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Autism spectrum disorder (ASD) is marked by a strong genetic heterogeneity, which

is underlined by the low overlap between ASD risk gene lists proposed in different

studies. In this context, molecular networks can be used to analyze the results of several

genome-wide studies in order to underline those network regions harboring genetic

variations associated with ASD, the so-called “disease modules.” In this work, we used

a recent network diffusion-based approach to jointly analyze multiple ASD risk gene

lists. We defined genome-scale prioritizations of human genes in relation to ASD genes

from multiple studies, found significantly connected gene modules associated with ASD

and predicted genes functionally related to ASD risk genes. Most of them play a role in

synapsis and neuronal development and function; many are related to syndromes that

can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle,

cell adhesion and cancer.
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INTRODUCTION

“Autism spectrum disorder” (ASD) includes clinically and etiologically wide range of
neurodevelopmental disorders such as the less severe disorders Asperger’s syndrome and pervasive
developmental disorder, not otherwise specified, as well as the most severe childhood disintegrative
disorder. ASD symptoms are recognized mainly by the complex behavioral phenotype that
manifests within the first 3 years of life: difficult in communication and social interaction, limited
interests and repetitive behaviors (National Institute of Mental Health, 2013).

Genetics play a crucial role in autism pathogenesis (Devlin and Scherer, 2012). Indeed, ASD has
a high-heritability index (0.85–0.92) (Monaco and Bailey, 2001), a significant sib recurrence risks
(8.6%) and 64% concordance amongmonozygotic twins (Smalley, 1998). Thousands of causative or
predisposing genetic variations have been found in∼30% of autistic patients (O’Roak et al., 2012),
thus making autism a complex multifactorial disorder involving many genes and loci contributing
to the phenotype. Genetic variations involved in ASD are chromosomal abnormalities (∼5%), copy
number variations (CNVs) (10–20%) and single-gene mutations (∼5%) (Miles, 2011). Although
the role of genetics in ASD etiology is recognized for ∼70% of cases, the causative factor is still
unknown.

The approaches currently used to disentangle the genetic complexity of ASDs include large
genome-wide association studies (GWAS), CNV testing and genome sequencing. Interestingly, the
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application of these different approaches yielded many
non-overlapping genes, which may suggest different molecular
mechanisms within connected pathways (Pinto et al., 2014).
The analysis of molecular interactions and pathways is therefore
crucial for the interpretation of the results emerging from
genome-scale studies on a pathology marked by a significant
genetic heterogeneity. Indeed biological pathways associated
with a specific pathology are likely to be more conserved than
individual genetic variations, because multiple combinations of
variations might perturb each pathway (Barabási et al., 2011).
Network-based and pathway-based analyses can therefore
provide a functional explanation to non-overlapping genes and
narrow the targets for therapeutic intervention (Devlin and
Scherer, 2012).

One of the problems that network-based analyses can solve
is indeed the identification of the so-called disease modules, i.e.,
network regions associated with a disease (Barabási et al., 2011).
Recently, molecular interaction networks have been used in the
analysis of ASD genetic data to define gene networks associated
with ASD. The identification of a subnetwork with desired
properties from a large biological network (like the one formed
by all protein-protein interactions) poses many challenges and
therefore several approaches have been proposed (Mitra et al.,
2013).

Regarding the integration of networks and ASD genetic data,
Cristino et al. (2014) studied the interacting partners of genes
known to be associated with ASDs and other related disorders;
Noh et al. (2013) identified a significantly interconnected
network of genes affected by CNVs; Li et al. (2014) studied
the association between ASDs and genes forming topological
communities (clusters of genes with a high density of connection
between genes of the community and less connections with genes
outside the community); Gilman et al. (2011) found functionally
connected clusters of genes affected by CNVs.

Recently, network smoothing index (NSI) was proposed as a
network-based quantity that allows to define a network region
enriched with a priori information (Bersanelli et al., 2016). The
NSI is based on network diffusion, a method that simulates the
flow of a fluid throughout a network. NSI quantifies the network
relevance of each gene in relation to a set of input genes (e.g.,
ASD genes), considering the whole network and mitigating the
importance of hubs.

In this work, we use network diffusion and the NSI to propose
a possible disease module for ASD, encompassing the network
regions most frequently hit by molecular variations reported
in several studies and collected in curated public databases.
Moreover, our study introduces a network-based genome-wide
prioritization of genes in relation to their known and predicted
relevance for ASDs.

MATERIALS AND METHODS

Molecular Interactions
STRING interactions were collected from STRING (version 10),
a database of direct and indirect PPIs (Szklarczyk et al., 2015).
Native identifiers were mapped to Entrez Gene (Brown et al.,
2015) identifiers. In case multiple proteins mapped to the same

gene identifier, only the pair of gene identifiers with the highest
STRING confidence score was considered. A total of 11,535 genes
and 207,157 links with confidence score ≥700 was retained.

ASD Risk Genes
ASD risk genes were collected from The Simons Foundation
Autism Research Initiative SFARI Gene database (Abrahams
et al., 2013, version available in July 2015) and from Li et al.
(2014).

SFARI Gene provides a publicly available database where
genes are scored according to the strength of the evidence of
gene’s association with autism. In particular, genes are assigned
to 7 categories (Supplementary Table 1): “syndromic” (S), “high
confidence” (1), “strong candidate” (2), “suggestive evidence”
(3), “Minimal evidence” (4), “Hypothesized” (5), and “Not
supported” (6). SFARI genes were divided into to broad classes of
high and low strength of association with ASD. Genes belonging
to categories S, 1, 2, 3, 1S, 2S, 3S, 4S were included in SFARIh
list, while genes of categories 4 and 5 were grouped into SFARIl.
Native gene identifiers were converted to Entrez Gene (Brown
et al., 2015) identifiers.

In addition to SFARIh genes, we considered 5 sources (namely
dnCNVn, dnCNV3s, rCNV, dMUT, mMUT) of genes harboring
CNVs and mutations associated with ASDs, proposed by large
recent studies (Li et al., 2014). dnCNVn contains genes from an
ASD-associated network composed of genes with de novo CNVs
identified in 181 individuals and genes previously implicated
in ASDs (Noh et al., 2013). dnCNV3s contains genes with de
novo CNVs found in all three independent studies on more than
1,000 families (Levy et al., 2011; Sanders et al., 2011; Pinto et al.,
2014). rCNV contains genes with rare CNVs found in a study
involving approximately 1000 ASD individuals of European
ancestry and matched controls (Pinto et al., 2010). dMUT and
mMUT include genes with, respectively, disruptive and missense
mutations (Neale et al., 2012; O’Roak et al., 2012; Sanders et al.,
2012; Li et al., 2014).

Only genes occurring in STRING network were considered
in network-based analyses (Table 1). Therefore, whenever
appropriate, we will specifically refer to the original gene lists
and the corresponding derived lists with only genes occurring in
STRING network using suffixes “i” and “n0” respectively (e.g.,
SFARIhi, SFARIhn0).

Network-Based Analysis
Given an input gene list L and a gene network encoded as the n-
by-n symmetrically normalized adjacency matrix W (Bersanelli
et al., 2016), the n-sized vector X0 was defined in order to have
positive quantities only in its elements representing the genes in
L, and null values for all the other genes. Network diffusion finds
the vector X∗, in which the quantities initially available in X0 are
subject to smoothing according to the pattern of interactionsW.
The vector X∗ was calculated using an iterative procedure (Zhou
et al., 2004), as described in Bersanelli et al. (2016):

Xt+1 = αW Xt + (1− α)X0, X∗ = lim
t→∞

Xt ,
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TABLE 1 | Overlap between lists of genes harboring variations associated with

ASDs.

dnCNVn dnCNV3s rCNV dMUT mMUT SFARIh

dnCNVn 154 39 9 2 6 11
203

dnCNV3s 263 11 3 12 12
50 530

rCNV 221 2 9 3
9 14 396

dMUT 45 1 16
2 4 14 67

mMUT 251 19
6 16 4 3 365

SFARIh 154
16 18 16 22 24 206

Gene list size (diagonal) and number of genes co-occurring between pairs of lists (off-

diagonal elements); lower triangle and diagonal (bottom): original gene lists; upper triangle

and diagonal (top): original gene lists with only genes occurring in STRING network.

where α [here set to 0.7 as in previous works (Bersanelli et al.,
2016)] is a parameter that weights to which extent the initial
information is retained or spread throughout the network. In
the independent smoothing of each of the six ASD gene lists
described above, genes belonging to the list were set to 1. In the
joint analysis of all gene lists, genes belonging to SFARIhn0 were
set to 1, while genes belonging to other lists were set to 0.5: this
setting was chosen so that genes strongly associated with ASD
had a higher priority.

For each gene g, the network smoothing index S quantifies the
network proximity of g to genes marked by a positive value in X0,
i.e., associated with ASD, as ratio between gene values after and
before network diffusion:

S
(

g
)

=
X∗

(

g
)

X0

(

g
)

+ ε

where ε is a small positive quantity that weights the importance
of the initial values X0. In order to mitigate the tendency of hub
genes to gather excessive amounts of information only because
of their central position, the permutation-adjusted network
smoothing index Sp was introduced as,

Sp
(

g
)

= −log10
(

pS
(

g
))

· S
(

g
)

where pS(g) is an empirical p-value, computed using K
permutations of X0, each one denoted as Xk

0 , and the

corresponding Sk(g) (calculated using Xk
0):

pS(g) =
1+ #{Sk

(

g
)

≥ S
(

g
)

}

K + 1
.

In the analysis of the six ASD risk gene lists, ε values were defined
in order to predict genes in network proximity to the input
genes. Given a gene set of size N, ε was set in order to obtain,
among the first N top ranking genes by Sp, a ratio of 1:1 between

(i) the number of input genes and (ii) the number of genes in
network proximity to input genes. The resulting values were
0.21 for dnCNVnn0 and 0.19 for dnCNV3sn0, RcnVn0, dMUTn0,
mMUTn0 and SFARIhn0. In the joint analysis of all gene lists
ε was set equal to 1, because the analysis was mainly aimed at
defining a network-based prioritization of the 956 input genes,
rather than at predicting other genes in network proximity. In all
these analyses we used K = 999.

Network resampling (NR) shows to which extent a network
score, resulting from the combination of gene scores, is expected
if links among genes are shuffled. Also in this case permutations
are used to define the null model. Given a number m of genes
at the top of a ranked gene list, NR consists of two steps. First, a
non-decreasing quadratic objective function �(m) is defined:

�(m) = STp (m) · Am · Sp (m) ,

where Sp (m) is the vector referring to the first m-scoring genes
andAm is the adjacencymatrix between such genes. In the second
step, q permutations of Am are defined keeping the same degree
distribution. Lastly, an empirical p-value (pN) is calculated to
quantify the fraction of times the objective function calculated on
a permuted network, �k(m), is greater than or equal to �(m).
The procedure is repeated for differentm, providing an overview
on whether gene links and gene scores determine significant
network scores when moving down in the ranked gene list (see
figures below).

Network resampling (NR) was applied to genes ranked by Sp
in descending order and using a total of 200 permutations, which
was enough to underline the presence of significantly connected
components (gene modules).

Pathway Analysis
Pathway analysis was carried out using over-representation
analysis (ORA). ORA estimates the significance of a pathway
in relation to an input gene list, calculating the hypergeometric
probability of finding the observed number of input genes
that are also members of the considered pathway, in the
context of a background set of genes. As a background we
considered all the genes occurring in original lists and all genes
occurring in the gene network. Gene-pathway associations were
downloaded from NCBI Biosystems (version: February 2017)
(Geer et al., 2010); in particular, only pathways (gene sets)
with a number of genes between 10 and 200 were considered.
Hypergeometric probabilities were calculated using “phyper”
and “dhyper” R functions, and were corrected for multiple
hypotheses testing using the Benjamini-Hochberg method,
implemented in “p.adjust” R routine. The similarity between two
gene sets (A, B) was calculated using the overlap coefficient:
o = |A ∩ B|/min(|A| , |B|).

RESULTS

Network Location of Genes Associated
with ASDs in SFARI Database
With the aim of characterizing the functional relations among
SFARI genes and predict relevant risk genes for ASDs, we
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considered direct and indirect protein-protein interactions (PPI)
and quantified, via the permutation-adjusted NSI (Sp) (Bersanelli
et al., 2016), the network proximity of each human gene in
relation to the network location of 154 genes reported as strongly
associated with ASD (SFARIhn0 list, Table 1).

We found several genes in significant network proximity
to SFARIhn0 genes, with high S and low pS (Figure 1A and
Supplementary Table 2). Interestingly, among these genes, we
found a significant number of genes havingminimal/hypothetical
evidences of association with autism in SFARI (SFARIln0)
(Table 2).

In order to assess whether genes ranked by Sp formed
a significantly connected gene module, we applied the NR
approach (Bersanelli et al., 2016). We observed a significantly
connected gene module (MSFARI) resulting from the top 244
genes (Figures 1B–D). This module includes 142 (out of 154)

SFARIhn0 genes, 9 SFARIln0 genes and 93 genes not in
SFARI.

These 93 genes include regulators of synaptic development
and plasticity, are involved in syndromic conditions in
comorbidity with ASD, regulate epigenetic mechanisms and
a few are associated to cancer (Supplementary Table 2). For
example, among the 93 genes that have a relevant position
within the module (Figure 1C) we found cancer genes that
control cell proliferation, [e.g., Tumor Protein P53 (TP53),
AKT Serine/Threonine Kinase 1 (AKT1), Mechanistic Target Of
Rapamycin (MTOR), C-Terminal Binding Protein 1 (CTBP1)], a
process that was recently proposed as a common denominator of
cancer and ASDs (Crawley et al., 2016), and genes with relevant
role for brain function e.g., histone deacetylase-1 (HDAC1),
histone deacetylase-3 HDAC3 (Volmar and Wahlestedt, 2015)
and contactin-2 (CNTN2) (Anderson et al., 2012). These 93

FIGURE 1 | A significantly connected gene module based on SFARIh genes. The network-diffusion based analysis of SFARIh genes (red) leads to the definition of a

significantly connected gene module of 244 genes (blue border). (A) Network smoothing index and corresponding estimated p-value (ps). (B) For each rank n

(horizontal axis), the estimated p-value (pNR) that quantifies the significance of the gene network defined by the genes ranked up to the n-th rank. (C) Number of

interactions (d) and normalized betweenness (B) of genes in MSFARI. (D) Visualization of MSFARI gene module, in which genes are circles and PPI are links; circle size

is proportional to gene degree. (A–D) G: all genes included in the STRING network.
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predicted genes act as a bridge between SFARIh genes that were
not directly linked in STRING (Figure 1D).

Interestingly, while this manuscript was under review, 3 out
of the 93 predicted genes were added to the SFARI database
independently from our study. Namely, HADAC3 was added
among “hypothesized” genes, while TANC2 and PPP2R1B
among “minimal evidence” genes.

Genes in Network Proximity to Genes
Harboring Variations Associated with ASD
In addition to the SFARIh gene list, we considered five other lists
of genes found altered in ASD subjects by previous studies. These
lists vary in size from 67 to 530 and from 45 to 263 genes after
integration with STRING gene network. The percent overlap
between lists is low (Table 1) and most of the genes occur only
in one list (Figure 2). In this situation, as introduced earlier, the
information on how gene products interact to regulate biological
functions can be used to explain the heterogeneity of ASD risk

TABLE 2 | Number of SFARIl genes in network proximity to SFARIh genes.

|M ∩ SFARIl| |M| |G-M| |SFARIl| E(|M ∩ SFARIl|) p

2 10 11,371 216 0.190 1.46·10−2

9 100 11,281 216 1.90 1.15·10−4

9* 102* 11,279* 216* 1.94* 1.34·10−4*

20 300 11,081 216 5.69 1.07·10−6

22 400 10,981 216 7.59 7.27·10−6

26 500 10,881 216 9.49 2.87·10−6

M, genes in network proximity to SFARIh genes; G, all genes; |M ∩ SFARIl| size of the

intersection between M and SFARIl; E(|M ∩ SFARIl|) = |M|

|G|
· |SFARIl|, expected |M ∩

SFARIl|; p: probability that |M ∩ SFARIl| is greater than or equal to the observed value

in a hypergeometric experiment; the asterisks underline the overlap obtained using the

top ranking 244 genes ranked by Sp (102 after removing SFARIh genes) composing a

significantly connected gene module (MSFARI) (Figure 1).

gene lists. Firstly, we analyzed each list separately to underline
the specificities and commonalities of each list. Subsequently, we
used network information to define a prioritization among all
ASD risk genes proposed in the considered studies (union of all
gene lists).

We calculated the Sp of all genes in STRING network
considering as input each of the six ASD gene lists (SFARIhn0,
dnCNVnn0, dnCNV3sn0, rCNVn0, dMUTn0, and mMUTn0) and
selected the top 2n genes ranked by decreasing values of Sp,
where n is list size (Supplementary Table 3). Note that almost
all these genes are in significant network proximity (pS < 0.05)
to the corresponding input genes (Figure 3 and Supplementary
Table 3), which are also ranked among the top 2n genes.
For convenience we will refer to these network-based gene
lists—which contains input and predicted genes—as SFARIhn∗ ,
dnCNVnn∗ , dnCNV3sn∗ , rCNVn∗ , dMUTn∗ , and mMUTn∗ .

Only 14 genes occur in three or more input gene lists
(Figure 2). Among those genes, at least DLGAP2 (Discs Large
Homolog Associated Protein 2) and SYNGAP1 (Synaptic
Ras GTPase Activating Protein 1) are worth mentioning. In
fact, DLGAP2, a post-synaptic density protein with probable
implication in ASD pathogenesis (Chien et al., 2013) scored
as “minimal evidence” in SFARI (SFARIl), is part of all three
CNV lists and was predicted as functionally related to SFARIh
genes and dMUT genes. Furthermore, DLGAP1 (Discs Large
Homolog Associated Protein-1) was predicted as functionally
related to genes of 3 input lists, including SFARIh (Figure 2B).
Similarly, SYNGAP1, which codes an autism related brain-
specific synaptic Ras GTP-activating protein (Berryer et al.,
2013), occur in three input lists (dnCNVhc, dnCNV3s and
SFARIh) and was predicted as functionally related to genes
harboring rCNVs.

Globally, a total of 913 genes were predicted as functionally
related to at least one ASD risk gene list (Table 3 and
Supplementary Table 4). Interestingly, 106 of these genes
were already proposed as ASD risk genes in 1 or more

FIGURE 2 | A small number of ASD risk genes is found in more than one large study. (A) Number of risk genes found in 1 or more of the six gene lists on ASD; i:

original gene lists; n0: original gene lists wit only genes occurring in the STRING network. (B) Permutation-adjusted network smoothing index of the 14 genes

occurring in 3 or more original lists (the number is reported between parenthesis); the asterisk (*) indicates genes of the corresponding original list.

Frontiers in Genetics | www.frontiersin.org 5 September 2017 | Volume 8 | Article 129

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Mosca et al. Network-Based Prioritization of ASD Risk Genes

FIGURE 3 | Genes in network proximity to ASD risk genes. The network smoothing index (S) and the corresponding p value (ps) are the two factors that make up Sp.

Blue: genes belonging to the corresponding original list (sources); red: genes in network proximity to sources; gray: remaining genes.

TABLE 3 | Co-occurrence of genes in network proximity to ASD risk genes from

one or more sources.

Input (ni )

0 1 2 3 #

Predicted (np) 1 691 68 14 2 775

2 89 15 4 1 109

3 18 2 0 0 20

4 6 0 0 0 6

5 3 0 0 0 3

# 807 85 18 3 913

A total of 913 genes were predicted to be in network proximity to ASD risk genes of one

or more studies (rows) where could appear as ASD risk genes (columns). For example,

15 genes were predicted in network proximity to ASD risk genes of 2 studies and were

proposed as ASD risk genes in 1 study (ni = 1, np = 2); #: row or column sum.

studies: for example, CTNNB1 (Catenin-Beta1) encoding a
protein part of the adherens junctions complex, NRXN1
(Neurexin1), NLGN4X (Neuroligin4X), encoding a pre-synaptic
and post-synaptic protein, respectively, and the tumor suppressor
PTEN (Phosphatase And Tensin Homolog), were predicted as
functionally related to 2 gene lists and included as risk genes in
other 2 lists.

We have also found genes that were not included in any
input gene list, but were predicted to be in relevant network
proximity to multiple gene lists. For example, 27 were predicted
as functionally related to three gene lists (Figure 4); among
these, ADGRL2 (adhesion G protein-coupled receptor L2),
LRTOM (leucine rich transmembrane and O-methyltransferase
domain containing) and SRC (Proto-Oncogene Non-Receptor

Tyrosine Kinase SRC) were predicted in functional relation to 5
lists.

Many of the 29 genes predicted as functionally related
to three or more lists—27 genes not included in any input
list and 2 included in one study—take part in many PPIs,
implicating they are central in the PPI network (e.g., TP53,
AKT1). The significance of their Sp suggests that these genes
were not only selected in relation to their centrality, but also
because their network distance to ASD risk genes is lower
than expected by chance (Figure 3 and Supplementary Table 3).
A further observation that supports this hypothesis is that
these genes establish a number of interactions with ASD risk
genes that is higher than expected (p < 0.05, hypergeometric
test) (Table 4). From a network point of view, these 29
genes are “surrounded” by 369 ASD risk genes (first order
neighbors).

It is also worth mentioning that several genes resulting with
the highest network proximity score to each list tend to be list
specific (Figure 5).

A total of 956 unique ASD risk genes occur in the 6
input lists. We calculated the Sp of all genes relative to
these 956 genes (Figure 6A) and, by means of NR, found a
significantly connected component of 561 genes (Figure 6B and
Supplementary Table 5). This gene module (MASD) includes
all SFARIh genes, 70% of genes occurring in dnCNV_n list,
approximately 50% of the other gene lists (Figure 6C), 26 genes
in SFARIl and 8 genes that do not belong to the input list. Among
these 8 genes, we find the already mentioned AKT1, TP53, and
SRC, which occupy a central role in the PPI network and were
also predicted during the independent analysis of each input list
(Figures 4, 6D).
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FIGURE 4 | Genes in network proximity to ASD risk genes from 3 or more studies. Permutation-adjusted network smoothing index (Sp) of the 29 genes predicted as

functionally related to 3 or more ASD risk gene lists (the number is reported between parenthesis); the asterisk (*) indicates genes of the corresponding original list;

faded colors indicate input ASD risk genes or genes with no significant Sp values.

Pathway Analysis of Gene Lists Associated
with ASDs
We carried out an over-representation analysis to characterize
original gene lists and network-based gene lists in terms
of pathways. We observed significant pathways (at adjusted
p < 0.01) in only two of the six original gene lists (SFARIhi and
dnCNVni) and in five network-based lists (SFARIhn∗ , mMUTn∗ ,
rCNVn∗ , dnCNV3sn∗ , and dnCNVnn∗ ) (Supplementary Table 6).
Overall, we obtained a much higher number of pathways in
network-based lists than in original ones, despite the number of
tested genes was similar between the former and the latter ones.
Therefore, the observed enrichment in pathways can be mainly
brought back to the network-based analysis, since, by definition,
it prioritizes genes functionally related to those considered
in input. Further, apart from a single exception in SFARIh,
pathways found only in original lists were similar, in terms of
gene content, to pathways found also in network-based lists

(Figures 7A–F). In other words, network-based analysis resulted
in an enrichment at pathway level with a very limited loss of
information. Interestingly, pathways found in original gene lists,
and lost due to genes for which network-based analysis was not
applicable, were recovered by network-based analysis (compare
rows labeled with suffix “i”, “n0”, and “n∗” in Figure 7F).

We summarized the significant pathways found in each lists

in a unique pathway network, the so-called enrichment map
(Merico et al., 2010). Specifically, we took into account up to
20 of the most significant pathways as representatives of each
pathway cluster found in each list. This selection resulted in
a total of 366 pathways, clustered in 11 groups: transmission
across synapses (clusters 1 and 4), signal transduction (2),
Rho GTPase and apoptosis (3), inositol phosphate metabolism
(5), ER-associated degradation process (6), ion transport (7),
chromatin remodeling (8), oxygen transport (9), proteoglycan
biosynthesis (10) and Wnt signaling (11). While the majority
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TABLE 4 | Hub genes predicted in network proximity to ASD risk genes of three or more studies establish a significant number of interactions with ASD risk genes.

Gene and function Symbol Band # Studies np |I| |A ∩ I| p

SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase

Nonreceptor tyrosine kinase, frequently implicated in cancer

SRC 20q11.23 0 5 532 82 2.00·10−8

Tumor Protein P53

Involved in cell cycle regulation where negatively regulate cell division. Mutations in this gene are

associated with a variety of human cancers

TP53 17p13.1 25 4 719 92 1.36·10−5

AKT Serine/Threonine Kinase 1

Implicated in the regulation of cell growth, proliferation, survival and differentiation (OMIM 164730)

AKT1 14q32.33 25 4 589 73 2.90·10−4

Ras Homolog Family Member A

Regulates remodeling of the actin cytoskeleton during cell morphogenesis and motility.

Overexpression of this gene is associated with tumor cell proliferation and metastasis

RHOA 3p21.31 13 4 406 65 1.53·10−7

Mitogen-Activated Protein Kinase 14

is a member of the MAP kinase family that are involved in cellular processes such as proliferation,

differentiation, transcription regulation and development

MAPK14 6p21.31 11 4 333 44 1.30·10−3

Histone Deacetylase 3

belongs to the histone deacetylase family and represses transcription when tethered to a promoter;

down-regulates p53 function and thus modulate cell growth and apoptosis

HDAC3 5q31.3 8 4 275 43 3.54·10−5

Heat Shock Protein 90 Alpha Family Class A Member 1

is a molecular chaperone involved in signal transduction, protein folding, protein degradation, and

morphologic evolution.

HSP90AA1 14q32.31 10 3 589 65 9.99·10−3

Amyloid Beta Precursor Protein

Is involved in promoting transcriptional activation; can participate in the formation of amyloid

plaques of Alzheimer disease.

APP 21q21.3 15 3 363 42 1.68·10−2

Histone Deacetylase 1

Is a histone deacetylase and represses transcription; interacts with retinoblastoma

tumor-suppressor protein to control cell proliferation and differentiation; modulates p53 effect on cell

growth and apoptosis.

HDAC1 1p35.2 12 3 351 48 3.69·10−4

Cell Division Cycle 42

Acts in cell morphology, migration, endocytosis and cell cycle progression.

CDC42 1p36.12 9 3 336 56 2.97·10−7

Growth Factor Receptor Bound Protein 2

is involved in the signal transduction pathway.

GRB2 17q25.1 21 3 279 42 1.06·10−4

Protein Kinase CAMP-Activated Catalytic Subunit Alpha

phosphorylates proteins and substrates, changing their activity; contributes to the control glucose

metabolism, cell division, and contextual memory; developmental changes in synapse morphology.

PRKACA 19p13.12 14 3 278 41 2.00·10−4

SOS Ras/Rac Guanine Nucleotide Exchange Factor 1

participates in signal transduction pathways.

SOS1 2p22.1 14 3 260 50 1.26·10−8

SMAD Family Member 3

signal transducer and transcriptional modulator that mediates multiple signaling pathways probably

involved in carcinogenesis

SMAD3 15q22.33 1 3 241 33 2.83·10−3

Protein Kinase CAMP-Activated Catalytic Subunit Beta

is a member of the serine/threonine protein kinase family involved in cell proliferaton and

differentiation

PRKACB 1p31.1 22 3 213 28 9.81·10−3

Cbl Proto-Oncogene

targets substrates for degradation by the proteasome; is mutated or translocated in many cancers

CBL 11q23.3 12 3 203 37 3.77·10−6

Protein Kinase CAMP-Activated Catalytic Subunit Gamma

is involved in the regulation of lipid and glucose metabolism and in the memory formation signaling

cascade

PRKACG 9q21.11 7 3 185 27 2.70·10−3

Ras Homolog Family Member B

Involved in intracellular protein trafficking of a number of proteins; plays a negative role in

tumorigenesis

RHOB 2p24.1 8 3 174 38 2.19·10−8

SOS Ras/Rho Guanine Nucleotide Exchange Factor 2

is involved in the positive regulation of ras proteins

SOS2 14q21.3 12 3 109 24 7.36·10−6

Dynamin 2

produces microtubule bundles and binds and hydrolyzes GTP; regulates neuron morphology, axon

growth; vesicular trafficking processes and cytokinesis

DNM2 19p13.2 19 3 84 21 3.27·10−6

Gene and function from GeneCards (Safran et al., 2003) and OMIM (Amberger et al., 2015); Band: cytogenetic band associated with genetic variations in SFARI (Abrahams et al., 2013);

# Studies: number of studies supporting the genetic variations observed in the cytogenetic bands; I: interactors; A: ASD risk genes, |A| = 956; np: number of ASD risk gene sets the

gene is network proximity to; I: interactors; p: probability that |A ∩ I| is greater than or equal to the observed value in a hypergeometric experiment; the total number of genes composing

the network is 11,535.
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FIGURE 5 | Genes in network proximity to ASD risk genes from each study. Top 10 genes with the highest permutation-adjusted network smoothing index (Sp)

calculated in the analysis of each ASD risk gene list; the number of lists to which the gene was predicted as network proximal is reported between parenthesis; the

asterisk (*) indicates genes of the corresponding original list; faded colors indicate input ASD risk genes or genes with no significant Sp values.

of pathways were found in more than 1 list (Figure 7G, yellow
circles), some pathway clusters were composed of pathways
uniquely associated with one list. For instance, proteoglycan
biosynthesis was specifically associated with rCNV, ion transport
with mMUT, oxygen transport with dnCNV3s and dnCNVn.

DISCUSSION

Recently, the knowledge of molecular interactions has been used
for the interpretation of genetic data on ASDs. In comparison
to previous works, we analyzed multiple ASD risk gene lists
proposed in large studies, for a total of approximately 1,000

genes. We observed a low overlap between ASD risk gene
lists. Whether this heterogeneity reflects the biology of ASD
or is the result of confounding factors, the analysis of network
proximity between genes underlines the ASD risk genes that
are also in functional relation and lead to the identification of
modules of functionally related genes hit by genetic variations.
The main limitation of a network-based analysis such as ours is
the availability of a priori annotations required for the definition
of the genome-scale network. In this work we considered both
direct (physical) and indirect (functional) high confidence PPI
from STRING, which allowed us to analyze 11,535 human genes.
Note that the use of direct and indirect STRING interactions
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FIGURE 6 | A significantly connected gene module based on ASD risk genes from 6 sources. The network-diffusion based analysis of 956 ASD risk genes from 6

sources (red) leads to the definition of a significantly connected gene module (MASD) of 561 genes (blue border). (A) Network smoothing index (S) and corresponding

p-value (ps). (B) For each rank n (horizontal axis), the estimated p-value (pNR) that quantifies the significance of the gene network defined by the genes ranked up to

the n-th rank is reported on the vertical axis. (C) Percent of ASD genes of original lists included in MASD. (D) Number of interactions (d) and betweenness (B) of genes

in MASD. (A–D) G: all genes included in the PPI network.

showed good performances in prioritizing candidate disease
genes (Köhler et al., 2008). Moreover, unlike other network-
based works on ASD genetic data, we used network diffusion to
quantify network proximity between ASD risk genes and other
genes. Network diffusion (a global approach) considers the whole
network topology in its full complexity and, therefore, has better
performances than local approaches (e.g., direct neighborhood or
shortest path length; Wang et al., 2011). Lastly, we underlined
ASD risk gene modules without constraining the search to
topological communities. In fact, there is no guarantee that
topological communities are able to capture disease modules
(Ghiassian et al., 2015). Hence, we quantified the significance of
the observed network proximity scores in comparison to random
networks of the same degree distribution (Bersanelli et al., 2016).

Our work provides a network-based prioritization of human
genes associated with ASD by previous studies. We extracted a
module of 244 genes in network proximity to genes reported
in SFARI as strongly associated with ASD. Interestingly, the
module contains a significant number of genes proposed as
possibly involved in ASD (categorized as “minimal evidence”

and “hypothesized” in SFARI) and another 93 genes not scored
in SFARI (Supplementary Table 2). While this manuscript was
under review, 3 of these 93 genes were included in SFARI
independently from our study.

From the 93 genes, 16 genes are involved in synaptogenesis
and synaptic plasticity or transmission, and alterations in
structure and function of neuronal synapses are well known
causes of ASD. Among these, APLP2 also regulates proper
progression of neuronal differentiation program during cortical
development (Shariati et al., 2013), is involved in Alzheimer
disease and interacts with CNTN in neurodevelopment and
diseases (Osterfield et al., 2008). Then again, the 3 genes,
CACNA2D1, CACNB1, CACNG1 induce the repression of the
downstream regulatory element antagonist modulator (DREAM)
and the expression of the neuropeptide dynorphin (DYN).
DREAM plays a role in synaptic plasticity and behavioral
memory (Wu et al., 2010), while DYN is involved in behavioral
symptoms characteristic of human depressive disorders (Knoll
and Carlezon, 2010). Also CACNG3, a calcium channel
protein, regulates the function of AMPA-selective glutamate
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FIGURE 7 | Significant pathways enriched in genes associated with ASD. (A–E) Pathways found in the analysis of each original list (i) and corresponding predicted

genes (n*). (F) Heatmap of all the pathways found in the analysis of the lists reported on the rows; also pathways found analyzing the original lists without genes not

occurring in the STRING network (n0) are represented; the color bar indicates the −log10 (p) of the hypergeomtric p-value, adjusted for multiple hypothesis testing; the

number 7 indicates p ≤ 10−7. (G) Enrichment map; vertex size is proportional to pathway significance (adjusted p-value); links are reported only for overlap

coefficients >0.5; for each pathway, only the links with the top 5 most similar pathways are drawn. (A–G) See Supplementary Table 6.

receptors and mediates synaptic transmission in CNS while
FLRT3 takes part in a trans-synaptic complex (Lu et al.,
2015). Eight genes are involved in neuronal differentiation,
neurodevelopment and neuronal function. More specifically,
AKT1 is a downstream mediator of the PI3K pathway
that regulates synaptic formation and plasticity and which
imbalance leads to autism and schizophrenia (Enriquez-Barreto
and Morales, 2016); genetic variations in contactins (CNTN)
have been described in association with neurodevelopmental
disorders, including autism. Specifically, CNTN1 and CNTN2
are members of the presynaptic NRXN superfamily and 13
rare non-synonymous variants of CNTN2 have been found
in ASDs patients while mice with Cntn5 mutations show an
abnormal audiogenic response due to defects in the formation
of synapse in auditory neurons (Cottrell et al., 2011; Chen et al.,
2014).

Many of the 93 genes are involved in syndromic
comorbidities, including auditory and visual senses deficit,
epilepsy, mental retardation and psychiatric conditions that
affect nearly three-quarters of children with ASD. For instance,
CAMK2G and PDZD7 are involved in Usher Syndrome the most
common condition leading to deafness and blindness, as well
as DNMT1 has a role in DNMT1-Related Dementia, Deafness,
and Sensory Neuropathy (Vernon and Rhodes, 2009) and
LRTOMT in deafness. Again, MYL7 mutations are associated
with Fechtner Syndrome which features include hearing loss
and eye abnormalities. SP4 is involved in bipolar disorder
and schizophrenia while ANK3, ACSL4, DLG3 are associated
with mental retardation and, interestingly, recalling the high
male prevalence of ASD, the latter two map on X-cromosome;
NHS also maps on X-cromosome and mutations in this gene
cause Nance-Horan Syndrome characterized by congenital
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cataract leading to vision loss; in males mild or moderate
mental retardation may also occur and ASD have also been
described in few patients (Toutain et al., 1997). Mutations in
NAGLU and HGSNAT cause the Sanfilippo Syndrome (also
called mucopolysaccharidosis Type III) often misdiagnosed with
idiopathic developmental delay, attention deficit/hyperactivity
disorder and/or ASD (Wijburg et al., 2013). QDPR mutations
provoke hyperphenylalaninemia (Trujillano et al., 2014), (also
called atypical phenylchetonuria (PKU), a genetic metabolic
disease provoking postnatal cognitive deficit due to the
neurotoxic effect of hyperphenylalaninemia; interestingly, PKU
could be a comorbid condition of ASD, although with low
prevalence (Baieli et al., 2003). MKRN3 is associated with Prader
Willy Syndrome, NPAP1 both with Prader Willy Syndrome and
Angelman Syndrome while DSCAML1 with Down Syndrome.
These syndromes are characterized by mental retardation
and can have co-occurring ASDs (Peters et al., 2004; Capone
et al., 2005; Dykens et al., 2011). KMT2D and WDR5 defects
are involved in Kabuki Syndrome characterized by multiple
congenital abnormalities, from mild to severe developmental
delay and intellectual disability. People suffering from this
syndrome may also manifest seizures, hypotonia, strabism, hear
infections, hearing loss and autism (Parisi et al., 2015). The very
rare mutations in MANBA results in β-mannosidosis with a
severe neurological disorder that can include mental retardation,
cerebellar ataxia along with visual and hearing deficits (Sabourdy
et al., 2009). CACNG3 is involved in Childhood Absence Epilepsy
and is also associated with some cases of ASD (Danielsson et al.,
2005) while mutations of KATNB1 cause complex cerebral
malformations (Mishra-Gorur et al., 2014).

The remaining genes (among the 93) are mostly involved in
epigenetics, cell cycle and cell adhesion and some of them are also
implicated in tumor development as already reported by Crespi
(2011) and Crawley et al. (2016).

The network-based analysis of genes from SFARI and other 5
previous studies resulted in the definition of a gene module that
involves 561 ASD risk genes in significant functional relation.
The module contains all the considered SFARI genes (strongly
associated with ASD) and from 40% to 70% of genes from each of
the other lists of ASD risk genes. Therefore, this module can be
seen as a further screening of the genes proposed by such studies,
which underlined those in significant functional relation from a
network perspective.

More generally, the network-based scores that we calculated
for every gene in the considered STRING network can be used to
quantify the functional relation between any gene and ASD risk
genes found in one or more previous studies.

Biological pathways enriched in genes in network proximity
to ASD risk genes encompass several functions already proposed
to be associated with ASD (see, for example, Pinto et al.,
2010). Network-based analysis, through the prioritization of
functionally related genes, enriched the number of significant

pathways found by ORA in comparison to the analysis of
original gene lists. Despite not all genes occurring in original lists
underwent network-based analysis, the latter was not affected by
a loss of information at pathway level.

The predicted genes in network proximity to ASD risk genes
that have a central role in the PPI networks, but SRC, mapped
in ASD risk loci. SFARI Gene database lists all the studies
reporting CNV at the chromosome bands where predicted genes
are localized (Table 4). In many reports, the CNV of interest
was subsequently confirmed or validated by an independent
method following its discovery. Additionally, from a functional
point of view, most of the predicted genes are involved in
epigenetics, cell cycle, growth-, proliferation- and differentiation-
signaling and are often implicated in cancer development. This
finding indicates pleotropic effects of some autism-associated
genes on cancer risk and is supported by previous discussions
that highlight a wide overlap in risk genes and pathways for
cancer and autism (Crespi, 2011; Crawley et al., 2016). Advances
in pharmacological therapies to ameliorate autism symptoms
could be resulted from cancer drugs that target the same growth-
signaling pathways (Crespi, 2011).
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