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Chemicals, toxicants, and environmental stressors mediate their biologic effect through

specific modes of action (MOAs). These encompass key molecular events that lead

to changes in the expression of genes within regulatory pathways. Elucidating shared

biologic processes and overlapping gene networks will help to better understand the

toxicologic effects on biological systems. In this study we used a weighted network

analysis of gene expression data from the livers of male Sprague-Dawley rats exposed

to chemicals that elicit their effects through receptor-mediated MOAs (aryl hydrocarbon

receptor, orphan nuclear hormone receptor, or peroxisome proliferator-activated

receptor-α) or non-receptor-mediated MOAs (cytotoxicity or DNA damage). Four gene

networks were highly preserved and statistically significant in each of the two MOA

classes. Three of the four networks contain genes that enrich for immunity and defense.

However, many canonical pathways related to an immune response were activated

from exposure to the non-receptor-mediated MOA chemicals and deactivated from

exposure to the receptor-mediated MOA chemicals. The top gene network contains a

module with 33 genes including tumor suppressor TP53 as the central hub which was

slightly up-regulated in gene expression compared to control. Although, there is crosstalk

between the two MOA classes of chemicals at the TP53 gene network, more than

half of the genes are dysregulated in opposite directions. For example, Thromboxane

A Synthase 1 (Tbxas1), a cytochrome P450 protein coding gene regulated by Tp53, is

down-regulated by exposure to the receptor-mediated chemicals but up-regulated by the

non-receptor-mediated chemicals. The regulation of gene expression by the chemicals
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within MOA classes was consistent despite varying alanine transaminase and aspartate

aminotransferase liver enzyme measurements. These results suggest that overlap in

toxicologic pathways by chemicals with different MOAs provides common mechanisms

for discordant regulation of gene expression within molecular networks.

Keywords: mode of action, gene expression, gene network, crosstalk, chemicals, toxicants, WGCNA,

toxicogenomics

INTRODUCTION

The environment that humans and other species are exposed to is
a complex space that contains various biologic stressors (natural
andmanufactured) which can alter cellular processes and in some
cases, result in disease and affliction (Wild, 2005; Rappaport and
Smith, 2010). Toxicants elicit their toxicologic effect in the liver
through an engagement of target macromolecules which leads
to a cascade of events referred to as modes of action (MOAs;
Casarett et al., 2001). Genomic signatures manifested from
toxicant exposure reflect the gene regulation that orchestrates
downstream signaling through a particular MOA (Nijman,
2015). Toxicants that act through different molecular initiating
events possess distinct MOAs and therefore exhibit unique
genomic signatures.

Several efforts have been undertaken to identify gene
expression signatures in response to toxicant exposures and
to classify chemicals according to their molecular fingerprints
(Amin et al., 2002; Bushel et al., 2002; Hamadeh et al., 2002a,b;
Kleinjans, 2014; Wei et al., 2014). There are several known cases
of chemicals that exert their effect through a particular MOA
and have overlaps in the gene expression regulatory networks
that regulate the biological processes. For instance, nuclear
receptor-mediated chemicals such as those that act through the
aryl hydrocarbon receptor (AhR), the peroxisome proliferator-
activated receptor (PPAR), or the constitutive androstane
receptor and pregnane X receptor (CAR/PXR) have a high
degree of agreement between the molecular pathways that are
perturbed (Woods et al., 2007). However, little is known about
the overlapping regulatory pathways between toxicants that exert
their effect through different MOAs.

Reconstruction of gene regulatory networks from gene
expression data has assisted in resolving connections between
genes during static conditions or dynamically as conditions
change over time, dose concentration and/or target tissue
(Karlebach and Shamir, 2008). Comparing gene regulatory
networks to identify overlaps in connected regions is a challenge.
The weighted gene correlation network analysis (WGCNA)
method is designed to resolve preserved co-expression
gene network modules between two conditions (Zhang and
Horvath, 2005; Yip and Horvath, 2007). The approach uses
transformations of the correlation between co-expressed genes
to reveal interconnectedness amongst gene network nodes
and permutation procedures to identify statistically significant
gene network modules that overlap between sample conditions
(Langfelder et al., 2011). Recent utilization of WGCNA on rat
liver gene expression data from drug toxicity studies revealed
415 gene network models that associate with mechanisms of liver
pathogenesis (Sutherland et al., 2017). We used the WGCNA

approach to reconstruct gene networks using microarray gene
expression data from male rat livers and identify preserved
modules between chemicals that exert their MOA through
receptors (RM) vs. those that are non-receptor-mediated (NRM).
We found that the most significant gene network contains 33
genes including tumor suppressor TP53 as the central hub
and that the majority of the genes were regulated in opposite
directions between the RM and NRM samples. Although there is
crosstalk between the two MOA classes of chemicals at the Tp53
signaling pathway, more than half of the genes are dysregulated
in opposite directions. The read across between gene networks
of chemicals with different MOAs suggests flexibility in the
regulatory components of molecular systems to utilize common
gene networks to maximize diversity in biological responses.

MATERIAL AND METHODS

Chemicals and Modes of Action
Fifteen chemicals, each with a given dose and duration
of exposure, were used for this study (Table 1). Sets of
three chemicals share one of five MOAs. Three MOAs
are associated with well-defined RM processes: peroxisome
proliferator-activated receptor-α (PPARA), orphan nuclear
hormone receptors (CAR/PXR), and aryl hydrocarbon receptor
(AhR). The other two are NRM: DNA damage (DNA_damage)
and cytotoxicity (Cytotox). The chemicals were administered
orally or by intraperitoneal, intravenous or subcutaneous
injection (5ml/kg body weight). In order to ensure a maximal
transcriptional response, 5-daymaximum tolerated doses (MTD)
of the chemicals were administered to the study animals. The
MTD was determined in a 5-day dose range-finding study in
which an MTD was determined as a 5–10% reduction in body
weight relative to control.

Microarray Gene Expression Data
Total RNA extracted from the livers of male Sprague-Dawley
rats exposed once daily for 3, 5, or 7 days in triplicate,
depending on the chemical or vehicle control (saline, corn
oil or carboxymethyl cellulose), were processed for microarray
analysis as previously described (Wang et al., 2014). Animals
were handled in accordance with The United States Department
of Agriculture and Code of Federal Regulations Animal Welfare
Act (9 CFR Parts 1, 2, and 3). Ethics committee approval was
not required according to the local and national guidelines.
Fragmented cRNA prepared from liver RNA was labeled and
hybridized to the Affymetrix whole genome GeneChip R© Rat
Genome 230 2.0 Array comprised of 31,099 gene probe sets.
Pixel intensity data was acquired by scanning of the arrays
using the GeneChip R© Scanner 3000 7G. CEL files were
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TABLE 1 | Chemical exposures and modes of action.

MOA Chemical Dose (mg/kg

body weight)

Duration

(days)

Aryl hydrocarbon

receptor (AhR)

3-Methylcholanthrene (3ME) 300 5

Leflunomide (LEF) 60 5

beta-Naphthoflavone (NAP) 1,500 5

Orphan nuclear

hormone receptors

(CAR/PXR)

Phenobarbital (PHE) 54 5

Methimazole (MET) 100 3

Econazole (ECO) 334 5

Cytotoxicity (Cytotox) Chloroform (CHO) 600 5

Thioacetamide (THI) 200 5

Carbon tetrachloride (CAR) 1,175 7

DNA Damage

(DNA_Damage)

Aflatoxin B1 (AFL) 0.3 5

Ifosfamide (IFO) 143 3

N-Nitrosodimethylamine (NIT) 10 5

Peroxisome

proliferator-activated

receptor alpha (PPARA)

Pirinixic acid (PIR) 364 5

Bezafibrate (BEZ) 617 7

Nafenopin (NAF) 338 5

generated using the GCOS software. The pixel intensity data
was preprocessed using the robust multichip average (RMA)
algorithm (Irizarry et al., 2003a,b) which includes background
correction, quantile normalization, and summarization by the
median polish approach and then log base 2 transformed. Due
to a batch effect in the study design, the data was preprocessed
further by mean centering on the route of administration of
the chemicals. Next, we performed principal component analysis
(PCA)-based gene probe filtering on the preprocessed data using
the Bioconductor package “pvac,” where the filtering is based
on a score measuring consistency among probes within a probe
set (Lu et al., 2011). The maximum value of the threshold
for the score is set at 0.5, which corresponds to 50% of the
total variation accounted for by the 1st principal component.
Finally, the preprocessed data was converted to log base 2 ratios
by subtracting the average of the controls from the treated
samples matched according to nutritional status of the vehicle
and route of administration (i.e., non-nutritional-intraperitoneal,
intravenous or subcutaneous injection; nutritional-oral; non-
nutritional-oral). The raw data is available in the Gene Expression
Omnibus (GEO) database (Edgar et al., 2002; Barrett et al., 2013)
under the accession number GSE47792.

Clinical Chemistry
Clinical chemistry evaluations of blood serum samples were
performed using a Roche Cobas Fara chemistry analyzer
(Roche Diagnostic Systems, Westwood, NJ, USA) to numerically
measure enzyme levels and metabolic entities.

Statistical Modeling
The preprocessed log base 2 ratio microarray gene expression
data comprised of 12,288 gene probe sets was analyzed with the
following analysis of variance (ANOVA) model to identify gene

probes that vary by MOA:

Yijklm = µ +Mi + Vj + Rk + D(V∗R)jkl + εijklm (1)

where Yijklm represents the mth observation on the ith MOA

(M), jth vehicle (V), kth route (R) and lth study date (D). µ is
the common effect for the whole study and εijklm represents the
random error. The errors εijklm are assumed to be normally and
independently distributed with mean 0 and standard deviation δ

for all measurements. Significant gene probes that vary according
to the MOAs were detected at a Benjamini–Hochberg false
discovery rate (FDR) < 0.01.

Weighted Gene Correlation Network
Analysis
The log base 2 ratio data of the 2,930 gene probe sets (2,405
genes) that vary significantly according to MOAs were averaged
by replicate chemicals then divided into two data sets based
on the manner in which the chemicals elicit their toxic effect:
RM (AhR, CAR/PXR, and PPARA) and NRM (Cytotox and
DNA_damage). A gene network was reconstructed for each data
set using the WGCNA method (Zhang and Horvath, 2005; Yip
and Horvath, 2007; Langfelder and Horvath, 2008). Briefly, a
similarity matrix S is generated for each data set to determine
how similar in expression genes are. Here, S is comprised of
the Pearson correlation of the ith and jth gene probe sets (sij)
within a data set. Then, S is transformed to an adjacency matrix
A to ascertain groups of co-expressed genes. Here we used the
following soft power adjacency function to generate A:

aij =
∣

∣sij
∣

∣

β (2)

where β ≥ 1 is a user defined power parameter to control the
thresholding of the grouping of the co-expressed genes. The
higher the value of β , the fewer co-expressed genes are grouped
together. We set β = 10. Finally, a determination is made if
two nodes of co-expressed genes overlap. The topological overlap
matrix (TOM) � measures two nodes interconnectedness and is
computed as:

wij =

∣

∣N1(i) ∩ N1(j)
∣

∣ + aij

min
{∣

∣N1(i)
∣

∣ ,
∣

∣N1(j)
∣

∣

}

+ 1− aij
(3)

where N1(i) denotes the set of direct neighbors of node i,
|·| denotes the number of elements (i.e., the cardinality) and
∣

∣N1(i) ∩ N1(j)
∣

∣ denotes the number of neighbor nodes that i and
j have in common. Note that wij is bounded between 0 and 1:
wij = 0 if nodes i and j are not connected and the two nodes do
not share any neighbors; wij = 1 if there is a direct link between
the two nodes and if one set of direct neighbors is a subset of the
other. The topological dissimilarity measure is denoted as

dwij = 1− wij. (4)

Significance of preserved co-expressed genes network modules
between RM andNRMexposures is determined by a permutation
based composite Z statistic (Zsummary) defined as the mean of Z
scores computed for density and connectivity measures (Yip and
Horvath, 2007; Langfelder et al., 2011).
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RESULTS

Chemicals Grouped by Mode of Action
To investigate the gene regulatory crosstalk between RM and

NRM chemicals, we used the microarray gene expression data

recently published from the livers of male Sprague-Dawley rats

exposed in triplicate to various chemicals with different MOAs

(Wang et al., 2014). The chemicals and their MOAs are listed in
Table 1 along with the doses and durations of exposure. Each

MOA consists of 3 chemicals. The five MOAs are mediated
by aryl hydrocarbon receptor (Ahr), orphan nuclear hormone
receptors (CAR/PXR), cytotoxicity (Cytotox), DNA damage
(DNA_Damage) or peroxisome proliferator-activated receptor-
α (PPARA). Clinical chemistry analysis of the samples revealed
that alanine transaminase (ALT) and aspartate aminotransferase
(AST) liver enzymes levels were substantially higher from the
Cytotox and PPARA chemicals than the others indicative of more
marked injury to the organ (Table 2).

TABLE 2 | Clinical chemistry of samples by mode of action.

Measurement NN-IP NN-OG NU-OG AhR CAR/PXR PPARA Cytotox DNA damage

ALT (U/L) 45.50 45.67 69.00 33.44 55.63 93.33 273.83 54.00

11.94 7.55 13.81 9.79 13.33 41.73 106.02 9.70

AST (U/L) 80.50 76.50 84.80 69.56 72.44 155.67 456.00 98.50

13.11 9.14 10.91 16.76 25.23 104.18 217.18 20.23

Albumin (g/L) 3.90 3.73 4.00 3.66 4.01 4.76 3.92 4.07

0.17 0.33 0.11 0.47 0.27 0.24 0.18 0.08

BUN (mg/dL) 13.25 13.67 14.20 30.67 15.38 14.44 34.00 18.33

1.32 2.80 1.47 37.01 3.94 3.24 31.86 2.16

Cholesterol (mg/dL) 73.00 68.67 70.40 117.33 76.67 68.22 66.83 67.33

1.10 17.39 7.06 29.47 16.16 24.38 45.65 19.65

Creatine Phosphokinase (U/L) 571.00 192.33 269.20 178.78 345.56 506.67 521.67 333.83

269.33 37.92 126.44 54.25 376.27 631.03 431.97 192.74

Glucose (mg/dL) 196.75 156.50 165.60 170.00 143.33 133.67 123.00 159.67

20.56 29.32 5.75 28.39 14.05 10.67 11.72 10.19

Lactate Dehydrogenase (U/L) 175.00 145.67 128.20 137.00 141.22 356.67 270.50 145.50

69.31 52.66 44.62 62.97 92.20 300.81 163.12 57.36

Total Bilirubin (mg/dL) 0.15 0.36 0.14 0.31 0.16 0.16 0.42 0.15

0.04 0.21 0.05 0.11 0.05 0.09 0.24 0.04

Shown in the top line of each row is the mean of the measurement for all samples within a MOA. Shown in the bottom line of each row is the standard deviation of the mean.

FIGURE 1 | Workflow to identify preserved gene co-expression network modules. Illustrated is the analytical workflow to preprocess the microarray gene expression

data, detect significant gene probe sets, and identify preserved gene network modules between the receptor-mediated (RM) samples and the non-receptor-mediated

(NRM) samples. MOA is mode of action, ANOVA is analysis of variance and WGCNA is weighted gene correlation network analysis.
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As shown in Figure 1, we use a bioinformatics workflow to
process the gene expression data for statistical analysis. Following
the preprocessing and filtering of the data, we modeled it with
a MOA-ANOVA to identify 2,930 gene probe sets that vary
statistically according to one or more of the MOAs. Using these
dysregulated genes to project the samples into two-dimensional
space by the amount of variability captured in principal
components 1 and 2 (PC#1 and PC#2), we see that although the
majority of the chemicals within eachMOA grouped close to each

other, four chemicals (NIT, THI, ECO, and LEF) are separated
from the other chemicals that are in their respective MOA
(Figure 2A). The NIT samples are separated far from all other
samples possibly because they were the only ones that exhibited
a high level (moderate severity) of centrilobular necrosis of the
liver from the exposure (Data not shown). The THI treated
liver samples exhibited minimal centrilobular necrosis in all
three replicates (Data not shown). This departure from the
cohesiveness of the grouping of the chemicals within their MOA

FIGURE 2 | Separation and clustering of samples exposed to the chemicals in triplicate. (A) Principal component analysis (PCA) separation of the MOA samples using

the 2,930 significant gene probe sets that vary by MOA. The x-axis is PC#1 (31.3% variation captured), the y-axis is PC#2 (17.6% variation captured) and the colors

represent the MOAs as shown in the figure legend. (B) Two-dimensional hierarchical, agglomerative clustering of the MOA samples using the 2,930 significant gene

probe sets that vary by MOA. Clustering performed using Spearman rank as the similarity metric and the Ward minimum variance criterion for grouping. The x-axis is

the MOA samples colored as described in the legend to (A), the y-axis is the 2,930 significant gene probe sets. The data is the log base 2 ratio (treated sample to the

average of the controls matched according to nutritional status of the vehicle and route of administration) and the scale on the bottom displays the color range for the

log base 2 ratio values standardized to mean 0 and standard deviation of 1. Red denotes up-regulation, blue down-regulation, and white relatively no change.
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is also observed in the hierarchical clustering of chemicals by
MOA into two branches of the dendrogram (Figure 2B). RM
chemicals in MOAs CAR/PXR and PPARA cluster together and
NRM chemicals in MOAs Cytotox and DNA_Damage cluster
together. However, the Cytotox chemical THI clusters with the
RM chemicals and the NAP and 3ME chemicals clusters with the

NRM chemicals. This suggests that although the chemicals share
aMOA, the underlying gene expression changes elicited from the
exposures can vary whether mediated by a receptor or not. Of
interest is to determine if there are overlaps (i.e., read across) in
gene expression between RM chemicals and NRM chemicals in
the rat liver.

TABLE 3 | Differentially expressed genes between receptor-mediated and non-receptor-mediated MOAs.

ProbeID Entrez gene Gene symbol Gene description p-value Fold change

1392754_at 499285 Adam8 ADAM metallopeptidase domain 8 3.47E-03 −1.47

1384068_at 306575 Ckap2 Cytoskeleton associated protein 2 1.35E-03 −1.42

1390317_at 500393 RGD1561849 Similar to RIKEN cDNA 3110035E14 6.86E-04 −1.40

1370902_at 286921 /// 296972 Akr1b10 Aldo-keto reductase family 1, member B10 1.35E-02 −1.39

1368271_a_at 79451 Fabp4 Fatty acid binding protein 4, adipocyte 2.01E-02 −1.38

1374775_at 291234 Mki67 Marker of proliferation Ki-67 9.28E-03 −1.38

1383747_at 361921 Ect2 Epithelial cell transforming 2 9.89E-03 −1.37

1379582_a_at 114494 Ccna2 Cyclin A2 4.45E-02 −1.35

1384449_at 100910797 LOC100910797 Uncharacterized 4.02E-05 −1.35

1398540_at 54289 Rgs1 Regulator of G-protein signaling 1 9.50E-03 −1.35

1393041_at 362519 Smc2 Structural maintenance of chromosomes 2 4.19E-03 −1.34

1370462_at 25460 Hmmr Hyaluronan mediated motility receptor 4.16E-03 −1.33

1384231_at 364648 Shcbp1 Shc SH2-domain binding protein 1 5.34E-03 −1.33

1393848_at 362720 /// 100359539 Rrm2 Ribonucleotide reductase M2 1.21E-02 −1.32

1383578_at 499870 /// 100911267 Rad51 DNA repair protein RAD51 recombinase 8.33E-03 −1.32

1390659_at 25406 Cd44 CD44 molecule 2.94E-02 −1.32

1371074_a_at – – – 3.32E-03 −1.30

Gene detected as statistically different in a one-way ANOVA model with the Fisher’s least significant difference test between RM vs. NRM samples based on the average (triplicates per

chemical) log2 ratio values of the 2,930 MOA-varying gene probe sets.

FIGURE 3 | Profile plot of significantly different genes between RM and NRM samples. Gene expression profile plot of the top 3 of 17 genes determined to be

statistically significant between RM and NRM samples (p < 0.05). The x-axis is the MOAs, the y-axis is the MOA average of the log base 2 ratio data [treated samples

(the average of all three replicates for each chemical within a MOA) to the average of the controls matched according to nutritional status of the vehicle and route of

administration]. The gene expression profiles are colored as shown in the figure legend. The variation in the data points from the average of the chemicals in a MOA is

represented by standard error bars.
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Derivation of Gene Co-expression
Networks
Using the 2,930 dysregulated gene probe sets, we grouped the
Ahr, CAR/PXR, and PPARA chemicals into a RM class and the
Cytotox and DNA_Damage chemicals into a NRM class. Table 3

lists the genes detected as statistically significant between the two

classes. The expression of all the genes from exposure to the RM

chemicals are down-regulated in comparison to NRM chemicals.

Figure 3 shows a profile plot of the three genes (Adam8, Ckap2,

and RGD1561849) that are down-regulated most.

FIGURE 4 | Cluster dendrograms and modules representative of gene co-expression networks. (A) RM cluster dendrogram. (B) NRM cluster dendrogram. The

x-axes represent the modules identified relative to the RM clustering. The colors indicate the preserved modules. The significantly preserved modules are labeled by

color. The y-axes show the heights where clusters are merged.
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We then analyzed the 2,930 dysregulated gene probe
sets with the WGCNA method to identify gene networks
preserved between the two classes (Figure 1). Correlation
between gene expression is measured by Pearson correlation and
the determination of co-expression is accomplished by using
an adjacency function. The interconnectedness of nodes of co-
expressed genes in the network is assessed by a topology distance
metric. Figure 4A depicts the RM co-expressed genes nodes as
leaves in the dendrogramwith themore similarly expressed genes
grouped closer together. The colored modules represent the gene
networks that were identified. The turquoise colored module is
the largest of the 18 identified. Figure 4B illustrates the clustering
of the NRM co-expressed genes nodes and the superimposing of
the 18 RM modules. As can be seen by the diffuse overlapping of
the modules in the two classes, the turquoise, magenta, red and
blue colored ones are preservedmost readily. This preservation is
statistically assessed by a permutation test to derive of a summary
Z score. The significant modules (Z_summary score > 10) are
shown in Table 4 with turquoise being the most significant. The
gene network sizes are 540, 176, 325, and 131 gene probe sets for
the turquoise, red, blue, and magenta modules respectively.

Pathways and Biological Processes Read
Across Genes in Preserved Modules
To infer which pathways are over-represented by the genes
in the preserved modules, we performed an enrichment test
using the Protein ANalysis THrough Evolutionary Relationships
(PANTHER) ontology database (Thomas et al., 2003). Table 5
shows the significant biological processes that were enriched
by the genes in each of the preserved modules. Immunity and
defense was overwhelmingly significant (FDR < 10%) by the
genes in three of the four modules. Using the Ingenuity Pathway
Analysis (IPA) knowledgebase, we discovered that TP53 is a
central hub of the 33 genes from the turquoise module that have
connections (Figure 5). Interestingly, although the connections
are the same between the RM and the NRM chemicals due to
the preservation of the turquoise module, the expression of more

TABLE 4 | Preserved modules.

Module Module size Z summary

Turquoise 540 27.27

Red 176 16.93

Blue 325 15.00

Magenta 131 11.92

than half of the genes are dysregulated in opposite directions.
Some of these genes code for proteins that are associated with
cell division (FZR1, CDCA3), metabolism (TBXAS1), and DNA
repair (PCLAF).

DISCUSSION

Exposure to chemicals can elicit pharmacologic effects if
therapeutic, tailored accordingly and given at the right dose for
an appropriate amount of time. In other cases, the exposure can
have no detectable effect or can be toxic resulting in an adverse
effect to biological systems. The molecular initiating events for
many chemicals are well-studied. However, their MOAs remain
to be determined. Having a better understanding of a chemical’s
MOA and the molecular consequences from their exposure
will aid in determining points of potential crosstalk between
regulatory pathways which may lead to unintended side effects
if chemicals act synergistically.

We used gene expression from the livers of male Sprague-
Dawley rats exposed to a number of agents (Table 1) or
vehicle control to identify overlapping gene networks between
chemicals that are receptor-mediated (RM) and those that
are non-receptor-mediated (NRM). The RM class of chemicals
contained those that elicit their effect through either the
peroxisome proliferator-activated receptor-α (PPARA), orphan
nuclear hormone receptors (CAR/PXR) or aryl hydrocarbon
receptor (AhR) while the NRM chemicals do so by cytotoxicity
(Cytotox) or DNA damage (DNA_Damage). Each MOA
contained 3 different chemicals with each chemical exposure
in triplicate. Four gene network modules were preserved in
a statistically significant manner between the two classes of
chemicals (Table 4). The genes in three of the four networks over-
represent immunity and defense biological processes (Table 5).
DNA damage and cytotoxic chemicals are known to trigger
an innate immune defense by eliciting parenchymal cell death
and subsequent DAMP (Danger-associated molecular patterns)
release (Srikrishna and Freeze, 2009). Notably scoring of the
modules using the Nextbio Body Atlas (Data not shown)
reveals that genes in all four modules are over expressed in
inflammatory cells including the blood, suggesting that what
may be being detected are transcripts from inflammatory
infiltrates that manifest following tissue damage. Notably this
is consistent with observations that co-regulation modules in
the liver are related, in part to changes in cellularity (i.e.,
increases or decreases in certain cell types; Sutherland et al.,
2017). Chemicals that act through a receptor have cascades of
signaling that often attenuate cell death by inhibiting apoptosis

TABLE 5 | Pathway enrichment.

Module Panther db ID Biological process Count Fold enrichment p-value FDR

Turquoise BP00148 Immunity and defense 68 2.38 1.48E-11 1.8E-08

Red BP00148 Immunity and defense 54 1.72 8.37E-05 1.0E-01

Blue BP00125 Intracellular protein traffic 33 1.66 4.93E-03 5.8E+00

Magenta BP00148 Immunity and defense 52 1.66 2.73E-04 3.3E-01
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FIGURE 5 | TP53 Interaction network. Using the 540 gene probe sets (462 genes) from the most significant module (Turquoise) preserved between (A) RM and

(B) NRM samples that were mapped to pathways in the Ingenuity Pathway Analysis knowledgebase, molecular networks were generated. Shown is the most

(Continued)
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FIGURE 5 | Continued

significant interaction network with TP53 as the central hub. Colored nodes represent 33 genes (or their products) that are part of the 540 gene probe sets. The gene

expression values are the log base 2 ratio from the average of the triplicates for each chemical treatment to the average of the controls matched according to

nutritional status of the vehicle and route of administration, averaged by MOA and according to either RM or NRM. Red represents increased expression and green

represents decreased expression. Shape representations: circles, protein-coding genes; diamonds, enzymes; squares, cytokines; horizontal ovals, transcription

regulators; vertical ovals, transmembrane receptors. A solid line represents a direct interaction, whereas a dashed line represents an indirect interaction. A line with an

arrow denotes activation, whereas a line with an arrow and a pipe (|) denotes acts on and inhibits, respectively. A line without an arrow or pipe (|) denotes a

protein–protein interaction.

(Mally and Chipman, 2002) therefore decreasing cell turnover.
The decreased cell death may secondarily down-regulate baseline
immune signaling as there is less cellular debris to clear
(Rock and Kono, 2008). In addition, activation of PPAR-α
and CAR/PXR have been demonstrated to down-regulate the
expression of compliment and coagulation factors which may
also be contributing to the decreased immune signaling seen
with the RM chemicals (Kramer et al., 2003; Yadetie et al.,
2003; Cariello et al., 2005; Rezen et al., 2009). Hence, it
is plausible that the convergence point between these two
groups of toxicologic agents occurs at a cellular level and
cascades down into the molecular level where opposite effects
on inflammatory signaling is observed. Although many gene
expression signatures associated with toxicants likely represent
cytotoxicity and cell damage, activation of an immune response
is not just injury per-se, but is very much involved in repair
and regeneration. The toxicant gene signatures likely reflect a
genomic state in the liver during the process of the ensuing
injury vs. the abating of it and beginnings of recovery and
repair.

Here we show that with nine RM chemicals and six NRM
chemicals, a converging point in one of the gene networks
is at the tumor suppressor gene TP53 (Figure 5). Tp53 in
rats is a 391 amino acid containing phosphoprotein with an
amino-terminal transactivation motif, DNA and zinc binding
sites, a tetramerization domain and an unstructured basic
domain at the carboxy-terminus. TP53 regulates the cell cycle,
it plays a role in apoptosis and DNA repair, and functions
as a tumor suppressor. TP53 in humans is highly mutated in
cancers (Olivier et al., 2010) and has been explored extensively
as a potential target for cancer therapeutics (Parrales and
Iwakuma, 2015). In this study of the male rat livers exposed
to the RM and NRM chemicals, Tp53 gene expression is
slightly up-regulated relative to control (but not statistically
significant with a large enough fold change difference). This
is not surprising as a small change in the expression of a
transcription factor can dramatically impact the transcriptional
regulation of its target genes (Niwa et al., 2000; Rizzino, 2008).
In addition, per the IPA knowledgebase molecular network
(Figure 5), TP53 interacts with 32 genes in the turquoise
module; 21 genes with p53 binding sites and the others have
molecular relationships such as protein-protein interaction or
some form of biochemical modification. Of these 32 hub genes,
the majority of them (n = 19) are dysregulated in opposite
directions in RM vs. NRM. Some of these genes function
in metabolism, cell division and DNA repair. This redundancy
in the gene network circuitry is thought to be contrapuntal in

nature to provide organisms the flexibility to diversify function
while conserving biologic resources (Komili and Silver, 2008).
Examples are the coordinated gene expression regulation during
seed development in Arabidopsis thaliana (Ruuska et al., 2002)
and the crosstalk between Janus kinase-signal transducer and
activator of transcription (JAK-STAT) and PPAR-α in COS-1
cells derived from monkey kidney tissue (Zhou and Waxman,
1999).

Although, the number of chemicals per RM and NRMMOAs
limits the granularity in the reconstruction of the networks we
ascertained as preserved between the two classes, the diversity
in the types of chemicals, the varied structure activity groups,
and broad therapeutic indications of the chemicals give credence
to the biological interpretation of the molecular pathways in
common but coordinately dysregulated. Furthermore, despite the
incohesiveness of a few of the chemicals which did not cluster by
gene expressionwith the other chemicals in their respectiveMOA
(Figure 2), the bioinformatics processing of the data that we
employed (Figure 1) was robust enough to elucidate molecular
interaction networks that converge between the RM and NRM
chemicals. However, caution in the interpretation of these results
is prudent since we have not examined the entire scope of all
the chemicals that fall into a given MOA and some chemicals
are known to have multiple MOAs (Russom et al., 1997; Wenzel
et al., 1997; Freidig et al., 1999). In addition, the comparison of
RM and NRM MOAs is a simplistic one and each class does
not cover all the RM or NRM MOAs, therefore is limited in
the inference of the gene regulatory networks. Furthermore, the
doses of the chemicals administered are of a single concentration
and duration albeit the MTD and so essentially the preserved
gene networks that we discovered are not dynamic in nature.
It is important to emphasize that the gene modules described
here are a starting point for MOA characterization and greater
nuance will likely be required to characterize mechanistic
processes associated with specific receptors (e.g., PPAR-α vs.
AhR; LeBaron et al., 2014; Becker et al., 2015) or chemicals
with mixed MOAs. An illustration of such nuance was shown
in a recent study in which clear subgroups of chemicals in the
RM class of compounds was observed (De Abrew et al., 2015).
Further, it is important to note that careful consideration of
the interpretive approach is necessary when evaluating MOA
(Currie et al., 2014). In conclusion, our data and results
provide a framework for investigators to follow-up on to
possibly perturb individual components of biological pathways
that read across between chemicals with different MOAs in
order to better understand the consequences of environmental
exposures.
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