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Genome rearrangements are large-scale evolutionary events that shuffle genomic

architectures. The minimal number of such events between two genomes is often used

in phylogenomic studies to measure the evolutionary distance between the genomes.

Double-Cut-and-Join (DCJ) operations represent a convenient model of most common

genome rearrangements (reversals, translocations, fissions, and fusions), while other

genome rearrangements, such as transpositions, can be modeled by pairs of DCJs.

Since the DCJ model does not directly account for transpositions, their impact on DCJ

scenarios is unclear. In the present work, we study implicit appearance of transpositions

(as pairs of DCJs) in DCJ scenarios. We consider shortest DCJ scenarios satisfying the

maximum parsimony assumption, as well as more general DCJ scenarios based on some

realistic but less restrictive assumptions. In both cases, we derive a uniform lower bound

for the rate of implicit transpositions, which depends only on the genomes but not a

particular DCJ scenario between them. Our results imply that implicit appearance of

transpositions in DCJ scenarios may be unavoidable or even abundant for some pairs of

genomes. We estimate that for mammalian genomes implicit transpositions constitute at

least 6% of genome rearrangements.

Keywords: genome rearrangements, transpositions, DCJ, breakpoint graphs, chromosome evolution

1. INTRODUCTION

Genome rearrangements are dramatic evolutionary events that change genome structures. The
number of genome rearrangements between two genomes represents a good measure for their
evolutionary closeness and is used as such in phylogenomic studies. This measure is often based
on the maximum parsimony assumption, implying that the evolutionary distance can be estimated
as the minimum number of rearrangements (known as the rearrangement distance) to transform
one genome into the other. However, the maximum parsimony assumption may not always hold,
inspiring the notion of the true evolutionary distance (Lin andMoret, 2008; Alexeev and Alekseyev,
2017).

The most common rearrangements are reversals that inverse contiguous segments of
chromosomes, translocations that exchange tails of two chromosomes, and fissions/fusions that
split/merge chromosomes. All these rearrangements can be conveniently modeled by Double-
Cut-and-Join (DCJ) operations (Yancopoulos et al., 2005), also known as 2-breaks (Alekseyev and
Pevzner, 2008), which make up to 2 “cuts” in a genome and “glue” the resulting genomic fragments
in a new order.
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Transpositions represent yet another type of genome
rearrangements that relocate genomic segments across
the genome. In contrast to reversal-like rearrangements
modeled by DCJs (2-breaks), transpositions correspond to
3-breaks (Alekseyev and Pevzner, 2008), which make 3 cuts and
3 gluings in a genome1. Transpositions are more “powerful”
than reversal-like rearrangements, so in the model that includes
both types of rearrangements (as 3-breaks and DCJs), the former
tend to appear in shortest rearrangement scenarios in a large
proportion. However, in reality transpositions happen more
rarely than reversals and typically appear in a small proportion
in the course of evolution (e.g., Ranz et al. 2003 estimate that
in Drosophila evolution transpositions constitute less than
10% of genome rearrangements). Jiang and Alekseyev (2011)
show that even the most promising model of weighted genomic
distance (Eriksen, 2001; Bader and Ohlebusch, 2007; Fertin
et al., 2009), where transpositions are assigned a higher weight,
cannot bound their proportion in the corresponding optimal
rearrangement scenarios to a biologically reasonable value.
This emphasizes the need for an adequate model for analysis of
transpositions among other types of genome rearrangements.

While a transposition cannot be directly modeled by a DCJ, it
can be modeled by a pair of DCJs. We refer to such pair of DCJs
as an implicit transposition. We remark that DCJs forming an
implicit transposition may not necessarily appear consecutively
in a DCJ scenario. Furthermore, two implicit transpositions
may share a DCJ and thus correspond to at most one actual
transposition. So we pose a question of how many transpositions
can be simultaneously recovered from a given DCJ scenario by
shuffling DCJs and replacing suitable pairs of consecutive DCJs
with transpositions. We consider both shortest DCJ scenarios
resulting from the maximum parsimony assumption, and more
general proper DCJ scenarios based on some realistic but less
restrictive assumptions. In both cases, we derive an universal
lower bound for the rate of implicit transpositions, which
depends only on the genomes but not a particular DCJ scenario
between them. Our results imply that implicit appearance of
transpositions in DCJ scenarios may be unavoidable or even
abundant for some pairs of genomes.

The paper is organized as follows. In section 2, we
describe graph-theoretical representation of genomes and DCJ
rearrangements. In section 3, we analyze shuffling of DCJ
scenarios and introduce the dependency graphs capturing
their combinatorial structure. In section 4, we study the
appearance of (disjoint) implicit transpositions in proper and
shortest DCJ scenarios between two genomes, and prove
uniform lower bounds for their rate. In section 5, we use
our results to estimate the rate of implicit transpositions in
DCJ scenarios between mammalian genomes and between
yeast genomes. We conclude the paper with discussion in
section 6.

1While not all 3-breaks represent transpositions, they provide a convenient model

for analysis of transpositions and other transposition-like rearrangements. In

the present study, we adopt this model and commonly refer to 3-breaks as

(generalized) transpositions.

2. BREAKPOINT GRAPHS AND DCJ
SCENARIOS

Let P be a genome with circular and/or linear chromosomes.
We represent a circular chromosome consisting of n genes as a
cycle with n directed edges (encoding genes and their strands)
alternating with n undirected edges connecting extremities of
adjacent genes. Similarly, we represent a linear chromosome
consisting of n genes as a path with n directed edges alternating
with n+1 undirected edges, where n−1 undirected edges connect
extremities of adjacent genes and two more undirected edges
connect each endpoint extremity to its own special vertex labeled
∞ (corresponding to telomeres). The genome graph G(P) is a
collection of such cycles and paths (Figure 1A).

A DCJ in genome Pmimics some genome rearrangement and
corresponds to a replacement of one or two undirected edges in
the genome graph G(P) in one of the following ways:

1. {x, y}, {u, v} → {x, u}, {y, v} (internal reversals,
translocations),

2. {x, y}, {u,∞} → {x, u}, {y,∞} (reversals at chromosome
ends, translocations involving a whole chromosome),

3. {x,∞}, {y,∞} → {x, y} (fusions),
4. {x, y} → {x,∞}, {y,∞} (fissions),

where x, y, u, v are regular (non-∞) vertices.
For genomes P and Q composed of the same set of genes,

the breakpoint graph G(P,Q) is defined as the superposition
of individual genome graphs G(P) and G(Q), and can be
constructed by “gluing” the identically labeled directed edges in
the graphs (Figures 1B,C). From now on, we will ignore directed
edges and assume that G(P,Q) consists only of undirected
edges, where the edges from genome P (P-edges) are colored
black and the edges from genome Q (Q-edges) are colored
red. Then the breakpoint graph G(P,Q) represents a collection
of cycles and paths consisting of undirected edges alternating
between black and red colors. We distinguish the following
types of cycles and paths with respect to their length ℓ (i.e.,
the number of edges in a cycle or path): trivial cycles and
paths (ℓ = 2), even paths (ℓ is even) and odd paths
(ℓ is odd). We denote the number of cycles, trivial cycles,
paths, trivial paths, even paths, and odd paths in G(P,Q) as
c(P,Q), c2(P,Q), p(P,Q), p2(P,Q), peven(P,Q), and podd(P,Q),
respectively. By definition, we have peven(P,Q) + podd(P,Q) =

p(P,Q).
While at the ends of an even path there is always a P-edge

and a Q-edge, an odd path starts and ends with the same edge
color. We therefore will distinguish odd paths with P-edges at the
ends (PP-paths) and with Q-edges at the ends (QQ-paths), and

denote their number by pP
odd

(P,Q) and p
Q
odd

(P,Q), respectively.

Trivially, we have podd(P,Q) = pP
odd

(P,Q) + pQ
odd

(P,Q). Since

in G(P,Q) there are pP
odd

(P,Q) +
peven(P,Q)

2 P-edges incident to
∞, which corresponds to telomeres in genome P, the number

of linear chromosomes in P equals pP
odd

(P,Q) +
peven(P,Q)

2 .
Similarly, in genomeQ the number of linear chromosomes equals

pQ
odd

(P,Q) +
peven(P,Q)

2 .
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FIGURE 1 | (A) Genome graphs G(P) and G(Q) for unichromosomal circular genome P = {+a− b+ c− d} and unichromosomal linear genome Q = (+a+ b+ d+ c),

where undirected P-edges and Q-edges are colored black and red, respectively. (B) The superposition of genome graphs G(P) and G(Q). (C) The breakpoint graph

G(P,Q) (two layouts) is obtained from the superposition of G(P) and G(Q) with removal of directed edges. The graph G(P,Q) is formed by a single black-red path, i.e.,

peven(P,Q) = 0, c(P,Q) = 0, podd (P,Q) = 1. (D) A transformation of the breakpoint graph G(P,Q) into G(Q,Q), representing to a shortest DCJ scenario (of length

dDCJ(P,Q) = 4) between genomes P and Q.

A DCJ scenario transforming genome P into genome Q
corresponds to a transformation of the breakpoint graph G(P,Q)
into the breakpoint graph G(Q,Q),
which consists of trivial cycles and trivial paths (Figure 1D).

Reconstruction of DCJs happened in the evolution between
genomes of extant species represents a challenging task in
comparative genomics. Such reconstruction is often based on
the parsimony assumption that evolutionary DCJs (i.e., genome
rearrangements) between two genomes form a shortest DCJ
scenario. However, in reality the parsimony assumption may not
always hold, emphasizing the need to consider DCJ scenarios that
are not necessarily shortest (Lin and Moret, 2008; Alexeev and
Alekseyev, 2017). We consider a class of DCJ scenarios under
realistic but less restrictive assumptions, which includes the class
of shortest DCJ scenarios as a subclass. Namely, we call a DCJ
scenario between genomes P andQproper if in the corresponding
transformation of the breakpoint graphs fromG(P,Q) toG(Q,Q),
the following three conditions hold:

(P1) any edge once removed is never recreated (that is, in the
course of evolution, each gene adjacency is either preserved,
or broken and never restored);

(P2) no pair of DCJs (not necessarily adjacent) can be replaced
by an equivalent single DCJ (that is, there is no obvious way
to shorten the scenario);

(P3) the number of fusions and fissions does not exceed
pP
odd

(P,Q) and p
Q
odd

(P,Q), respectively (in particular, we
avoid unrealistic scenarios where one genome is cut into
genes by fissions and then glued into the other genomes
by fusions). Lemma 3 below states that these bounds are

the maximum numbers of such rearrangements that may
appear in shortest DCJ scenarios.

Below we prove that shortest DCJ scenarios satisfy these
properties and thus are proper. We start with recalling and
proving some useful lemmas.

THEOREM 1 (Tannier et al. 2009). The DCJ distance between
genomes P and Q on n genes equals

dDCJ(P,Q) = n− c(P,Q)−
peven(P,Q)

2
.

LEMMA 2. (Bergeron et al., 2006)2. In a shortest DCJ scenario
transforming genome P into genome Q, each DCJ performs one of
the following operations on P-edges in the breakpoint graph:

(i) splits a non-trivial cycle into two cycles,
(ii) splits a non-trivial even path into a cycle and an even path,
(iii) splits an odd path into a cycle and an odd path,
(iv) closes a PP-path into a cycle,
(v) splits a QQ-path into two even paths,
(vi) transforms a PP-path and a QQ-path into two even paths.

LEMMA 3. Let t be any shortest DCJ scenario transforming
genome P into genome Q. Then the number of fusions and

fissions in t is bounded by pP
odd

(P,Q) and pQ
odd

(P,Q), respectively.

2Bergeron et al. (2006) deals with adjacency graphs, which are dual to breakpoint

graphs. Odd paths and even paths in the breakpoint graph correspond in the

adjacency graph to even paths and odd paths, respectively.
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Furthermore, there exists a shortest DCJ scenario transforming
genome P into genome Q such that it contains exactly pP

odd
(P,Q)

fusions and p
Q
odd

(P,Q) fissions.

Proof: Let t be any shortest DCJ scenario transforming a genome
P into a genome Q. Fusions and fissions in t correspond to DCJs
of type (iv) and (v) as defined in Lemma 2. Hence, every fusion
eliminates one PP-path and every fission eliminate one QQ-path
in the breakpoint graph. Lemma 2 also implies that the number
of PP-paths and the number of QQ-paths never increases along
t. Hence, the number of fusions and fissions in t is bounded by

pP
odd

(P,Q) and p
Q
odd

(P,Q), respectively.
It it easy to construct a shortest DCJ scenario that uses DCJs

of types (i), (ii), (iv), (v) only. Indeed, these types of DCJs define
how to process existing connected components in the breakpoint
graph until they all turn into trivial path/cycles. Such scenario
eliminates PP-paths and QQ-paths with fusions and fissions.
So, it must contain exactly pP

odd
(P,Q) fusions and p

Q
odd

(P,Q)
fissions.

Now, we are ready to prove that any shortest DCJ scenario is
proper.

THEOREM 4. Any shortest DCJ scenario between two genomes is
proper.

Proof: Let t be any shortest DCJ scenario between two genomes.
Lemma 3 implies that t satisfies the condition (P3) of a proper
DCJ scenario. It is also clear that t satisfies the condition (P2) as
otherwise we would be able to shorten it.

To prove the condition (P1), we notice that if an edge (u, v)
is removed from the breakpoint graph by a DCJ in t, then by
Lemma 2 after this DCJ vertices u and v start to belong to distinct
paths/cycles and at least one of the vertices u and v belongs to a
cycle or an even path. Again by Lemma 2, no subsequent DCJ in t
can make these vertices to belong to the same cycle or path again.
That is, the edge (u, v) is never re-created.

3. SHUFFLING OF DCJ SCENARIOS AND
DEPENDENCY GRAPHS

Recall that each DCJ removes and adds some edges in a
breakpoint graph. Two adjacent DCJs α and β in a DCJ scenario
are called independent if β removes edges that were not created
by α. Otherwise, if β removes some edge(s) created by α, then β

depends on α. Furthermore, let k ∈ {1, 2} be the number of edges
created by α and removed by β . We say that β strongly depends
on α if k = 2, and weakly depends3 on α if k = 1. We remark that
proper DCJ scenarios cannot contain strongly dependent DCJs
by the condition (P2).

In a DCJ scenario, one can change the order of two adjacent
independent DCJs and obtain another DCJ scenario of the
same length between the same two genomes. Similarly, a pair
of adjacent weakly dependent DCJs in a DCJ scenario can be
replaced with another pair of weakly dependent DCJs, resulting

3Such DCJs are called enchained in Braga and Stoye (2010).

FIGURE 2 | The dependency graph DG(t) for DCJ scenario t defined in

Figure 1D.

in a new DCJ scenario of the same length between the same two
genomes (Braga and Stoye, 2010; Jiang and Alekseyev, 2014).

We therefore consider the following two types of length-
preserving operations, which can be applied to a pair of adjacent
DCJs (α,β) in a DCJ scenario:

(T1) If α and β are independent, replace (α,β) with (β ,α).
(T2) If α and β are weakly dependent, replace (α,β) with an

equivalent pair of weakly dependent DCJs.

To better capture and analyze the combinatorial structure of
DCJs in a DCJ scenario t, we construct the dependency graph
DG(t) (also called overlap graph in Ozery-Flato and Shamir 2006;
Ouangraoua and Bergeron 2010), whose vertices are labeled with
DCJs from t and there is an arc (α,β) whenever β depends on α

(Figure 2).

THEOREM 5. Let t be a proper DCJ scenario between two
genomes composed of the same genes. Then

(i) the pairs of dependent DCJs in t are in one-to-one
correspondence with the arcs in DG(t);

(ii) both indegree and outdegree of each vertex in DG(t) are at
most 2;

(iii) t represents a topological ordering of DG(t);
(iv) DG(t) is acyclic.

Proof: An arc (α,β) in DG(t) corresponds in the breakpoint
graph transformation t to the edge that is created by DCJ α and
removed by DCJ β . Since t is proper, the removed edges are never
recreated, implying that this correspondence is one-to-one.

Furthermore, any DCJ in t (which removes at most two edges
and creates at most two edges) depends on at most two other
DCJs and may have at most two weakly dependent DCJs. That is,
both indegree and outdegree of any vertex in DG(t) are bounded
by 2.

If (α,β) is an arc in DG(t), then DCJ β removes some edge e
created by DCJ α. No other DCJ besides α can create e because
t is a proper transformation. Thus β must follow α in t. So t
represents a topological ordering for DG(t) and therefore DG(t)
is acyclic.

Braga and Stoye (2010) show that any shortest DCJ scenario
can be obtained from any other shortest DCJ scenario between
the same two genomes using only operations of types (T1) and
(T2). The following theorem extends this result to proper DCJ
scenarios and operations (T1) only.

THEOREM 6. Let t1 and t2 be proper DCJ scenarios between the
same two genomes. Scenario t1 can be obtained from scenario t2
with operations (T1) if and only if DG(t1) = DG(t2).
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Proof: Suppose that t1 and t2 correspond to the same dependency
graph, i.e., DG(t1) = DG(t2) = G. Then by Theorem 5 t1
and t2 represent topological orderings of G. We will show that
t1 and t2 can be obtained from each other with operations
(T1). Suppose that t1 and t2 start with the same k DCJs
but then diverge, i.e., t1 = (α1,α2, . . . ,αk, γ , . . . ) and t2 =

(α1,α2, . . . ,αk,β1,β2, . . . ,βm, γ , . . . ), where γ 6= β1 are the
first DCJs different in the two scenarios. We will show that
γ in t2 can be moved to (k + 1)-st position (i.e., its position
in t1) with operations (T1). Since βm follows γ in t1 but
precedes γ in t2, these vertices are not connected with an
arc in G and we can apply operation (T1) to t2 to obtain
(α1,α2, . . . ,αk,β1,β2, . . . , γ ,βm, . . . ). After m such operations
we get (α1,α2, . . . ,αk, γ ,β1,β2, . . . ,βm, . . . ), where γ is at the
same position as in t1. Using induction on k, we conclude that
t1 can be obtained from t2 with operations (T1), and vice versa.

Now, suppose that DCJ scenarios t1 and t2 can be obtained
from each other with operations (T1). Since operations (T1)
changes only the order of DCJs in the scenario but keeps the DCJs
themselves intact, the dependency graph is not affected by such
operations either. Therefore, DG(t1) = DG(t2).

Let e(t) be the number of arcs in DG(t). We will need the
following lower bound of e(t) for any proper DCJ scenario t.

THEOREM 7. Let t be a proper DCJ scenario between genomes P
and Q composed of the same n genes. Then the number of arcs in
DG(t) is bounded as follows:

e(t) ≥ 2|t| − n− podd(P,Q)−
peven(P,Q)

2
+ c2(P,Q)+ p2(P,Q).

Proof: It is easy to see that the number of P-edges in the

breakpoint graph G(P,Q) equals n + pP
odd

(P,Q) +
peven(P,Q)

2 .

Among them exactly m(P,Q) = n + pP
odd

(P,Q) +
peven(P,Q)

2 −

c2(P,Q)− p2(P,Q) P-edges belong to the non-trivial cycles/paths
in G(P,Q). These P-edges have to be removed by DCJs in t in
order to form trivial cycles or paths inG(Q,Q). The other P-edges
removed by DCJs in tmust have been created by earlier DCJs. By

the definition of a proper scenario, at most pQ
odd

(P,Q) DCJs in t
remove one P-edge, while the other DCJs remove two P-edges.
Thus, the total number of removed P-edges by DCJs in t is at

least 2|t| − p
Q
odd

(P,Q). The number of previously created and
then removed P-edges is therefore at least

2|t| − p
Q
odd

(P,Q)−m(P,Q) = 2|t| − n

−podd(P,Q)−
peven(P,Q)

2
+ c2(P,Q)+ p2(P,Q)

which gives a lower bound for the number of arcs in DG(t) by
Theorem 5.

From Theorem 1 and 7, we easily get the following statement:

COROLLARY 8. Let t be a shortest DCJ scenario between
genomes P and Q composed of the same n genes. Then e(t) ≥

E(P,Q), where

E(P,Q) = n− 2 · c(P,Q)− p(P,Q)−
peven(P,Q)

2
+ c2(P,Q)+ p2(P,Q).

4. IMPLICIT TRANSPOSITIONS IN DCJ
SCENARIOS

While DCJs mimic most common genome rearrangements
(reversals, translocations, fissions, fusions), more complex
rearrangements such as transpositions cannot be modeled by
a single DCJ. A transposition, which cuts off a segment of a
chromosome and inserts it into some other place in the genome,
can be modeled by a pair of weakly dependent DCJs, replacing
three undirected edges with three other undirected edges on the
same six vertices in the genome graph.We remark that this graph
operation is also known as a 3-break rearrangement (Alekseyev
and Pevzner, 2008).

Below we study how transpositions appearing in the course
of evolution between two genomes may be captured by
DCJ scenarios between these genomes. While a transposition
constitutes a pair of DCJs, their positions in a DCJ scenario
may not always be reconstructed correctly. In particular, the two
DCJs forming a transpositionmay appear interweaved with other
independent DCJs that precede or follow this transposition in the
course of evolution. This inspires the following definition.

In a DCJ scenario t = (α1,α2, . . . ,αn), a pair of weakly
dependent DCJs (αi,αj) forms an implicit transposition if these
DCJs can be made adjacent by applying a number of operations
(T1). Such adjacent DCJs then can be replaced by a single
transposition (modeled by a 3-break). We refer to such a
transposition as recovered from the DCJ scenario t. This poses
us a question of how many transpositions can be simultaneously
recovered from a given proper DCJ scenario t.

Since two distinct implicit transpositions in a proper DCJ
scenario t may share a DCJ, the maximum number of
transpositions that can be recovered from t may be smaller than
the number of implicit transpositions in t. We therefore are
interested in (pairwise) disjoint implicit transpositions, which
do not share any DCJs between them. Furthermore, it is not
immediately clear if existence of a set of m disjoint implicit
transpositions in t implies that all these m transpositions can be
simultaneously recovered from t. We will prove below that this
is indeed the case. We therefore define DIT(t) as the maximum
number of disjoint implicit transpositions in t, which, as we will
show, also equals the maximum number of transpositions that
can be simultaneously recovered from t.

Simultaneously recovering DIT(t) transpositions from t, we
will obtain a scenario of length |t| − DIT(t) composed of DIT(t)
transpositions and |t| − 2 · DIT(t) DCJs. The proportion of

transpositions in this scenario is r(t) = DIT(t)
|t|−DIT(t)

, which we refer

to as the rate of implicit transpositions in t. Since there exist many
different proper DCJ scenarios between two genomes, our goal
will be to derive a lower bound for r(t) that does not depend on t,
but only on the given genomes.

4.1. Disjoint Implicit Transpositions as
Matchings
From the definition of an implicit transposition it follows
that an implicit transposition formed by a pair of DCJs
(α,β) in a proper DCJ scenario t corresponds to an arc in
the dependency graph DG(t). However, it is not immediately
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clear if every arc (x, y) in DG(t) represents an implicit
transposition, i.e., if DCJs x and y in t can be made adjacent
with operations (T1). We call an arc (x, y) a shortcut if
there exists a path between vertices x and y in DG(t) that
does not pass through (x, y). We will show that shortcuts
represents the only case for making DCJs adjacent with
operations (T1).

THEOREM 9. Let G be a directed acyclic graph. An arc (α1,α2)
is a shortcut in G if and only if there does not exist no topological
ordering of G in which α1 and α2 are adjacent.

Proof: From the definition of a shortcut, it follows that its
endpoints cannot be adjacent in any topological ordering of G.

Now, we prove that if an arc (α1,α2) is not a
shortcut then there exists a topological ordering of G,
such that endpoints of arc (α1,α2) are adjacent. Let
t = (β1, . . . ,βk,α1, γ1, . . . , γm,α2, δ1, . . . , δw) be any
topological ordering of G. Let S be the set containing
vertices γi such that there is a directed path from α1 to γi,
and let T = {γ1, γ2, . . . , γm} \ S. It follows that there is no
path from a vertex α1 to a vertex x ∈ T and no path from
y ∈ S to α2. Hence, we construct a new topological ordering
t′ = (β1, . . . ,βk,T,α1,α2, S, δ1, . . . , δw), where vertices from T
and S in t′ appear in the same order as in t. We constructed a
topological ordering of G, where endpoints of arc (α1,α2) are
adjacent.

THEOREM 10. Let G be a directed acyclic graph. Then for any
matching M in G that does not contain shortcuts, there exists a
topological ordering t of G such that for any arc (α1,α2) ∈ M,
DCJs α1 and α2 are adjacent in t.

Proof: We prove the theorem statement by induction on |M|. For
the base case |M| = 1, the statement follows from Theorem 9.
Assume now that the statement holds for |M| = m ≥ 1.

Let |M| = m + 1, (α1,α2) be an arc in M, and M′ =

M \ {(α1,α2)}. Let G
′ be a graph obtained from G by removing

arc (α1,α2) and gluing vertices α1, α2 into a new single vertex
β . Since the arc (α1,α2) is not a shortcut, such contraction
of arc (α1,α2) cannot created a cycle in G′. Hence, G′ is a
directed acyclic graph and matching M′ in G′ does not contain
shortcuts. Since |M′| = m, by the induction assumption there is
a topological ordering t′ of G′ such that for any arc (γ1, γ2) ∈ M′,
γ1 and γ2 are adjacent in t′.

We obtain t from t′ by replacing the vertex β with the ordered
pair of vertices α1,α2. It is easy to see that such t represents the
required topological ordering for G.

For a directed graph G, we define G as the undirected graph
obtained fromG by making all arcs undirected. We call a graphG
a directed forest if G is a forest. We will need the following lemma
about a lower bound of matching size in a directed forest:

LEMMA 11. Let G be a directed forest such that the degree of each
vertex is bounded by d. Then there exists a matching M in G such
that

|M| ≥

⌈

e(G)

d

⌉

,

where e(G) is the number of arcs in G.

Proof: Let us construct a matching M in G iteratively. Initially
we let M = ∅. If G contains at least one edge, it also contains
a leaf α (i.e., vertex of degree 1). We add its only incident edge
(α,β) to M and remove from G all edges incident to the vertex
β . Since degree of each vertex in G is bounded by d, at most d
such edges are deleted. We iterate this procedure until all edges

of G are removed. Thus we perform at least
⌈

e(G)
d

⌉

iterations,

implying that |M| ≥
⌈

e(G)
d

⌉

. By construction, it is clear that M

forms a matching in G and thus under a suitable orientation of
the edges inM, it also forms a matching in G.

4.2. Implicit Transpositions in Proper DCJ
Scenarios
We will need the following lemma.

LEMMA 12. Let t be a proper DCJ scenario between two genomes
composed of the same genes, and M be a matching in DG(t) with
no shortcuts. Then

DIT(t) ≥ |M|.

Proof: By Theorem 10, there exists a topological ordering t′ of
DG(t) such that the endpoints of all arcs from M are adjacent in
t′. By Theorem 6, the topological ordering t′ can be obtained from
t with operations (T1), implying that one can simultaneously
recover from t all arc (representing pairs of weakly dependent
DCJs in t) present inM. Therefore, DIT(t) ≥ |M|.

THEOREM 13. Let t be a proper DCJ scenario between two
genomes composed of the same genes. Then

DIT(t) ≥

⌈

e(t)

6

⌉

.

Proof: By Theorem 5, the graph DG(t) is acyclic. Let V be the
vertex set of DG(T) and Vl be the set of vertices v ∈ V such that
the longest path from a source (i.e., a vertex of indegree 0) to v has
length l. In particular, V0 contains all the sources. Let k = |V0| be
the number of sources.

From the definition, it follows that each vertex from Vl for
l > 0 has at least one incoming arc starting at a vertex from
Vl−1. Let us fix one such incoming arc for each vertex from Vl,
and consider the subgraph G obtained from DG(t) by removing
all arcs except the fixed ones. Then G contains |V| vertices and
|V| − k arcs. Since by Theorem 5 the indegree and outdegree of
each vertex in DG(t) are at most 2, the degree of each vertex in
G is at most 3. Then by Lemma 11, there exists a matching M

in G without shortcuts such that |M| ≥
⌈

|V|−k
3

⌉

. Furthermore,

since DG(t) contains at most 2(|V| − k) arcs, we have |M| ≥
⌈

2(|V|−k)
6

⌉

≥
⌈

e(t)
6

⌉

.

From the definition of G, it follows that each arc from G does
not form a shortcut in DG(t). Indeed, for each arc (u, v) from
G, we have u ∈ Vl−1 and v ∈ Vl for some l > 0. If (u, v)
forms a shortcut in DG(t), then there exists a path between u
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and v of length greater than 1, implying that there exists a path
from a source to v of length greater than l, which contradicts the
condition v ∈ Vl. Therefore, M represents a matching in DG(t)
without shortcuts, and thus by Lemma 12, DIT(t) ≥ |M| ≥
⌈

e(t)
6

⌉

.

The following theorem gives a uniform lower bound for r(t),
which does not depend on a particular scenario t.

COROLLARY 14. Let t be any proper DCJ scenario between
genomes P and Q composed of the same n genes. Then

r(t) ≥
1

2
−

3s(P,Q)

8dDCJ(P,Q)+ 2s(P,Q)
,

where s(P,Q) = n+ podd(P,Q)+
peven(P,Q)

2 − c2(P,Q)− p2(P,Q).

Proof: Since n ≥ c2(P,Q) + p2(P,Q), we have s(P,Q) ≥ 0. By
Theorems 7 and 13, we have

r(t) =
DIT(t)

|t| − DIT(t)
≥

e(t)
6

|t| − e(t)
6

≥
2|t| − s(P,Q)

4|t| + s(P,Q)

=
1

2
−

3s(P,Q)

8|t| + 2s(P,Q)
≥

1

2
−

3s(P,Q)

8dDCJ(P,Q)+ 2s(P,Q)
.

4.3. Implicit Transpositions in Shortest DCJ
Scenarios
In this section we focus on shortest DCJ scenarios, which
represent a special case of proper DCJ scenarios. For shortest DCJ
scenarios, we can refine the uniform lower bound for the rate of
implicit transposition given in Corollary 14.

Let t be a shortest DCJ scenario between two genomes. While
Theorem 5 claims that DG(t) is acyclic, the results of Shao et al.

(2013) imply that DG(t) is a forest4:

THEOREM 15 (Shao et al. 2013). Let t be a shortest DCJ scenario
between two genomes composed of the same genes. Then the graph

DG(t) is a forest.

By Theorem 15, DG(t) is a directed forest for any shortest DCJ
scenario t. This allows us to refine the result of Theorem 13 as
follows:

THEOREM 16. Let t be a shortest DCJ scenario between two
genomes composed of the same genes. Then

DIT(t) ≥

⌈

e(t)

4

⌉

.

Proof: By Theorem 5, the degree of each vertex in DG(t) is

bounded by 4. By Theorem 15, DG(t) is a forest. Hence, by

Lemma 11, there is a matching M such that |M| ≥
⌈

e(t)
4

⌉

.

4The study (Shao et al., 2013) considers more general trajectory graphs, fromwhich

the dependency graphs can be obtained by contraction of edges.

Since any arc in directed forest is not a shortcut, M represents
a matching with no shortcuts in DG(t). By Lemma 12, we have

DIT(t) ≥ |M| ≥
⌈

e(t)
4

⌉

.

Similarly to Corollary 14, from Theorem 16 we can
immediately derive a better lower bound for r(t) for any shortest
DCJ scenario t.

COROLLARY 17. Let t be any shortest DCJ scenario between
genomes P and Q composed of the same genes. Then

r(t) ≥

⌈

E(P,Q)
4

⌉

dDCJ(P,Q)−
⌈

E(P,Q)
4

⌉ .

Proof: Since r(t) = DIT(t)
dDCJ(P,Q)−DIT(t)

=
dDCJ(P,Q)

dDCJ(P,Q)−DIT(t)
− 1,

the value of r(t) monotonically increases as DIT(t) grows. The
stated bounds for r(t) immediately follow from Theorem 16 and
Corollary 8.

5. EVALUATION

In this section, we estimate the rate of implicit transpositions
recovered from pairwise DCJ scenarios between mammalian
genomes, and between yeast genomes. For each pair of genomes,
we use Corollary 14 and Corollary 17 for proper and shortest DCJ
scenarios, respectively, to compute the lower bound for the rate
of disjoint implicit transpositions between these genomes.

5.1. Mammalian genomes
We analyze a set of three mammalian genomes: rat, macaque,
and human represented as sequence of 1,360 synteny blocks (Ma
et al., 2006). The transposition rate between these genomes was
recently estimated with statistical method (Alexeev et al., 2015).
Since this method is currently limited to circular chromosomes,
we artificially circularize each chromosome in the genomes and
calculate the rate of implicit transpositions for these circularized
genomes, in addition to original (linear) genomes.

The results in Table 1 show that the lower bound is consistent
with the estimated transposition rate for circularized genomes.

5.2. Yeast Genomes
We also analyze a set of five yeast genomes: A. gossypii, K.
lactis, K. thermotolerans, S. kluyveri, and Z. rouxii, represented as
sequences of the same 710 synteny blocks (Chauve et al., 2010).
Table 2 demonstrates that the rate of implicit transpositions in
DCJ scenarios between yeast genomes is at least 0.06.

6. CONCLUSION

The present work continues the study of the combinatorial
structure of DCJ scenarios from the perspective of simple
shuffling operations, each affecting only a pair of consecutive
DCJs (first introduced in Braga and Stoye 2010).

Recently it was shown (Jiang and Alekseyev, 2014) that
any shortest DCJ scenario between a genome with m ≥ 1
circular chromosomes and a linear genome (consisting of linear
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TABLE 1 | Lower bounds for the rate of disjoint implicit transpositions between pairs of mammalian genomes among rat, macaque, and human.

Genome pair DCJ distance Lower bound for r(t),

where t is proper

Lower bound for r(t),

where t is shortest

Estimated rate of

transpositions (Alexeev et al.,

2015)

Human and macaque 106 0.06:0.06 0.09:0.10 0.25

Human and rat 707 0.10:0.11 0.15:0.17 0.26

Macaque and rat 701 0.09:0.10 0.15:0.17 0.28

In the entry x : y, x gives a bound for original (linear) genomes, and y gives a bound for their circularized versions.

TABLE 2 | Lower bounds for the rate of disjoint implicit transpositions between

pairs of yeast genomes among A. gossypii (Ago), K. lactis (Kla), K. thermotolerans

(Kth), S. kluyveri (Skl), Z. rouxii (Zro).

Genome pair DCJ

distance

Lower bound for r(t),

where t is proper

Lower bound for r(t),

where t is shortest

Ago and Kla 359 0.15 0.25

Ago and Kth 247 0.14 0.23

Ago and Skl 215 0.13 0.20

Ago and Zro 317 0.14 0.23

Kla and Kth 272 0.14 0.23

Kla and Skl 238 0.12 0.20

Kla and Zro 342 0.14 0.24

Kth and Skl 69 0.06 0.11

Kth and Zro 193 0.11 0.17

Skl and Zro 158 0.10 0.15

chromosomes) can be transformed this way into a shortest
DCJ scenario, where circular chromosomes are eliminated by
the first m DCJs and the rest represents a scenario between
linear genomes. This construction was further used to obtain an
approximate solution for the linear genome median problem.

In the present work, we study how evolutionary transpositions
may implicitly appear in DCJ scenarios and prove a uniform
lower bound for their rate. Since transpositions are rather
powerful rearrangements, it is not surprising that they may
appear in a significant proportion that cannot be easily bounded
in rearrangement scenarios between some genomes. Even though
we do not yet have a recipe for limiting the effect of transpositions

in the combined DCJ (2-break) and 3-break model (for which
the weighting approach was proved to be a failure by Jiang and
Alekseyev 2011), our present study provides a step towards better
understanding of the properties of transpositions and how they
may affect reconstruction of the evolutionary history.

Our analysis of mammalian genomes demonstrates that the
lower bound for the (disjoint) implicit transposition rate is
consistent with the estimation for the transposition rate obtained
with statistical methods (Alexeev et al., 2015).

In the future work, we plan to extend our method to support
other evolutionary events such as gene deletions/insertions
and duplications. This will increase the accuracy and make
the method applicable to genomes (such as plants) whose
evolutionary history is rich in such events.
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