance from that line). The times that ranking based
on the adjusted statistics is not better tend to be settings when
the percent of times the top SNP is causal was already quite high
before adjustment, and the ranking after adjustment is often not
that much worse in these cases. Supplementary Figure 2 looks at
the percent of times the top two ranked variants are causal, and
shows a similar pattern.

Revisiting the simulation setting illustrated in Figure 2 finds
that the percent of times that the top ranked SNP is actually
causal moves from 13.1% to 47.6% after adjustment. Similarly,
the percent of times that the top two SNPs are causal moves from
8.3% before adjustment to 47.6% after adjustment. This dramatic
improvement is mainly due to the substantial change in the rank
of the more common, non-causal SNP (SNP 6) from an average
rank of 1.35 before adjustment to 3.35 after, along with modest
improvements to the remaining causal (ranks closer to 1) and
non-causal (ranks closer to 10) variants.

DISCUSSION

We have documented widespread bias in post-hoc single-marker
statistics performed after a significant GBT. This bias is due to
winner’s curse: namely, that the naïve post-hoc single-marker
association statistics (e.g., D̂i and D̂2

i ) overestimate the strength
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TABLE 1 | Overall improvement in bias and MSE of bias-adjusted statistics across 10,000 replications of the 40 alternative hypothesis simulation settings.

Step 1: GBT Step 2:

Single-marker

statistic

Step 1 sig. level

(%)

Bias or MSEa % of improved

variantsb
Median

improvementc
Median declined Median

increase/Median

decreasee

Qbw D̂i 1 Bias 0.94 1.63 × 10−04 3.14 × 10−05 5.20

MSE 0.90 7.32 × 10−08 1.34 × 10−08 5.47

0.01 Bias 0.97 2.10 × 10−04 9.48 × 10−05 2.22

MSE 0.97 2.04 × 10−07 6.04 × 10−08 3.37

Qsw D̂2
i

1 Bias 0.64 2.37 × 10−07 2.06 × 10−08 11.51

MSE 0.77 1.11 × 10−12 1.68 × 10−14 65.95

0.01 Bias 0.69 4.85 × 10−07 2.81 × 10−08 17.29

MSE 0.81 2.85 × 10−12 1.92 × 10−14 148.22

Results shown for two pairs of Step 1 and Step 2 test statistics: Qbw followed by Di and Qsw followed by D2i .
aBias is computed as the average difference between the estimated single-marker post-hoc statistic and its expected value. MSE is computed as the average squared difference

between the estimated single-marker post-hoc statistic and its expected value.
bComputed as the percent of variants for which bias (or MSE, depending on the row of the table) decreased after implementing our bootstrap bias-correction strategy.
cThe median change in bias (or MSE) among variants that show an improvement after adjustment (i.e., bias (or MSE) is smaller after adjustment).
dThe median change in bias (or MSE) among variants that show a decline after adjustment (i.e., bias (or MSE) is larger after adjustment).
eThe ratio of the previous two columns.

of the true association. Winner’s curse is particularly problematic
for Step 2 of gene based testing situations when the Step 1
power is low. As demonstrated both theoretically (see Appendix,
especially A.1.1 and A.1.3, and Supplementary Figures 3, 4)
and via simulation, there is a direct relationship between minor
allele frequency and bias/MSE, leading unadjusted post-hoc
statistics (D̂i and D̂2

i ) to be particularly prone to over-estimation
for more common, non-causal variants. Thus, it is possible to
yield post-hoc association statistics which not only yield biased
effect size estimates, but the differential bias by minor allele
frequency can also lead to ranking of non-causal variants ahead of
causal variants.

Importantly, any adjustment strategy for these winner’s curse
effects must account for the fact that a Step 1 test has already been
conducted on the same data set. Failing to account for this fact
when computing unadjusted variant-association statistics leads
to an inflated sense of confidence in the observed associations—
exactly the winner’s curse problem. Thus, any post-hoc strategy
which attempts to identify causal variants must account for the
fact that the Step 1 test has been conducted and adjust for
this in Step 2. We have proposed a method which attempts to
provide unbiased post-hoc estimates of single variant association
statistics using a bootstrap approach. By using a bootstrapping
approach, estimates of the sample bias can be obtained and
used to create unbiased single-marker association statistics. In
general, the proposed method improves post-hoc association
statistics by making the estimates less biased and yielding
better post-hoc mean squared error and ranks. These improved
ranks and less-biased estimates of a variant’s association with
disease are useful to quantify association, plan replication
studies and, ultimately, lead to the identification of truly
causal variants.

As shown above, the adjustment method tends to perform
best when Step 1 power is lowest, exactly when the effects due
to winner’s curse are largest. In other cases, the adjustment

method has little impact (positive or negative) on the post-hoc
inference. Furthermore, the choice of post-hoc statistic (Step 2)
is important to align with the GBT statistic (Step 1). As others
have noted (Liu et al., 2013), different GBTs are testing different
null hypotheses and, as such, are looking for particular types of
genetic architecture. Thus, we argue that the best approach to
the choice of post-hoc, single-marker statistics is to choose a
statistic which mirrors the hypothesis being tested at Step 1. If
you find evidence of a particular genetic architecture at Step 1,
it does not make sense to then go and look for a different type
of architecture at Step 2. In particular, if a variance components
test is used at Step 1, using a single-marker statistic in the spirit
of variance components (D̂2

i ) at Step 2 is the most natural and

consistent choice, whereas a statistic in the spirit of D̂i is most
appropriate after a burden test. Finally, it is worth noting that
the bias of the D̂2

i statistic is often minimal, with the primary
impact of winner’s curse occurring on the variance of the statistic
(primarily by making the distribution more bimodal—driving it
away from zero).

We have focused on the general classes of burden and variance
components tests and two relatively simple and straightforward
choices of post-hoc statistics (D̂i and D̂2

i ), as has been suggested
by others (Xiao and Boehnke, 2009), but it is important to
note that our proposed method is quite general. In particular,
the general bootstrap bias correction framework we propose is
valid for numerous other choices of Step 1 and Step 2 statistics,
though some care should be taken to align the two statistics
as noted in the previous paragraph. Furthermore, although our
simulation study focuses only on these few choices of Step 1 and
Step 2 statistics, as well as a case-control phenotype with no LD,
our theoretical results apply to a much wider range of settings,
including quantitative traits, correlated genotypes, and more (see
Section A.1 in the Appendix for more details).

There are a variety of areas of potential future work. First,
while our preliminary analysis of the method’s performance on
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FIGURE 2 | Distribution of estimated difference in minor allele frequencies before and after application of the post-hoc adjustment strategy. Panel (A) displays

histograms of naive (light red) and bias-corrected (blue) differences in minor allele frequencies for each SNP in a single simulated gene. The dark pink color is the

overlap of the two histograms. The black dashed line represents the expected difference in minor allele frequencies. Results are shown for post-hoc analyses

conducted after conducting a burden test with α = 0.01 at Step 1. The top row of SNPs (1–5) are risk-increasing with relative risk of 8, and the bottom row of SNPs

(6–10) are neutral. All SNPs are very rare (MAF = 0.0001), with the exception of SNP 6 which has minor allele frequency of 0.01. The Step 1 power of this gene was

11.7% across 10,000 replications. Panel (B) displays the relative improvement in bias and mean squared error of the bias-corrected post-hoc statistic for each SNP,

where relative improvement is computed as the estimated bias (MSE) before adjustment divided by the estimated bias (MSE) after adjustment. Panel (C) illustrates the

results from SNP6. In particular, we show results for the post-hoc difference in minor allele frequencies after conducting Qsw (top left) and Qbw (top right) tests with

α = 0.01 at Step 1, as well as results for the post-hoc squared difference in minor allele frequencies after conducting Qsw (bottom left) and Qbw (bottom right) test

with α = 0.01 at Step 1.

genotypes in the presence of linkage disequilibrium is promising
and shows similar patterns as were observed on independent
genotypes (see Supplementary Figure 5; Bickeböller et al., 2014),
further work is needed to continue to explore and understand
the implications of correlated genotypes on the observed results.
In particular, since the proposed bootstrapping strategy is not
a model-based approach that capitalizes on LD structure, this
may suggest a way to further improve bias correction. However,
further work is needed to explore this hypothesis and evaluate
performance in data with correlated genotypes. Although further
exploration would be useful, it is important to note, however, that
our method does not rely on any assumptions of independent
markers: our theoretical work suggests that post-hoc bias will
still exist in the presence of LD (and may even be exaggerated),
and existing literature suggests that this bootstrap resampling

bias correction approach should work in the presence of LD (Tan
et al., 2014).

Our focus in this paper has been on bias in post-hoc
estimation. Initial analyses indicate that post-hoc bias can also
lead to problems in downstream analyses, such as variant
prioritization. However, further work is needed to assess the
impact of post-hoc bias on other possible downstream analyses,
such as heritability estimation or calculation of sample sizes
for replication studies, and to develop appropriate methods for
post-hoc testing in this fundamentally difficult post-selection
inference setting. In addition, post-hoc ranking strategies
are challenged by extremely rare variants (e.g., singleton;
doubletons). Further work is needed to explore these extreme
cases since all post-hoc, variant-level association statistics will
struggle to yield robust estimates in these cases. We anticipate

Frontiers in Genetics | www.frontiersin.org 7 September 2017 | Volume 8 | Article 117

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Grinde et al. Bias in Post-hoc Analysis

TABLE 2 | Improvement in bias and MSE of bias-adjusted statistics stratified by the power of the Step 1 test.

Step 1:

GBT

Step 2:

Single-marker

statistic

Step 1 sig.

level (%)

Bias or

MSEa
Step 1 power % of improved

variantsb
Median

improvementc
Median declined Median

increase/Median

decreasee

Qbw D̂i 1 Bias 0−0.05 0.90 1.77 × 10−04 3.24 × 10−05 5.45

0.05−0.2 1.00 1.76 × 10−04 – –

0.2−0.5 1.00 1.52 × 10−04 – –

0.5−1 0.85 1.51 × 10−04 1.67 × 10−05 9.04

MSE 0−0.05 0.99 1.89 × 10−07 1.07 × 10−09 177

0.05−0.2 0.96 6.97 × 10−08 1.13 × 10−08 6.16

0.2−0.5 0.90 3.79 × 10−08 1.28 × 10−08 2.96

0.5−1 0.60 4.66 × 10−08 3.52 × 10−08 1.32

0.01 Bias 0−0.05 0.96 2.09 × 10−04 9.48 × 10−05 2.21

0.05−0.2 1.00 2.67 × 10−04 – –

0.2−0.5 1.00 1.83 × 10−04 – –

0.5−1 – – – –

MSE 0−0.05 0.96 2.25 × 10−07 6.04 × 10−08 3.72

0.05−0.2 1.00 2.15 × 10−07 – –

0.2−0.5 1.00 5.10 × 10−08 – –

0.5−1 – – – –

Qsw D̂i
2

1 Bias 0−0.05 0.68 1.49 × 10−07 1.73 × 10−08 8.60

0.05−0.2 0.62 4.75 × 10−07 2.15 × 10−08 22.1

0.2−0.5 0.55 2.43 × 10−07 2.06 × 10−08 11.8

0.5−1 – – – –

MSE 0−0.05 0.74 9.76 × 10−13 1.37 × 10−14 71.4

0.05−0.2 0.81 2.45 × 10−12 1.87 × 10−14 131

0.2−0.5 0.77 1.52 × 10−12 1.85 × 10−14 82.4

0.5−1 – – – –

0.01 Bias 0−0.05 0.69 4.85 × 10−07 2.81 × 10−08 17.3

0.05−0.2 – – – –

0.2−0.5 – – – –

0.5−1 – – – –

MSE 0−0.05 0.81 2.85 × 10−12 1.92 × 10−14 148

0.05−0.2 – – – –

0.2−0.5 – – – –

0.5−1 – – – –

Results shown for two pairs of Step 1 and Step 2 test statistics: Qbw followed by Di and Qsw followed by D2i .
aBias is computed as the average difference between the estimated single-marker post-hoc statistic and its expected value. MSE is computed as the average squared difference

between the estimated single-marker post-hoc statistic and its expected value.
bComputed as the percent of variants for which bias (or MSE, depending on the row of the table) decreased after implementing our bootstrap bias-correction strategy. Set to – if no

step 1 tests had power in that range.
cThe median change in bias (or MSE) among variants that show an improvement after adjustment (i.e., bias (or MSE) is smaller after adjustment). Set to – if no tests in that range.
dThe median change in bias (or MSE) among variants that show a decline after adjustment (i.e., bias (or MSE) is larger after adjustment). Set to – if no tests in that range or no variants

showed decline (i.e., % of improved variants is 1).
eThe ratio of the previous two columns. Set to – if either of previous two columns is –.

that there may be ways to combine extremely rare variants in an
ad hoc manner to yield post-hoc association statistics for sets of
variants which are more robust and reliable in these situations.
Further work is necessary here as well.

A number of extensions of the method are possible and
worth further exploration including alternative variant weights
when conducting post-hoc ranks (either based on MAF or prior
biological information), conditioning on known causal variants
and approaches which attempt to predict the most likely subset of
causal variants vs. a ranked list based on single-marker statistics.

An extensive effort will be needed to fully address all of the many
issues presented by this setting of post-hoc inference.

Winner’s curse is a widespread and well-understood
phenomenon for common variants in genetic association
studies. However, the use of GBTs for sequence data in order to
incorporate rare variants into resulting association tests still leads
to substantial winner’s curse effects, especially when attempting
to prioritize and identify causal variants using single-marker
methods (Step 2) after a significant GBT (Step 1). We have shown
that low powered Step 1 tests, and relatively more common,
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FIGURE 3 | Relationship between bias, minor allele frequency, and GBT power. These scatterplots show the bias of unadjusted (A) and adjusted (B) single-marker

post-hoc statistics vs. the power of the GBT in which that variant is contained. All combinations of Step 1 test, Step 2 single-marker statistic, and significance level are

shown for all SNPs and all simulation settings, so a total of 4,000 (=2*2*2*10*50) points are in each scatterplot. The points are colored by the MAF of the variant, with

lighter colors corresponding to larger MAF.

FIGURE 4 | Percent of times that the top ranked SNP based is causal before

and after adjustment. After conducting a GBT (Step 1) which yields a

significant result, all SNPs in the gene are then ranked by either D̂i or D̂
2
i
, both

before and after adjustment. The figure shows the percent of times the

top-ranked SNP is causal when ranking is based on the adjusted statistic vs.

the unadjusted statistic. Points are colored by whether or not the adjusted

statistic provides “better” ranking results, where a “better” ranking result is one

in which the top-ranked SNP is causal a higher proportion of the time (across

the 10,000 simulation settings). The dashed line is y = x, so that points falling

above the line are settings where the adjusted statistics are better (top ranking

SNP is more likely to be causal after adjustment), and points falling below the

line are settings where the adjusted statistics perform worse (top ranked SNP

is less likely to be causal after adjustment). This figure depicts all 40 non-null

simulations and all four combinations of Step 1 (Qsw or Qbw ) and Step 2 (D̂i or

D̂2
i
) statistics.

non-causal variants are particularly prone to winner’s curse
effects and can yield substantial bias in resulting estimates of
genotype–phenotype association, which can in turn lead to
cases where the top ranked variant is non-causal and causal
variants show less evidence of association. We have proposed
a preliminary method of adjusting for winner’s curse when
generating post-hoc ranks of variants. Our approach reduces
bias and leads to improved variant prioritization. Further work is

needed to continue to improve the performance of the proposed
method, and to develop further methods which address the
plethora of issues presented by this setting of post-hoc inference.
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