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Pathway analysis is a powerful method for data analysis in genomics, most often applied
to gene expression analysis. It is also promising for single-nucleotide polymorphism
(SNP) data analysis, such as genome-wide association study data, because it allows the
interpretation of variants with respect to the biological processes in which the affected
genes and proteins are involved. Such analyses support an interactive evaluation of the
possible effects of variations on function, regulation or interaction of gene products.
Current pathway analysis software often does not support data visualization of variants
in pathways as an alternate method to interpret genetic association results, and specific
statistical methods for pathway analysis of SNP data are not combined with these
visualization features. In this review, we first describe the visualization options of the tools
that were identified by a literature review, in order to provide insight for improvements
in this developing field. Tool evaluation was performed using a computational epistatic
dataset of gene–gene interactions for obesity risk. Next, we report the necessity to
include in these tools statistical methods designed for the pathway-based analysis with
SNP data, expressly aiming to define features for more comprehensive pathway-based
analysis tools. We conclude by recognizing that pathway analysis of genetic variations
data requires a sophisticated combination of the most useful and informative visual
aspects of the various tools evaluated.

Keywords: genome-wide association study, SNP, pathway analysis, epistasis, software comparison, data
visualization

INTRODUCTION

Pathway Analysis for Genome-Wide Association Study Data
Today, pathway analysis is routine with software or web services that accept and analyze different
omics data, transcriptomics, proteomics with protein–protein interactions, and metabolomics.
Methods and tools used to visualize and analyze these three main kinds of high-throughput data
have been reviewed (Gehlenborg et al., 2010). Moreover, a decade ago genetic variation data,
such as single-nucleotide polymorphism (SNP) originating from analyses of array-based genome-
wide association studies (GWAS), began to be incorporated into pathway analysis (Wang et al.,
2007). Since then, the method was applied to other types of studies involving SNPs such as:
epigenome-wide association study (EWAS) (Shimada-Sugimoto et al., 2017) or sequencing-based
GWAS (Guodong and Degui, 2013). Although genetic association research is advancing rapidly,
and especially GWAS studies are commonly performed for the genotype–phenotype investigation,
biological interpretation of those data remains a challenge; especially when interpretation concerns
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connecting genetic findings with known biological processes
(Manolio, 2013). Application of pathway analysis to SNP data
is a valid approach to meet this challenge for different reasons:
first, because of the polygenic nature of complex diseases, such
an approach holds the promise to contextualize the SNP data
better and to suggest novel interpretations of the results based
on prior knowledge of genes and pathways (Wang et al., 2010).
Second, a typical display of genetic association results consists of
the few SNPs showing strong evidence for disease or phenotype
association (generally p-value <1e−8), but it is also well-known
that these few associated SNPs often have only a modest effect on
disease risk (Zhong et al., 2010). Thus, examining the cumulative
effects of numerous variants and visualize them at the pathway
level, can empower detection of genetic risk factors for complex
diseases (Manolio, 2013; Mooney and Wilmot, 2015).

We believe that data visualization, in the form of interactive
pathway diagrams and/or gene–gene biological interactions such
as genetic networks, enhances interpretation of scientific data,
understanding the conclusions drawn, and discussing follow-up
research questions (Villaveces et al., 2015). Currently, programs
like Gene Set Enrichment Analysis (GSEA; Mootha et al., 2003;
Subramanian et al., 2005), DAVID (Huang et al., 2009a,b) or
g:Profiler (Reimand et al., 2016) display the pathway analysis
output with lists, plots, or link to the pathway diagrams. However,
we believe that providing an interactive pathway diagram or
network visualizations with metadata from other sources, aids in
understanding the question, problem, or relationships among the
data entities. Thus, interpretation of SNP data would benefit from
pathway-based approaches accepting of genetic variation, so that
allele-specific relationships are displayed.

Recently, several step by step guides (Wang et al., 2010;
García-Campos et al., 2015; Mooney and Wilmot, 2015; Kao
et al., 2017) were published as reviews, describing and providing
recommendations on how to use different pathway analysis
methodologies, which are especially applicable to GWAS data.
The main features to consider are: (i) make certain that GWAS
analysis is performed according to standard guidelines; (ii)
choose curated and up-to-date pathway collections; (iii) filter
the list of gene sets to avoid bias related to size, a common
limit is between 10 and 200 genes, and map the SNPs to genes
based on location or linkage disequilibrium (LD); (iv) choose
the method according to the statistical hypothesis to be tested;
(iv) report the results and if applicable visualize them in order
to improve comprehension. Regarding the point of the statistics,
Wang et al. (2007) were among the first to publish a pathway-
based GWAS analysis using a statistical method adapted for
genetic variation data. The authors modified a GSEA algorithm,
initially designed for pathway analysis of gene expression data
(Subramanian et al., 2005). Since the adaptation of GSEA by
Wang et al. (2007), researchers have developed other statistical
methods for pathway-focused analysis of associating SNPs.
Currently, existing methodologies for the analysis of GWAS
gene sets are based on over-representation analysis, enrichment
analysis, functional class score, and pathway-topology (García-
Campos et al., 2015; Mooney and Wilmot, 2015; Kao et al., 2017).
The recommendation is to apply multiple methods to capture
different genetic effects and identify robust gene set associations

(Mooney and Wilmot, 2015). However, only a few of these new
algorithms were implemented in user-friendly tools, possibly
because pathway-based approaches still have many technical
challenges to overcome (Wang et al., 2010). Beside the main
focus of data visualization, the literature search performed in
this review, allow also to verify if the existing pathway analysis
algorithms for genetic variations are available in user-friendly
pathway tools that provide visualization options. In general, it
is recognized that improving and standardizing the practice of
this methodology, not only will improve the comparability of the
results of gene set analysis, but also will allow a better evaluation
of related polymorphisms both in the same and in different but
functionally related genes. This step potentially would increase
the power to detect causal pathways and disease mechanisms,
using SNPs with significant associations and those in LD with
functional variants. Moreover, it can point toward integration of
omics data, where the additional molecular information could
verify or predict the functional effects of the associating SNP
(Wang et al., 2010).

We identified a major shortcoming concerning pathway
analysis programs for SNP data: genetic variation analysis have
not been combined commonly in user-friendly pathway analysis
tools, that provide both interactive visualization options, enabling
the exploration of the data and metadata on the pathway
diagrams, and existing statistical methods specifically designed
for SNP analysis. For example, one allele of a pathway entity
might allow the bioprocess to continue while a second allele
curtails pathway flux. Then, visualizing on a pathway map
the effect of variants associated with elevated risk of disease,
can indicate biological and biochemical insufficiencies (and/or
vulnerabilities), which then can be made more informative
if placed within depictions of the affected cell or organ,
or other data related to the entities of the pathway. For
instance, the rs11591147 SNP which maps to exon 12 of
PCSK9 gene, directing an amino acid change Glu670Gly is
a proper example to understand the potential of dynamic
pathway visualization. This variant encodes a gain-of-function
allele in PCSK9 that influences inter-individual variation in low-
density lipoprotein (LDL) cholesterol levels between African-
Americans and European-Americans (Ding and Kullo, 2008). In
the WikiPathways database (Kutmon et al., 2016) there is the
proprotein convertase subtilisin/kexin type 9 (PCSK9) mediated
LDL receptor degradation pathway (WikiPathways ID: WP 2846)
that represents the key role of PCSK9 in the regulation of
the LDL-cholesterol level. This pathway can be dynamically
explored with the PathVisio tool (Kutmon et al., 2015), in which
not only the different entities of the pathway will show extra
information through their hyperlinks with various sources (e.g.,
gene, protein, disease databases, etc.), but also genetic variation
data with hyperlinks to SNP databases, gene expression data,
and interaction values can be displayed on the pathway diagram.
This multiple data visualization combines different types of
information that allow the researcher to describe more easily the
possible effect(s) of the genetic variant in the bioprocess with the
additional support of other data. Even if genetic variation data
are not available, the in silico prediction variant score such as
SIFT (Kumar et al., 2009), Polyphen (Adzhubei et al., 2010), or
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CADD (Kircher et al., 2014) can be used in the pathway diagram
to envision the possible consequences of the variant on gene
interactions. Hence, this type of interactive pathway visualization
is important in facilitating use of the data for particular instances.

Lastly, this type of pathway analysis visualization is applicable
for SNPs data originating from different types of studies
(e.g., EWAS and sequencing data), but it can also support
the interpretation of specific phenomena such as epistasis
or gene–gene interaction. Epistasis is yet another manner in
which connections within a pathway are different in different
individuals, where two alleles mapping to different loci associate
in concert with a phenotype, but where those two alleles
individually show no phenotype association (Wei et al., 2014;
De et al., 2015). Consider, for example, that pathway endpoints
are a phenotype, clinical indicator of health or disease status, or
disease itself. Then, the epistatic relationships can be indicated
by epistatic- or “e-edges” that serve to connect distinct pathways
or different nodes within a single pathway in this conditional
relationship. The pathways linked by such “e-edges” would give
support to co-function and/or co-regulation with regard to the
given phenotype of interest. In addition, the nodes within the
GWAS-identified pathways, i.e., the main effect associations, can
be used to focus the genetic landscape in the search for epistatic
relationships as opposed to searching for epistasis across the
entire genome.

However, genetic variants currently cannot be combined easily
in pathway representations because it is not clear how to visualize
and interpret variation data once connected programmatically
to pathway content. In this review, we sought to investigate
how to dynamically visualize genetic variations in a pathway
context using user-friendly tool. First, we performed a systematic
review of articles that analyzed genetic variants using pathway
based methods in order to identify and describe the visualization
options of the tools resulting from this literature review. The
purpose of the tool evaluation relates directly to the need to
combine SNP data, such as those from GWAS results, with
biological context in order to better understand results in a
disease context. Second, we performed a use case with the tools
identified, testing a computationally derived epistatic dataset of
gene–gene interactions for 12 candidate genes in obesity risk,
in order to evaluate how genetic variant analysis of epistasis is
tackled by the tools. Taking a visualization point of view, we
report the features and the potential of the different software.
Reviewing the articles, we also collected current statistical
methodologies that have been applied in pathway-based analysis
of GWAS data, and we report those without discussing in detail.

MATERIALS AND METHODS

This review follows criteria developed by the PRISMA statement
(Moher et al., 2009).

Search Strategy
In order to assemble an overview of visualization approaches
used in studies that applied pathway-based analysis to genetic
association studies fully reflecting current practices, a keyword

search for “Pathway Analysis” in PubMed and Medline (July
2014) was conducted. The literature research was performed
using EndNote X7. The search yielded 2,231 articles from January
2005 through August 2014, 2,184 remained after removing
duplicates, 15 others were added based on suggestions by experts
in the field. Subsequently, these articles were screened manually
by reading title and abstract. We retained only those 264 articles
describing pathway-based analysis with genetic variation, and
these articles were studied in detail. Retaining the 65 most
relevant papers, all from 2007 through 2014, we aggregated
the results with key features of the analysis, summarized in
Supplementary Table 1. In order to update the manuscript with
additional visualization tool for GWAS pathway analysis, we
performed a second PubMed search in January 2017 using the
keyword “Pathway Analysis” for title and abstract, and date of
publication from August 2014 to present. We obtained 2,774
articles that were scanned by title. Several articles describing
GWAS pathway analysis tools were found (see Supplementary
Table 2), but only one PathVisio (Kutmon et al., 2015) presented
interactive visualization features in pathway diagrams. This one
was included and described in the tool paragraph, and reported
in Table 1 together with the other four tools previously identified.
Details of the 65 relevant articles selected with the literature
search are given in Supplementary Table 1. Columns describe
specific features extracted from each study: type of data and
variants, algorithm used, and bioinformatics tools used with
visualizations. Because we did not select the articles based on the
type of variants utilized, but on the type of analysis performed
(keyword used: “Pathway Analysis”), we also identified articles
where the variants participating in the genotype–phenotype
association originated from sources other than SNP arrays. In
the 65 articles: 57 were based only on GWAS data, four on
GWAS plus expression data, one on GWAS plus epigenetic
data, two used known somatic mutations, and one using next
generation sequencing data. In all studies, the resulting SNPs
were investigated using pathway-based analysis, and only three
studies also analyzed copy number variants and/or indels (Ghosh
et al., 2013; Leiserson et al., 2013; Lee et al., 2014).

Overview of Pathway Analysis Tools for
Genetic Variation Data
Although some algorithms are available as web services or
installable software, no generally accepted implementation for
the visualization of SNP results exists. From the literature search,
we found the following bioinformatics tools able to visualize the
significant variants in a pathway: IPATM of QIAGEN’s Ingenuity
Pathway Analysis (2016; QIAGEN Redwood City1) (Inada et al.,
2008; Helleman et al., 2010; Ngwa et al., 2011), MetaCoreTM

from Thomson Reuters2 (Song and Lee, 2013), Path3 (Daley
et al., 2009; Zamar et al., 2009), and Pathvisio 3 (Kutmon et al.,
2015). In general, very few tools support pathway visualization
of genetic variants. In addition, the Gehlenborg et al. (2010)
review mentions a visualization tool not found in the articles

1http://www.qiagen.com/ingenuity
2https://portal.genego.com/
3http://genapha.icapture.ubc.ca/PathTutorial/
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reviewed. This tool is called Caleydo4 and it depicts only copy
number variations (CNVs). We describe in the Section “Results,”
the five tools mentioned here with a specific focus on the
visualization options for the genetic variants. However, some
relevant command line tools were also detected in the literature
search, but we do not describe these because of the absence of
user-friendly visualization features.

We also evaluate three of the five tools selected from the
literature search, using an available epistatic dataset (De et al.,
2015). Because the tools do not only require different formats,
but also have different features, we could not use this dataset
for Caleydo and Path. For these tools the evaluation of the
visualization was assessed using the default dataset provided by
the software and the tutorials.

Dataset of Epistatic Interaction
An epistatic dataset from De et al. (2015) is chosen to evaluate
the SNP visualization in the biological pathways of three tools
retrieved from a literature search: IPA, MetaCore, and PathVisio.
The dataset consists of a list of SNPs with significant epistasis
interactions (SNP–SNP connections) calculated from a gene–
gene interaction epistasis network of 12 candidate genes for
obesity risk (BDNF, ETV5, FAIM2, FTO, GNPDA2, KTCD15,
MC4R, MTCH2, NEGR1, SEC16B, SH2B1, TMEM18). SNPs were
extracted from the 12 genes following specific criteria: 500 kb
window of the gene, exclusion of SNP with minor frequency
allele <0.05, exclusion of SNP that shows LD of r2 > 0.8, and
imputation of missing genotypes. The resulting SNP dataset in
the study was 1,191 SNPs with genotype data available for 1,141

4http://www.caleydo.org/

obese individuals (body mass index >30 kg/m2). Genotyping
was performed with Affymetrix 500 K mapping array and
the Affymetrix 50 K supplemental array. A statistical epistasis
network (SEN) (Hu et al., 2011) was utilized to characterize the
interactions between genetic variants from the 12 obesity genes,
resulting in a list of 58 SNPs with significant mutual information.
This value corresponds to a weight of each SNP and each pair
of SNPs in SEN. In addition, it quantifies the strength of the
interaction outside of the individual main effects of a SNP pair
on the phenotype. We used the 58 SNPs as input to the three
tools selected for the visualization evaluation. Describing the
advantages and disadvantages of the tool features, we try to
understand which tool can facilitate the interpretation of the
SNPs in the pathway context.

RESULTS

Pathway-Based Analysis Tools with
Visualization Options
The evaluation of five pathway-based analysis tools—
Caleydo, IPA, MetaCore, Path, and PathVisio—that support
incorporation of genetic association data demonstrates: first,
how polymorphism data can be visualized and analyzed in
a pathway-based environment, and second, how different
information and experimental data can be combined for analysis
and visualization. Pathway content provides the biological
processes in which GWAS-identified genes are known to be
involved and shows other genes related by common function
that may not pass GWAS significance thresholds. Integration of
other types of genomics data as accepted by these tools, often in

TABLE 1 | Summary of the main features of the pathway-based analysis tools evaluated.

Features Caleydo IPATM MetaCoreTM PathVisio Path

Availability Free download Private Private Free download Free download

Type of genetic variants data CNVs SNPs SNPs SNPs SNPs

Variants data format .csv, .txt, .gct .xsl, xslx, .txt VCF .csv, .txt LINKAGE
pre-mapped, QTDT

Pathway collections and size KEGG with 518 pathways,
WikiPathways with 743 curated
Homo sapiens pathways

Private collection
with 662 curated
pathways

Private collection
with 1,662 curated
pathways

WikiPathways with
743 curated Homo
sapiens pathways

KEGG with 518
pathways

Applications for pathway-analysis enRoute, Entourage Enrichment
Analysis

Enrichment
Analysis Workflow

Enrichment
Analysis

UNPHASED

Gene description Present Present Present Link to the gene
database

Present

Variants data visualized on pathway YES YES YES YES Not known
because of the bug

Variants description Not present Not present Not present Links to the
variants database

Not known
because of the bug

Linkage disequilibrium map Not present Not present Not present Not present Present

Presence of other omics data YES YES YES YES NO

Version of the tool V.3 V.01-08 V.6.29 V.3 V.1

URL www.caleydo.org/ www.qiagen.com/
ingenuity

https://portal.
genego.com/

www.pathvisio.org http://genapha.
icapture.ubc.ca/
PathTutorial/

CNV, copy number variation; SNPs, single-nucleotide polymorphisms; VCF, Variant Call Format.
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combination with bioinformatic pipelines for data processing,
permit evaluation of different transcriptomics outcomes in
subjects with a specific genotype or phenotype, and some tools
allow also integration of metabolomics results.

The five tools are designed to visualize the data on different
pathway collections originating from different databases.
Path refers to KEGG5 (Kanehisa et al., 2012), PathVisio to
WikiPathways6 (Kutmon et al., 2016), and Reactome (Fabregat
et al., 2016), Caleydo to both KEGG and WikiPathways;
while MetaCore and IPA use their respective curated pathway
collections.

Tool-Specific Visualization Details
MetaCore is a software suite suitable for functional analysis
of different omics data, including expression data and genetic
variation data. One of MetaCore’s relevant applications for
pathway analysis is the Enrichment Analysis Workflow, which
calculates enrichment p-values in different types of gene sets
within the uploaded dataset. These gene sets originate from
curated pathways, networks of related genes derived primarily
from literature evaluation and from the Gene Ontology lexicon.
We performed an example analysis using the 58 SNPs with
significant epistasis interactions as input. As the tool accepts
variants in a Variant Call Format (VCF) file, we formatted the
input data accordingly. The results of this analysis recognized
13 objects, limited to just one SNP per gene. Different outputs
such as pathway maps, gene ontology (GO) processes, process
networks, and diseases (symbolized by biomarkers) are listed as
part of the result (Supplementary Figure 1). All list items are
clickable, allowing more detailed visualization of the different
items. The resulting pathway maps are ordered by enrichment
p-value, with false discovery rate (FDR) corrections. The FDR
calculation considers the p-value of each network map and its
rank given the total number of maps in the entire set of pathway
maps. The list also contains the ratio of significant genes in
the dataset over the number of genes in the pathway. If one
pathway in the list is selected, a pathway map is displayed. In
our example, the first pathway of the list is “retinal ganglion cell
damage in glaucoma” in which two genes appear to be colored
bright and illustrated that they present the input SNPs with a red
colored bar (Supplementary Figure 2). Clicking a gene symbol
displays detailed information about the description of the gene
and encoded protein for human, mouse, and rat. Clicking the red
bar yields details for the uploaded data of that gene, in this case
the SNP rs ID. In the example pathway, two genes show data:
BDNF with rs10835210 and BnaC2 (ASIC1) with rs1108923. It
is remarkable to notice that ASIC1 is not in the list of the 12
obesity genes of the study selected. Indeed, the SNPs from the
obesity-epistasis dataset (De et al., 2015) were extracted taking
into account a window of 500 kb from the obesity genes, but
MetaCore assigned SNPs only positioned within a gene region.
This is also the reason why the total SNPs identified by the
analysis is 13 and not 12. In this case, rs1108923 is selected in
the dataset because it maps to the upstream region of the obesity

5http://www.genome.jp/kegg
6http://www.wikipathways.org/

gene FAIM2, but the tool considers this variant to be within the
region of ASIC1.

QIAGEN’s Ingenuity Pathway Analysis, IPA is a web-based
application for data analysis in pathway context. Although the
IPA environment is amenable to different types of analysis
(i.e., Metabolomics, microRNA, Toxicology, etc.), our objective
is to highlight aspects of pathway analysis. After uploading
the list of 58 SNPs with the significant epistasis interactions
value, the program automatically displays an overview page with
information such as the number of SNPs recognized by the
tool, in this case 22 SNPs of 58 were mapped. In addition, a
table is shown with Entrez gene IDs and affiliated information
such as cellular location, type of gene, and interacting drug.
Clicking on one of the gene names listed, it displays a link to
a description gene page for human, mouse and rat, in which
additional information about the gene functionality are provided.
In this overview page, there is a possibility to perform different
analysis as was mentioned above. We opted to the Core Analysis
that includes the enrichment pathway analysis. However, such
analysis takes into account the genes in which the 22 SNPs
were mapped and not the SNPs themselves. The result page, as
in MetaCore, lists several output such as: canonical pathways,
diseases and function, regulators, and networks. The canonical
pathway visualization is a list of enriched pathways ranked by
p-value and percentage of the overlapping genes mapped against
the total number of those in that pathway. Selecting a pathway
prompts IPA to offer several views that depict different items
within the top significant pathways such as bar charts, and
stacked bar charts. The pathway visualization is displayed under
the network tab, where genes with different colors and shapes are
shown as clickable nodes that link with additional information
related to that gene, including biochemical elements, metabolites,
and references curated by IPA team (Supplementary Figure 3). At
this level, further information about SNPs related to the genes is
not visualized and reported.

PathVisio 3 is a pathway editor, visualization, and analysis
software. PathVisio core features related to visualization are listed
in a main panel where pathway diagrams can be drawn, and
the entities of the pathway can be displayed in different ways
according to advance data visualization options. There is a side
panel called backpage where data and other visualization features
are shown. Some of these features are related to the advanced
options provided by plugins. Developed by any user, these plugins
are extensions of the PathVisio system that do not change its
core functionalities. Two of these plugins, BiomartConnect7 and
RegInt plugin8, add functionalities related to genetic variants.
BiomartConnect enables visualization of biological information
in the backpage, retrieved with the Ensembl BioMart tool9,
with which variants also are accessible. With this plugin the
variants, stored in the Ensembl database and located in any gene
selected from a pathway diagram, are visualized in the backpage.
Moreover, additional SNP information like SIFT and Polyphen
predictive scores is available and possible to display in the

7https://www.pathvisio.org/plugin/biomartconnect/
8https://www.pathvisio.org/plugin/regint-plugin/
9http://www.ensembl.org/biomart/martview
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backpage. The RegInt plugin enables one to upload and visualize
user data on the pathway, in the form of an interaction file. This
file contained a data column listing the 58 SNPs and another
listing the genes in which those SNPs are located. For the detailed
input format check plugin instructions in Github10. We used the
RegInt plugin to display the 58 epistatic SNPs. First, in the main
panel, we opened a pathway diagram presenting at least one of the
genes related to the 58 SNPs from the WikiPathways collection
(see text footnote 6), a pathway database linked to the software.
Then, in the backpage the SNPs related to the gene selected
in the pathway are displayed. The number of SNPs visualized
depends on the data uploaded. In our case we selected from
WikiPathways the “brain-derived neurotrophic factor signaling
pathway” (WP2380), that presents two (BDNF and SH2B1) of
the 12 genes of the epistatic dataset (Supplementary Figure 4).
From a biological prospective this type of visualization allows two
types of investigation: one at the gene level where the relation
between genes with significant epistatic SNPs can be explored in
the pathway. The other one at the SNPs level, where the list of
the epistatic SNPs is shown in the backpage and their effects can
be explored further. Moreover, a SNP hyperlink that connects to
a variant database in which the SNP description is provided, is a
useful feature to speed the research into SNP function.

Caleydo is an open source software with three applications
for data visualization: StratomeX (Lex et al., 2012), enRoute
(Lex et al., 2013), and Entourage (Partl et al., 2013). StratomeX
organizes different data from cancer patients, and retrieves
disease information from TCGA datasets11. Packages that are
of interest for pathway analysis are the Entourage view,
which investigates interdependencies between pathways, and the
enRoute view, which analyses experimental data in pathway
context. The Entourage view compares pathway maps selected
from the same or different pathway collections. A notable aspect
is the visualization of pathway interconnectivity between selected
pathways for specific genes (Supplementary Figure 5). This
useful feature enables deeper insight because it depicts how a
gene observed in one pathway might have different roles in an
interconnected process. These interconnections are intuitively
displayed with colored lines that connect the selected gene from
the main pathway to its occurrence in other pathways. Lastly,
enRoute allows selection of a subset of genes in a pathway, and
these selected genes can be associated with experimental data
from TCGA in which CNVs also are shown. Caleydo provides
this type of visualization and analysis only for a specific set of
experimental data (i.e., TCGA dataset), and for this reason it was
not possible to upload the list of 58 epistatic obesity SNPs for the
use case.

Path is specifically designed for GWAS analysis, connects
GWAS results with information retrieved from nine common
bioinformatics resources (NCBI, OMIM, KEGG, UCSC Genome
Browser, Seattle SNPs, PharmGKB, Genetic Association
Database, dbSNP, The Innate Immune Database), and supports
visualization of the integrated data. Path uses UNPHASED
(Dudbridge, 2006) for statistical analysis and retrieving

10https://github.com/PathVisio/RegInt-Plugin/wiki/User-Guide
11http://www.cancergenome.nih.gov/

information on SNP–SNP associations from the different
bioinformatics resources. The only pathway resource included
is KEGG. Visualizations mainly consist of charts, plots, and
summary tables that list genes, SNPs, SNP associations, and
gene–gene interactions. Importantly, Path is specifically directed
toward GWAS studies, showing specific association results, and
lists of genes, SNPs and LD plots. The pathway visualization
using KEGG data shows genes with significant SNPs highlighted
in red similar to those shown in Figure 1. Currently, this type
of visualization is not available because Path does not work
properly due to unfixed bugs, which the authors have decided
not to address at the moment. For this reason, it was not
possible to perform the use case with the epistatic obesity SNPs.
However, Path-2 is released12, in which the authors provided the
PLINK-based single-SNP association analyses (logistic/linear
regressions, family-based analyses) and Pathway/Ontology
association analyses [SNP Ratio Tests SNP Permutation Tests,
Nyholt Pathway Tests, Sidak Pathway Tests, Association LIst
Go (gene ontology), AnnoTatOR (ALIGATOR) Tests]. This
version of the tool is still relevant for specific pathway analysis
with GWAS data, but the type of visualization provided no
longer presents an interactive pathway diagram in which data are
shown.

Statistical Methods in Pathway Analysis
Tools
The variants from the 65 articles retrieved by literature
search, were evaluated for pathway assignment using different
algorithms that were not always well described. When they were,
the authors always provided the p-value of the variant from the
genotype–phenotype association (Yu et al., 2009). The different
algorithms used in the pathway-based methods aggregated SNP
or gene scores to assign a p-value to a pathway. The association of
a SNP to a particular gene is normally evaluated using a cutoff
for SNP significance in a specific gene neighborhood region.
Then, p-values assigned to each pathway can be calibrated and
adjusted for some biological event such as LD patterns and
co-location of functionally related genes. Such biological events
can be evaluated differently by different algorithms, which can
affect the results and suggest other conclusions. Researchers
have developed different statistical methods for analysis of
associating SNPs (Supplementary Table 1). Approaches include
LD calibration and identification of associated pathways
(Panagiotou et al., 2012), and comparison of different algorithms,
which revealed advantages and disadvantages of the statistics
used for a specific GWAS dataset (Gui et al., 2011; Evangelou
et al., 2012; Fehringer et al., 2012; Jia et al., 2012). These
articles compare different statistical methods tested in GWAS
datasets, evaluating the lists of enriched pathways. Although
not all algorithms listed in Supplementary Table 1 have
been compared, we reported the conclusive judgment of the
comparison performed in certain studies. Some of the most
sensible statistical methods include the adaptive rank truncated
product (ARTP) (Evangelou et al., 2012), the modified summary
statistic (mSUMSTAT) (Panagiotou et al., 2012), and the raw

12http://genapha.icapture.ubc.ca/Path2Tutorial/
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data-based algorithms implemented in PLINK (PLINK set-based
test) (Gui et al., 2011; Jia et al., 2012). These algorithms were
shown to be the most powerful for detecting genes that could be
used further by pathway analysis tools (Gui et al., 2011; Evangelou
et al., 2012; Panagiotou et al., 2012). It is difficult to make a single
and objective preference of one specific method because results
of pathway-based analysis for GWAS data vary by method. Even
the overlap of shared pathways can be quite limited because each
algorithm has its own evaluation focus on disease associations (Jia
et al., 2012), and some examples concern different calculations of
values, including pathway p-values in ARTP, or the mean value of
a gene with the significant SNP in mSUMSTAT.

From the tools analyzed, MetaCore, IPA, and PathVisio
present a statistical analysis of the data provided. Instead Caleydo
and Path provide only data visualization on pathway graph
and not statistical methods for pathway analysis. MetaCore,
PathVisio, and IPA perform pathway analysis in an automated
fashion. The first tool uses an over-representation method on
the gene list annotated from the variants present in the VCF
provided as input. MetaCore employs a hyper-geometric model
to determine the significance of the enrichments. PathVisio
also uses an over-representation analysis and it is based on
methods adopted in the MAPPFinder tool (Doniger et al.,
2003) with settings designed for gene expression data. Finally,
IPA utilizes a method for combining p-values. In the over-
representation test, an association for each gene in the dataset
is first calculated, then a threshold is used to determine which
genes are significantly associated. The proportion of significantly
associated genes within a target pathway is compared to the
proportion of significantly associated genes among all genes
outside the target pathway (Mooney and Wilmot, 2015). In the
method applied in IPA, a p-value associated with a pathway
is calculated using the right-tailed Fisher’s exact test that is
equivalent to the hypergeometric test (Rivals et al., 2007). This
p-value measures the likelihood that the association between a
set of genes with a significant SNP identified by GWAS and a
pathway arose by chance. In this method, the p-value for a given
process annotation is calculated by considering (i) the number of
genes with a significant SNP that participate in that process and
(ii) the total number of genes that are known to be assigned to
that process in the selected reference set. Further details on how
IPA identifies pathways reaching significance were not provided
(IPA webpage, June 23, 2016, date last access).

DISCUSSION

Overview of the Comparison: Benefits
and Limitations of the Tools
Comparing the five tools described above makes evident that each
uses different interactive ways to combine experimental data with
information about genes, metabolites, and pathway relationships
(Table 1). A mock visualization of the beneficial and applicable
features observed in the different tools (green highlight), and the
new characteristics that enhance the visualization and analysis of
SNP data in pathway-based analysis tools (red highlight) is shown
in Figure 1. The five investigated tools share some similar and

effective visualization approaches, such as depicting significant
pathways that contain genes in the analyzed data by list view.
These lists are generally ranked by enrichment ratios, p-values or
FDR scores. Another common and useful strategy is to highlight
genes for which pathway data are uploaded by the user, with an
option to uncover gene details via hyperlinks.

A general problem in pathway-based visualizations is the
efficient display of information about genes that appear in
multiple pathways and thereby interconnect those pathways.
Caleydo offers an attractive solution in allowing interactive and
automatic visualization of subpathways of genes present in other
pathways. Caleydo uses this subpathway approach to indicate
when the dataset has information about genes in a given pathway.
This demonstrates how experimental data can be combined
with different types of knowledge about gene relationships and
permits an increased understanding of experimental results that
might act in concert. Caleydo provides this type of visualization
and analysis only for a specific set of experimental data (i.e.,
TCGA dataset). It would be a large improvement if this same
approach were used to automatically select the relevant genes
in the pathways based on the GWAS statistical parameters such
as SNP p-value or effect size beta, which in turn could offer an
assessment of allele effects on pathway output, or other omics
datasets.

A strength of PathVisio, on the other hand, is its enabling
of this feature to permit visualization of variants in pathways
sourced either from a public repository like Ensembl or from
user data. However, PathVisio lacks the interactive visualization
that links entities of different pathways, as it described in
Caleydo. In this context, MetaCore depicts related experimental
effects of genes known to be connected via membership
in a pathway, protein–protein interactions, co-citation, or
co-expression in other experimental datasets with network
visualization. MetaCore’s network settings can be used to view or
hide specific interaction mechanisms, such as binding, influence
on expression, phosphorylation, or cleavage. IPA’s approach is
similar to that of MetaCore. After running the enrichment
analysis, IPA lists the most represented processes, such as
canonical pathways, networks, upstream regulators, diseases,
and biological functions. In this way, the user subjectively
decides which information to use and how to integrate it.
Finally, Path has some methods to integrate GWAS data in
pathway analysis. Path’s basic data visualization of pathways uses
the common strategies described above, and data integration
focuses specifically on genetic information and on gene–gene
interactions. Path’s representation also includes an LD plot, useful
and important support for GWAS interpretation.

Suggested Improvements for Data
Integration in Pathway-Based Analysis
Tools
As early as 2005, the importance of effective approaches to
visualization was noted through interviews and observations
of current work practices (Saraiya et al., 2005). That report
highlighted different aspects of pathway visualization, and
suggested future developments to improve the researcher’s job.
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FIGURE 1 | Mock-up visualization of the combination of useful features to apply for GWAS visualization and analysis in pathway-based tools. The panels show: (A)
list of pathways obtained from a specific GWAS pathway analysis algorithm; (B) pathway diagram selected from one of the pathways listed in the panel (A), where
genes with GWAS hits are highlighted (red border); (C) other information with hyperlinks related to several types of data with regard to the gene selected from the
panel (B), that could be displayed in expandable/collapsible lists. Highlighted green are the tools in which the specific feature described is present, red highlights
indicate features that are either not present or partially present in the tools reviewed.

Our comparisons indicate that most of those recommendations
have been implemented. Two examples are the options to
automatically search for relevant pathways containing genes
from an uploaded dataset, and access to periodically updated
pathway libraries. We have presented different types of visual
strategies used in currently available tools that, for a specific
gene set, support the connection with various kinds of pathway
information including significant pathways, metabolites involved
therein, and related diseases. With many different types of high-
throughput data now readily available, including gene expression,
metabolomics and protein–protein interactions, methods for
integrated analysis and visualization are greatly needed (Gomez-
Cabrero et al., 2014). Visual strategies are particularly important
for data from high-throughput experiments that provide
information about many genes, facilitating evaluation of potential
interactions between affected genes. This potentially can speed
the investigation of the SNP effect in the pathway. Indeed,
highlighting the relevant items related to the research question
can reduce the process of investigating pathways singly.
Moreover, alternative visualizations such as pathway hierarchies
and network analysis can also reduce the long list of relevant
pathways resulting from a pathway analysis. However, once the
relevant processes are identified, researchers still must investigate
those pathways one by one, in order to understand in detail
how a SNP influences gene function in the entire process.
MetaCore and IPA are examples that use networks to visualize
the data integration. However, genetic variants cannot be used
readily with these methods, because the data uploaded are not
completely recognized. Adding the variants option to these tools
would allow the user to contextualize the function of the genetic
polymorphisms on different molecular levels. In addition, when

data such as SNP–SNP interactions become available, pathway
tools that present a network visualization option (i.e., MetaCore
and IPA) could support display of epistatic interactions from a
set of SNPs located in genes that function in the same pathway.
In general, several specific omics data integration methods that
support inclusion of genetic variants in a pathway already exist.
In this context, it is suitable to mention BioXM from Biomax
Informatics (Maier et al., 2011) because it semantically integrates
existing knowledge such as genotype–phenotype relations or
signal transduction pathways, and organizes data into structured
networks that are connected with clinical and experimental data
(e.g., metabolites or proteomics datasets). With regard to the
pathway collection, BioXM is flexible in that, it can display any
pathway data, but requires input of pathway enrichment statistics
from other sources. BioXM, on the other hand, is designed
for flexibility and can integrate and display a wide range of
relationships between entities, including pathways and genetic
variants, but linking those two has not been demonstrated with
GWAS data.

New Types of Genetic Variant
Interactions for Pathway-Based Analysis
Tools
Additional characteristics regarding genetic variant interactions
currently are rarely depicted in pathway visualizations: edgetics,
gene–environment (G × E), and epistatic interactions. Edgetics is
a new term referring to network perturbation models focusing on
specific alterations of the molecular interactions resulting from
genetic variants (Zhong et al., 2009). This perturbation model
might improve understanding of how mutations associating
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with complex diseases affect biological networks or interactome
properties (Markowetz, 2010). With network visualization
already developed in some of the presented tools, it would be
exciting to see this model implemented as a new feature.

Another area in which pathway visualization of genetic
associations can be improved involves G × E, where the
genotype–phenotype association exists only under certain
environmental conditions. A recently published catalog of G × Es
for numerous cardiometabolic phenotypes showed the wide
extent under which the genotype–phenotype association can be
modified by factors such as diet, exercise, sleep, and many other
exposures and lifestyle factors (Parnell et al., 2014). For identical
traits, that study noted sparse overlap of SNPs contributing
to main-effect associations from GWAS compared to those
supporting G × E interactions. In such instances, the pathway
edges linking the G × E gene to the phenotype obviously would
be conditional, and in many examples would contain entities such
as glucose, palmitic acid, or linoleic acid, which are constituents
of standard metabolic pathways. Finally, epistatic interactions
were used here as a use case to test the visualization tool.
As a result PathVisio, MetaCore, and IPA are the tools that
support upload of variant data, and highlight those variants in
the pathways of the genes related to the uploaded SNPs. This
feature aids investigation of the effect of the epistatic SNPs
within the genes and their pathways. However, only PathVisio
is able to provide the complete list of variants present in the
uploaded data. Indeed, IPA identifies the genes related to the
SNPs without showing the SNPs, and MetaCore performed a
SNP-gene mapping that resulted in a selection of genes not
included in the original dataset. Concerning IPA, it is notable to
mention that Ingenuity developed another software specifically
dedicated to variant investigation called “Variant Analysis” that
was not detected by the review literature search, but discovered
only through the Ingenuity website. In addition, the PathVisio
RegInt plugin, even if it can upload the complete dataset, fails
to automatically provide to the users the overview of the total
pathways that present at least one of the genes with the SNPs.
This feature is supported by IPA and MetaCore. The epistatic
obesity use case shows that IPA, MetaCore and PathVisio have
several features that permit the visualization of genetic variants
in pathways. However, these features are not harmonized in one
tool, but this is a reasonable outcome because the tools were
not built with the aim to analyze genetic variants. On the other
hand, it is remarkable to notice that these tools already have
some characteristics that, with improvements, could permit such
complexities of variant analysis. In summary, such conditional
relationships as epistasis, G × E interactions and edgetics
will need to be considered for pathway-based visualization of
association data because genome-wide approaches to identify
such genetic elements are rapidly maturing (Markowetz, 2010;
Parnell et al., 2014; Wei et al., 2014; De et al., 2015).

CONCLUSION

What is especially needed regarding the SNP data visualization
in pathway-based analysis tools are two important items. One,

there must be development and integration in the tools of
specific statistical methods for GWAS pathway analysis (red
highlight in Figure 1). Two, improving strategies for combined
visualization of genetic data with other omics data in a pathways
context will vastly facilitate interpretation of results. For the
first point, as indicated in Section “Results” and listed in
Supplementary Table 1, some accepted statistical methods used
for pathway analysis of GWAS data have been described. Our
recommendation is to include at least one of these algorithms
in pathway-based analysis tools that focus on GWAS data. This
will enhance pathway-based analyses by increasing accuracy
to detect significant pathways because of the specificity of
the statistics for GWAS data. Additionally, it is necessary
that results such as subpaths of genes with consideration
of significant SNPs in the affected pathways, are visualized
properly. Next, the necessity to identify a strategy of combining
genetic variants with other omics data could be addressed
by permitting immediate evaluation of significant SNPs in
the pathway context. While a detailed report of functional
information is already provided for genes in a pathway, this
needs to be extended to SNPs. Examples of SNP information
that could be useful to add include: (i) incorporation of data
or links to databases that contain association data from other
sources, including data mined from GWAS databases, epistasis
and G × E, eQTL data, and allele-specific drug and micronutrient
responses; (ii) SNP function and description; (iii) LD plot images
anchored to the chromosomal region where the SNP maps.
Lastly, other improvements in visualizing genotype–phenotype
associations will involve extending the phenotype information
to co-morbidities, and data from electronic health records and
public health agencies.

The main aim of this review is to give an overview of the
current state of the tools that visualize SNP data in a pathway
context. We attempted to identify and describe the visualization
options of the tools that resulted from a literature review in order
to provide suggestions for improvements in this developing field
(Figure 1). We also have reported the necessity to include in
these tools statistical methods for the pathway-based analysis
in GWAS, aiming to define features for more comprehensive
pathway-based analysis tools.
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