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Next-generation sequencing (NGS) has been widely used in genetic association studies

to identify both common and rare variants associated with complex diseases. Various

statistical association tests have been developed to analyze NGS data; however, most

focus on identifying the marginal effects of a set of genetic variants on the disease. Only

a few association tests for NGS data analysis have considered the interaction effects

between genes. We developed three powerful gene-based gene-gene interaction tests

for testing both the main effects and the interaction effects of common, low-frequency,

and common with low-frequency variant pairs between two genes (the IGOF tests) in

case-control studies using NGS data. We performed a comprehensive simulation study

to verify that the proposed tests had appropriate type I error rates and significantly

higher power than did other interaction tests for analyzing NGS data. The tests were

applied to a whole-exome sequencing dataset for autism spectrum disorder (ASD) and

the significant results were evaluated in another independent ASD cohort. The IGOF tests

were implemented in C++ and are available at http://igof.sourceforge.net.

Keywords: gene-gene interaction, next-generation sequencing, case-control study, rare variant association,

simulations, autism spectrum disorders, association test

INTRODUCTION

Next-generation sequencing (NGS) has become a popular technology used in genetic studies to
identify rare variants (i.e., genetic variants with minor allele frequencies <5%) as well as common
variants associated with complex diseases. Many statistical association tests have been developed
for analyzing NGS data (Li and Leal, 2008; Madsen and Browning, 2009; Ionita-Laza et al., 2011;
Wu et al., 2011). Since testing individual rare variants can result in low statistical power, these
methods mainly test a set of rare variants in an exon or gene by aggregating association signals
from the set of variants. For example, the weighted-sum test aggregates association signals from
individual variants in a genomic region, while more weights are assigned to variants with lower
minor allele frequencies (MAFs) in the test statistic (Madsen and Browning, 2009). Furthermore,
some association tests that consider both common and rare variants are also available for analyzing
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NGS data (Ionita-Laza et al., 2013; Chung et al., 2014). However,
most of the aforementioned tests are restricted to identifying
marginal effects of genetic variants on the disease. Gene-gene
interactions, defined as the departure of the additive effects of
two or more genetic variants in a statistical model (Cordell,
2009), are also expected to be responsible for a portion of missing
heritability for complex traits (Manolio et al., 2009). Therefore,
developing a powerful association test that considers both main
effects and gene-gene interactions for analyzing NGS data has
become important in genetic association studies.

Only a few tests that specifically model gene-gene interactions
in genetic studies using NGS data are available. The Sequence
Kernel Association Test (SKAT), a variance component test via
different kernels, can be used to test for gene-gene interactions
using a 2wayIX kernel, which considers two-way interactions
between variants in a region (Wu et al., 2010). Recently, a gene-
gene interaction test was developed based on a functional logistic
regression model (FGLM) for analyzing NGS data (Zhao et al.,
2016). In FGLM, the interaction signals for all possible pairs of
variants between two genes were transformed to a few functional
principal components in the model. Then, the test statistic is
constructed based on the principal components. On the other
hand, the kernel-based adaptive cluster (KBAC) method (Liu and
Leal, 2010), which adaptively assigned more weights to multi-
variant genotypes enriched in cases using a kernel function, was
developed to identify main effects and gene-gene interaction
effects for rare variants. Compared to the weighted-sum test that
sums the association signals from individual variants, gene-gene
interactions were implicitly modeled in KBAC, as it considered
the joint effects of multi-variant genotypes. Therefore, simulation
studies suggest that KBAC can be more powerful than methods
focusing on main effects such as the weighted-sum test in
the presence of gene-gene interactions (Liu and Leal, 2010).
However, the power of KBAC, SKAT via the 2wayIX kernel, and
FGLM has not been compared.

Gene-based interaction tests considering all possible pairwise
interactions of variants between two genes, such as SKAT or
FGLM, can result in a large number of variant pairs. For example,
there were approximately 1,800,000 exonic variants reported
in the Exome Sequencing Project (http://evs.gs.washington.edu/
EVS) in approximately 18,000 genes, resulting in an average of
approximately 100 exonic variants per gene. Therefore, there
would be 10,000 pairwise interactions when testing two genes
with 100 variants, but there may be only a small portion of
variant pairs with interaction effects on the disease. When
considering combining signals from multiple test statistics,
the threshold algorithm, which selects a subset of promising
signals for further testing, can be a powerful approach to
aggregating signals. For example, the truncated product method,
which combines p-values less than a certain threshold, is more
powerful than are methods combining all p-values, such as
Fisher’s test (Zaykin et al., 2002). A gene-based association test
that combines single-variant statistics with p-values less than
a threshold has also been shown to be more powerful than
tests combining all association signals within a gene (Wang
et al., 2015). Moreover, incorporating the truncated product
method in a gene-based interaction test results in a significant

increase in power comparedwith other tests for common variants
(Ma et al., 2013). However, SKAT and FGLM consider signals
from all variant pairs, and their power can be compromised if
there is only a small portion of variant pairs with interaction
effects. Incorporating the threshold algorithm in a gene-based
interaction test for NGS data thus becomes attractive as it
maintains the power of the test.

We developed gene-based tests accommodating variants with
all allele frequency spectrums to identify main effects and
gene-gene interaction effects for case-control studies based
on threshold algorithms. The test statistic for a variant pair
was based on Pearson’s goodness-of-fit (GOF) statistic, which
compares the difference between the observed and expected
genotype distributions at two variants in cases and controls.
The GOF statistic follows a chi-square distribution when all
the expected values in the contingency table are greater than
5 (Yates, 1934). Therefore, variant pairs between two genes
were classified as common or low-frequency (LF) variant pairs
in the test based on their expected genotype counts in the
sample. That is, a variant pair was a common variant pair if the
expected genotype counts for the two variants in either cases
or controls under the null hypothesis of no association were
all ≥5; otherwise, the variant pair was an LF variant pair. Two
different threshold algorithms were applied to the common and
LF variant pairs, respectively. The statistic for common variant
pairs was constructed based on the GOF statistics for common
variant pairs with p-values calculated based on the chi-square
distribution less than a pre-determined threshold, and the test is
referred to as the IGOFcommon test. For LF variant pairs, assuming
that minor alleles have risk effects, statistics for variant pairs with
observed minor allele counts in cases that were greater than those
in controls were combined as the LF variant pair statistic. The test
is referred to as the IGOFLF test. A p-value for a combined test
(referred to as the IGOFcombined test) was then calculated based
on the IGOFcommon and IGOFLF test p-values. We performed
a comprehensive simulation study to evaluate the type I error
rates for the proposed tests and to compare the power of the
IGOFcombined test with that of SKAT, FGLM, and KBAC. Finally,
the tests were applied to the whole-exome sequencing dataset of
an autism spectrumdisorder (ASD) association study, and the ten
most significant gene pairs were evaluated in another replication
cohort.

MATERIALS AND METHODS

The Pearson’s GOF Statistic
We first review Pearson’s GOF statistic, which is the basis of the
IGOF test statistics. Assume we haveN cases andM controls. For
two variants where one variant has alleles A and a and the other
has alleles B and b, there are 9 categories of genotypes (i.e.,AABB,
AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and aabb). Assume
that ni and mi are the numbers of cases and controls in category
i. Pearson’s GOF statistic is calculated as:

C2 =
9
∑

i= 1

[

(

ni − E(ni)
)2

/E(ni) +
(

mi − E(mi)
)2

/E(mi)
]

,
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where

E(ni) = N × fi,E(mi) = M × fi, and fi = (ni +mi)/(N +M).

(1)

With the assumption that affection status is independent of
the genotype categories, C2 asymptotically follows a chi-square
distribution with 8 degrees of freedom. The null hypothesis
of the test is that the two variants are not associated with
the disease, and a variant pair with main effects and/or
interaction effects could result in the rejection of the null.
Note that the calculation of fi does not assume linkage
equilibrium between the two variants, and therefore the statistic
could be used to test for interaction of variants in linkage
disequilibrium (LD).

The IGOF Statistic for Common Variant
Pairs
A common variant pair is defined as a variant pair with the
minimum of E(ni) and E(mi) for i = 1,2,. . . ,9 greater than or
equal to 5. A modification of the truncated p-value product
method is applied to the IGOFcommon test. For a pair of genes,
assume there are n common variant pairs. We calculate the
C2 statistics and their p-values for the n pairs. Let � be a
set of common variant pairs with p-values less than τ . The
p-value threshold τ was set as 0.05 in both Zaykin et al.
(2002) and Ma et al. (2013). Therefore, τ was also set to
be 0.05 as a default value in the IGOFcommon test. We later
used simulations to evaluate the power of the IGOFcommon test
with different values of τ . The IGOFcommon test statistic is
defined as:

Icommon =
∑

j∈�

8−1(pj) (2)

where pj is the p-value for the GOF statistic C2
j for variant

pair j and 8 is the cumulative distribution function (cdf) of a
standard normal random variable. Note that Icommon is not the
product of the truncated p-values, as calculated by Zaykin et al.
(2002) and Ma et al. (2013). Instead, it is the sum of the inverse
normal statistics of the p-values. As explained in the section on
“Performance Improvement”, the transformation of p-values to
the normal statistics is used to calculate an approximated p-value
for Icommon.

The IGOF Statistic for LF Variant Pairs
Variant pairs that are not common variant pairs are referred
to as LF variant pairs. That is, an LF variant pair has at least
one of E(ni) or E(mi) for i = 1,2,. . . ,9 less than 5. A threshold
algorithm is also applied to the calculation of the statistic for
LF variant pairs. However, the selection of LF variant pairs for
testing is not based on the p-value of the C2 statistic because the
chi-square property may not hold for C2 calculated based on LF
variant pairs. Instead, the selection criteria are based on including
variant pairs with possible risk interaction effects. To be more
specific, assume there are N cases. For an LF variant pair where
one variant has major and minor alleles of A and a, respectively,
and the other variant has major and minor alleles of B and b,

respectively, a 3× 3 table as shown inTable 1 for genotype counts

in the N cases can be constructed, where
9
∑

i= 1
ni = N. There are

4N alleles in the variant pair, and a 2 × 2 table in Table 2 is
constructed based on Table 1 for allele counts in the variant pair.
For example, NAB is the number of alleles A and B in individuals
carrying both alleles A and B. The construction procedures for
Tables 1, 2 are the same as the procedure for constructing the
fast epistasis statistic in PLINK (Purcell et al., 2007). Similarly,
assume that there areM controls. Then,MAB,MAb,MaB, andMab

are calculated for the allele counts of the variant pair in controls.
A variant pair is included in the IGOF test if Nab, the minor
allele count of the two variants (in Table 2) calculated in cases,
is larger than Mab in controls. This is based on the assumption
that if the minor alleles of the two variants have risk interaction
effects, more minor alleles would be observed in cases than in
controls. Assume 9 is a set of l LF variant pairs selected based on
this threshold between the two genes. The IGOFLF test statistic is
calculated as

ILF =
∑

j∈9

C2
j (3)

where C2
j is the C

2 statistic for variant pair j in 9 .

The IGOFcommon, IGOFLF, and IGOFcombined

Tests
Icommon is the sum of the k largest normal random variables
from the n correlated normal random variables, where k is the
size of �. ILF is the sum of l correlated chi-square random
variables, where the random variables were pre-selected based
on the affection status. The distributions for Icommon and ILF are
both unknown. Therefore, permutations in which the case and
control status are randomly shuffled are used to calculate the
p-values for Icommon and ILF . The permutations are performed
based on the adaptive permutation algorithm (Che et al., 2014).
Briefly, given the number of tests, the maximum number of
permutations b and the cutoff value r can be estimated such that
the standard error of the p-value estimation is less than 20% of
the significance level α. Permutations are terminated when the
number of permuted statistics > the observed statistic is larger

TABLE 1 | The genotype counts between two variants.

BB Bb bb

AA n1 n2 n3

Aa n4 n5 n6

aa n7 n8 n9

TABLE 2 | The allele counts between two variants.

B b

A NAB = 4n1+2n2+2n4+n5 NAb = 4n3+2n2+2n6+n5
a NaB = 4n7+2n4+2n8+n5 Nab = 4n9+2n6+2n8+n5
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than r or when the number of permutations is larger than b. If the
number of permuted statistics > the observed statistic is larger
than r, the p-value is calculated as r/B, where B is the number of
permutations to achieve r. Otherwise, the p-value is calculated as
(R+1)/(b+1), where R is the number of permuted statistics> the
observed statistic in the b permutations. Assume that the p-values
for Icommon and ILF are pcommon and pLF , respectively. Note that
if � (or 9) is an empty set, no permutations will be performed
and the IGOFcommon (or IGOFLF) p-value will be 1. Similar to the
extended Simes’ test for combining p-values into a global test p-
value (Li et al., 2011), a p-value for the IGOF test accommodating
common and LF variant pairs (i.e., the IGOFcombined test) is
calculated as:

pcombined = Min(2Min(pcommon, pLF),Max(pcommon, pLF)) (4)

The null hypothesis for each of the IGOF tests is that none of
the variant pairs between the two tested genes are associated with
the disease. Any variants with main effects or variant pairs with
interaction effects could result in the rejection of the null. Hence,
the IGOF tests can detect bothmain effects and interaction effects
between two genes.

Performance Improvement
Although the calculation of C2 is fast for a pair of variants,
calculating Icommon and ILF and the permuted statistics can still
be very time consuming. We propose a two-stage approach to
improve the performance of the IGOF tests. In the first stage,
an approximated p-value based on a theoretical distribution is
rapidly calculated. Adaptive permutations to calculate the p-value
will be performed only if the approximated p-value is less than
an elevated significance level mα, where m is a pre-specified
constant and α is the significance level. The IGOFcommon or
IGOFLF p-value will be 1 if no permutation is performed.

It has been shown that the sum of the k largest from n
independent normal random variables is asymptotically normal
(Wiens et al., 2006). For n independent standard normal random
variables, the distribution of the sum of the k largest random
variables, Y, can be simplified as.

√
n

(

(Y/n) − µβ

(

Fn
)

σβ

(

Fn
)

)

∼ N(0, 1) (5)

where Fn is a function of a standard normal random variable,
and µβ and σβ are the mean and standard deviation functions
of Fn, respectively, to estimate the mean and standard deviation
of Y. More details on these functions can be found in Wiens
et al. (2006). The p-value calculated based on the distribution of
Y was referred to as pN . Due to correlations between common
variant pairs, Icommon would not have the same distribution as Y.
Therefore, pN for Icommon is only an approximation of the true
p-value.

For ILF , two approximated p-values are calculated. The first
approximated p-value, referred to as pD, is calculated based on
the assumption that ILF is distributed as a chi-square distribution

with
l
∑

i= 1
di degrees of freedom, where di is the number of non-

zero genotype categories for variant pair i. Although pD can

be rapidly calculated, we found that pD was seriously inflated
using simulation studies because of the following reasons: (1)
Ci in 9 can be correlated; (2) each Ci in 9 is not necessarily
distributed as a chi-square with di degrees of freedom; and
(3) Ci is pre-selected based on the assumption of risk effects.
Therefore, if pD is less than mα , another method based on
moment-matching, (i.e., Satterthwaite-Welch approximation of
the distribution of the weighted sum of chi-square random
variables; Welch, 1937; Satterthwaite, 1941), was used to calculate
the second approximated p-value, referred to as pSW . Briefly, as
noted in Box (1954), assume that the first and secondmoments of
the random variable Q, which is the weighted sum of chi-square
random variables with different degrees of freedoms, are k1 and
k2, respectively. Then Q is approximately distributed as gχ2

h
,

where g = k2
2k1

and h = 2k21
k2

. As the first and second moments are

unknown for ILF , we perform 1,000 permutations and estimate
the values based on the 1,000 permuted statistics of ILF under
the null. Note also that, due to the correlations among LF variant
pairs, C2 for LF variant pairs are not necessarily distributed as
chi-square, and Ciis pre-selected, pSW calculated based on the
distribution of Q is also an approximated p-value for ILF .

Simulations
We used simulations to evaluate type I error rates for the
IGOFcommon, IGOFLF, and IGOFcombined tests and to compare
the power of the IGOFcombined test with SKAT, FGLM, and
KBAC. We first used the coalescent-based simulator (COSI)
(Schaffner et al., 2005) to generate a population of 10,000
sequences (i.e., haplotypes) in two independent 30 kb regions
based on a European ancestry. Each region consisted of
approximately 600 variants. SeqSIMLA2 (Chung et al., 2015) was
then used to simulate case-control samples based on the 10,000
sequences. For type I error simulations, the penetrance function
for SeqSIMLA2 was specified as:

logit(P(affected)) = α0 (6)

where α0 determined the baseline disease prevalence, which was
assumed to be 5%. We considered four sets of sample sizes
(i.e., 500 cases and 500 controls; 1,000 cases and 1,000 controls;
1,500 cases and 1,500 controls; 2,000 cases and 2,000 controls)
and four sets of gene pairs (i.e., 10, 30, 50, and 100 variants in
each gene). The variants were randomly selected from the 600
variants in the two genes, and they consisted of both common
and LF variants.When testing the interactions between two genes
that were located close together on the same chromosome, there
could be LD at variants between the two genes. To evaluate
the effects of LD on the type I error rates for the IGOF tests,
we tested two regions with strong and weak LD. To generate
two regions with strong LD, from one 30 kb region, we selected
the first 50 variants as the first region and the subsequent 50
variants as the second region. Similarly, to generate two regions
with weak LD, from one 30 kb region, we selected the first 50
variants as the first region and the last 50 variants in the same
30 kb region as the second region. Furthermore, we evaluated
the effects of population stratification on the type I error rates.
COSI was used to generate another set of 10,000 sequences

Frontiers in Genetics | www.frontiersin.org 4 January 2018 | Volume 8 | Article 228

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chung and Kang A Powerful Gene-Based Test

based on an African ancestry. Simulated samples based on the
European and African ancestries were combined for the IGOF
tests. Type I error rates were calculated based on 5,000 and
10,000 simulated replicates of samples for significance levels of 1
and 0.1%, respectively. That is, the IGOF tests were performed
for each replicate and the p-values for the IGOF tests from
the 5,000 (10,000) replicates were used to calculate the type I
error rates at the 1% (0.1%) significance level. To ensure that
the standard error of the p-value estimation in the adaptive
permutation algorithm was less than 20% of the significance
level, the maximum number of permutations b and the cutoff
value r were set at 2,500 and 36, respectively, for the significance
level of 1%, and b and r were set at 25,000 and 36, respectively,
for the significance level of 0.1%. The values b and r for the
simulation study and real data analysis for ASD were estimated
based on the R script available online (http://motsingerreiflab.
jigsy.com/software) from the author of the adaptive algorithm
(Che et al., 2014). The parameter m was always set to 10 in
the two-stage approach for performance improvement in our
simulations unless otherwise specified.

For power simulations, we first followed the simulation
scenario in Zhao et al. (2016), where both strong main effects and
interaction effects were simulated. The penetrance function for
SeqSIMLA2 was specified as:

logit(P(affected)) = α0 + β1x1 + β2x2 + ...+ βjxj

+ β12x1x2 + β34x3x4 + ...βijxixj (7)

where α0 determined the baseline disease prevalence; β1, β2,..., βj

are the log of odds ratios of the main effects for variants 1, 2,. . . ,
j; β12, β34,..., βij are the log of odds ratios of interaction effects for
the variant pairs; and x1, x2,. . . , xj are the minor allele counts of
the causal variants assuming an additive model. Each of the two
genes had 250 variants randomly selected from the 600 variants
in each of the genes, and 25 pairs of variants between the two
genes were randomly selected as the disease variants. We also
simulated a model where the 25 pairs of disease variants all had
MAFs < 5%. Similar to the setting in Zhao et al. (2016), all of the
log of odds ratios for the main effects and interaction effects were
set to log(2), log(1.5), or log(1.2). A total of 2,000 cases and 2,000
controls were simulated. This simulation setting is referred to as
Scenario 1.

We also simulated a model with weaker main effects for the
power simulations (referred to as Scenario 2). The penetrance
function for SeqSIMLA2 was specified as:

logit(P(affected)) = α0 + β12x12 + β34x34 + ...βijxij (8)

where the notations of α0, β12, β34,..., and βij are the same as those
in Equation (7), and x12, x34,. . . , xij are the genotype coding of
the causal variants based on a given interaction model. Following
Wan et al. (2010), we considered four types of interaction models
with main effects, including additive, exclusive OR (XOR),
classical epistasis, and a model that was used to describe the
genetics of handedness and the color of swine (referred to as
the color model). For a pair of causal variants i (with alleles
A and a, a as the minor allele) and j (with alleles B and b,

b as the minor allele), under the additive model, xij was the
multiplication of minor allele counts in the two genotypes. Under
the XOR model, xij was coded as 0 for genotypes AABB, AAbb,
AaBb, aaBB, and aabb, while xij was coded as 1 for the other
genotypes. Under the classical epistasis model, xij was coded as 1
for genotypes AAbb, AaBb, and aaBB, while xij was coded as 0 for
the other genotypes. Furthermore, under the color model, xij was
coded as 1 for genotypes AABb, AAbb, AaBB, and aaBB, and was
coded as 0 for the other genotypes. We further considered pure
epistasis models without main effects (referred to as Scenario 3).
GAMETES (Urbanowicz et al., 2012), which generates random,
pure and strict epistasis models given disease heritability and
prevalence, was used to generate penetrance functions assuming
different disease heritability, and the penetrance values calculated
by GAMETES were used directly in SeqSIMLA2 instead of using
Equation (8). The sample size was fixed at 1,000 cases and 1,000
controls in the power simulations for Scenarios 2 and 3.

We selected various variant pairs to evaluate the power (e.g.,
four LF variant pairs, three common variant pairs, a mixture
of two common and two LF variant pairs) for Scenario 2. A
variant pair with MAFs of p and q was defined as an LF variant
pair if 1000 × p2q2, which is the expected genotype count of
homozygous minor alleles in either cases or controls, was less
than 5. Otherwise, the variant pair was defined as a common
variant pair. For an LF variant pair i and j, β in Equation (8)
was determined by 0.3

∣

∣log10
(

MAFi ×MAFj
)∣

∣, similar to the
function used in Wu et al. (2011). For a common variant pair,
β was fixed at log(1.25) unless otherwise specified. We also
considered interaction pairs with different directions of effects
by changing the signs of half of the βs in Equation (8). For the
pure and strict epistasis model, it was difficult in GAMETES to
generate multiple LF variant pairs with pure and strict interaction
effects. Therefore, only one LF variant pair with such effects
was simulated. Furthermore, six common variants with MAFs >

30% were specified in GAMETES to generate a complicated 6-
locus pure and strict epistasis model. A total of 24 models were
simulated for the power comparison and the setting for each
model can be found in Table S1 in the Supplementary Material.

We compared the power of the IGOFcombined test with that of
SKAT and FGLM. KBAC was included in the power comparisons
only when LF variant pairs had interaction effects, as KBAC
aimed to identify associations in rare variants. The power for
SKATwas evaluated based on the 2wayIX kernel, which considers
2-way interactions between variants. For FGLM, the parameter
λ, which is a smooth parameter for the Fourier expansion, was
specified as 0.01/(number of variants in the genes × sample
size) and the number of basis functions was specified as 23, as
suggested in the user manual of FGLM. Power was calculated
based on 1,000 batches at the significance levels of 1 and 0.1%.

The threshold parameter τ was specified as 0.05 as a default
value in the aforementioned simulation settings. We then
evaluated the power of the IGOFcombined test when different
values of τ (i.e., τ = 0.05, 0.01, and 0.001) were specified.
Furthermore, the parameter m was specified as 10 in the
aforementioned simulation settings. The type I error rates for
the IGOF tests may become conservative with smaller m due
to a more stringent threshold for performing the adaptive
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permutations. We therefore evaluated the type I error rates and
power for the IGOF tests under different values of m (i.e., m =
10, 1, and 0.1).

ASD Analysis
We first applied the IGOF test to a whole-exome sequencing
dataset from the ARRA autism sequencing consortium study (Liu
et al., 2013). The study samples were all of European ancestry, as
determined based on genetic analysis (i.e., eigen-vector analysis),
and European origin. The dataset consisted of two batches of
samples sequenced by two centers (Baylor College of Medicine
and Broad Institute), and different sequencing platforms and
genotype calling pipelines were used at the two centers. We
followed the same quality control (QC) procedures as Liu et al.
(2013) to merge the two batches of samples except for the
selection of variants. Only variants withMAF< 1% were selected
for the analysis of Liu et al. (2013), as they aimed to identify
rare variants associated with ASD. Because the IGOFcombined test
accommodates both common and LF variants, variants with all
allele frequency spectrums were used in our analysis. We then
evaluated the 10 most significant interaction pairs identified by
the IGOFcombined test in another genome-wide association study
(GWAS) dataset for autism obtained from the Autism Genome
Project (AGP) (Autism Genome Project et al., 2007; Anney et al.,
2010; Pinto et al., 2010). The dataset consisted of approximately
2,700 nuclear families that contained two unaffected parents and
one affected child. The samples were genotyped on Illumina
Infinium 1 M-single or 1 M-duo SNP arrays. We applied the
same QC procedures as described by Anney et al. (2010) to the
dataset, including eigen-vector analysis to remove samples not of
European ancestry. We then randomly sampled 1,300 unrelated
affected children as cases and 1,358 unrelated parents as controls.
To increase the density of the SNP set, these samples were
imputed against a large reference panel consisting of more than
64,000 haplotypes from the Haplotype Reference Consortium
(McCarthy et al., 2016) on the Michigan Imputation Server (Das
et al., 2016). Exonic variants were extracted for the analysis. The
analysis in the present study was approved by the Institutional
Review Board (IRB) of the National Health Research Institutes in
Taiwan (IRB protocol # EC1020503-E).

Several studies have suggested that testing gene-gene
interactions within protein-protein interaction (PPI) networks
can significantly reduce the number of gene pairs to be tested,
which alleviated the multiple testing correction burden and
hence increased testing power (Baranzini et al., 2009; Emily et al.,
2009; Lin et al., 2016). Therefore, we downloaded PPI pairs from
the STRING PPI database (von Mering et al., 2005), consisting
of 542,895 PPI pairs with combined scores > 800. As a PPI pair
with a combined score > 700 was considered a high confidence
pair (von Mering et al., 2005), the selection of a more stringent
threshold in our analysis ensured a high quality set of PPI pairs.
A total of 207,412 gene pairs, each of which had variants in both
genes in the ARRA dataset and proteins encoded by both genes
in the STRING PPI pairs, were evaluated by the IGOFcombined

test. The significance threshold α was set at 2× 10−7, which was
the conservative Bonferroni correction threshold for the 207,412
tests. The maximum number of permutations b and the cutoff
value r were set as 1.25× 108 and 36, respectively, in the adaptive
permutation algorithm so that the standard error of the p-value
estimation was less than 20% of the significance level. In the
analysis, mα was set at 0.1, so IGOFcombined p-values less than
0.01 were correctly calculated.

RESULTS

Table 3 shows the type I error rates for the IGOFcommon, IGOFLF,
and IGOFcombined tests for different sample sizes and different
numbers of variant pairs between the two genes at the 1%
significance level. The type I error rates at the 0.1% significance
level are shown in Table S2. All 95% confidence intervals for the
type I error rate estimates contained the expected levels. Table 3
also shows the proportions of variant pairs passing the selection
thresholds (i.e., p < 0.05 for common variant pairs and Nab in
cases > Nab in controls for LF variant pairs) in the threshold
algorithms. As expected, approximately 5% of common variant
pairs were selected for calculating the IGOF statistic, while
approximately 5–9% of LF variant pairs were selected. Table 4
shows the type I error rates for the IGOF tests in the presence
of LD or population stratification. The IGOF tests maintained
appropriate type I error rates in the presence of either strong

TABLE 3 | Type I error rates for the IGOF tests at the 1% significance level.

No. of variantsa Sample sizeb IGOFcommon IGOFLF IGOFcombined

Type I error Propc(%) Type I error Propd(%) Type I error

10,10 (8,6) 2,000 0.0088 4.4 0.0094 9.0 0.0080

30,30 (26,25) 2,000 0.0082 5.1 0.0102 5.3 0.0094

50,50 (42,41) 1,000 0.0124 4.6 0.0110 4.9 0.0092

2,000 0.0100 5.5 0.0092 6.0 0.0080

3,000 0.0096 4.6 0.0098 6.9 0.0098

4,000 0.0078 4.7 0.0106 7.6 0.0084

100,100 (77,83) 2,000 0.0106 5.0 0.0076 7.2 0.0086

aNumber of variants in the two genes and the numbers in parentheses show the numbers of variants with MAFs < 1%.
bNumber of cases and controls where the numbers of cases and controls are equal.
cProportion of common variant pairs selected by the threshold algorithm.
dProportion of LF variant pairs selected by the threshold algorithm.
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or weak LD between variants in the two genes for testing 1,000
cases and 1,000 controls. However, in the presence of strong
population stratification, the IGOF tests were conservative. This
was not surprising as population stratification was not modeled
in the IGOF tests, and the presence of population stratification
may result in incorrect calculations of the expected values in the
C2 statistic.

Figure 1 shows the power comparison at the 0.1% significance
level for Scenario 1. For Model 1 where strong main effects
and interaction effects were simulated, all four tests maintained
high power. When the effect sizes decreased to log(1.2) (i.e.,
Model 3), IGOFcombined and SKAT still maintained high power,
but the power of FGLM and KBAC decreased significantly.
For Model 4 where all the causal variants have MAFs<5%,

TABLE 4 | Type I error rates for the IGOF tests in the presence of LD or population

stratification at the 1% significance level.

No. of variantsa IGOFcommon IGOFLF IGOFcombined

LD

Strong 50,50 (38,47) 0.0100 0.0124 0.011

Weak 50,50 (36,41) 0.0086 0.0094 0.0076

STRATIFICATION

AFR:800b 50,50 (43,45) 0.0058 0 0.0026

EUR:3200

AFR:2000 50,50 (43,45) 0.0048 0 0.0022

EUR:2000

AFR:3200 50,50 (43,45) 0.0046 0 0.0010

EUR:800

aNumber of variants in the two genes and the numbers in parentheses show the numbers

of variants with MAFs < 1%.
bSample sizes in each population. The numbers of cases and controls are equal.

IGOFcombined still had high power followed by KBAC and SKAT,
while FGLM resulted in negligible power. Figure 2 shows the
power comparison when common variant pairs with interaction
effects were simulated for Scenario 2 (Models 5-8). IGOFcombined

had significantly higher power than did the other tests under
Models 6-8, whereas under Model 5 (the additive model), SKAT
had slightly more power than IGOFcombined. Figure 3 shows
the power comparison when LF variant pairs with interaction
effects were simulated (Models 9–12), as well as when LF
variant pairs with different directions of interaction effects were
simulated (Models 13–16). IGOFcombined consistently had the
highest power across all models, except that for Model 13, FGLM
had the highest power. Typically, under the XOR model (Models
10 and 14), IGOFcombined had significantly higher power than the
other tests. Interestingly, although IGOFcombined assumed risk
effects when selecting LF variant pairs, it still maintained power
comparable to the other tests for Models 13–16, where different
directions of effects were simulated. IGOFcombined also had the
highest power when a mixture of common and LF variant pairs
with interaction effects were simulated (Models 17–20), as shown
in Figure 4. Finally, Figure 5 shows the power comparison for
Scenario 3 when pure epistasis was simulated. SKAT had the
highest power in Model 21 (with heritability of 0.1), followed
by FGLM and IGOF. However, when heritability was increased
to 0.2 (Model 22), IGOF showed significantly higher power than
SKAT and FGLM.More interestingly, IGOF also had significantly
higher power than the other tests did under the complicated
6-locus pure and strict epistasis models (Models 23 and 24).
Figures S1–S5 show the power comparisons for Models 1–24 at
the 1% significance level and the power patterns were similar to
those at the 0.1% significance level.

Figure 6 shows the power changes for IGOFcombined under
Models 5, 18, and 23 when different values of τ , the threshold for
selecting common variant pairs in the test statistic, were specified

FIGURE 1 | Power comparison for IGOFcombined, SKAT, FGLM, and KBAC at α = 0.1% for Scenario 1 with strong main effects and interaction effects under the

Additive model.
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FIGURE 2 | Power comparison for IGOFcombined, SKAT, and FGLM at α = 0.1% for Scenario 2, where only common variant pairs had interaction effects under the

Additive, XOR, Color, and Classical models.

FIGURE 3 | Power comparison for IGOFcombined, SKAT, FGLM, and KBAC at α = 0.1% for Scenario 2, where only LF variant pairs had interaction effects under the

Additive, XOR, Color, and Classical models.

at the 0.1% significance level. Models 5, 18, and 23 were selected
for the power evaluation because common variants were among
the disease variants in these models. Furthermore, the power for
IGOFcombined was not close to 1 when τ was 0.05 in these models,
which would make it easier to observe the power changes when
different values of τ were specified. As seen in the Figure, the
power under each model was similar with different values of τ ,
suggesting that the default value of 0.05 for τ was appropriate
for IGOFcombined to achieve optimal power in our simulations.
Table 5 shows the type I error rates for the IGOF tests whenm= 1

andm= 0.1. The type I error rates were appropriate whenm= 1,
but they can be conservative for IGOFLF and IGOFcombined when
m = 0.1. The conservative type I error rates were not surprising
because when m = 0.1, permutations were not performed in
a larger proportion of simulated replicates compared to m =
1 and m = 10, and the replicates without permutations had
p-values of 1. Figure 7 shows the power changes for IGOFcombined

under Models 5, 18, and 23 when different values of m were
specified at the 0.1% significance level. Although the type I
error rate for IGOFcombined was conservative when m = 0.1, we

Frontiers in Genetics | www.frontiersin.org 8 January 2018 | Volume 8 | Article 228

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chung and Kang A Powerful Gene-Based Test

FIGURE 4 | Power comparison for IGOFcombined, SKAT, FGLM, and KBAC at α = 0.1% for Scenario 2, where interaction effects were simulated for both LF and

common variant pairs under the Additive, XOR, Color, and Classical models.

FIGURE 5 | Power comparison at α = 0.1% for IGOFcombined, SKAT, and FGLM for Scenario 3, where pure epistasis among common variants was simulated.

observed similar power under different values of m for these
Models.

In the ASD analysis, there were 897 cases and 844 controls
and 222,211 exonic variants after QC in the ARRA dataset. In
the AGP dataset, there were 814,767 SNPs in 1,300 cases and
1,358 controls after QC. After imputation, there were 203,270
exonic variants, where 168,961 variants had MAFs < 5%. The
tests were distributed evenly across 5 computers, while 10
parallel threads were executed on each computer. The entire
analysis was completed in 1 week. The 10 most significant gene
pairs identified by IGOFcombined using the ARRA dataset are

shown in Table 6. The most significant result was the interaction
between the NADH:ubiquinone oxidoreductase subunit AB1
(NDUFAB1) and NADH:ubiquinone oxidoreductase core
subunit V2 (NDUFV2) genes with a p-value of 3.30 × 10−5,
which did not pass the stringent Bonferroni threshold of
2 × 10−7. Interestingly, all 10 gene pairs had IGOFcommon

p-values of 1, suggesting that no common interaction pairs
had individual IGOF p < 0.05. Hence, the replication of the 10
gene pairs was evaluated by IGOFLF in the AGP dataset. One
gene pair—ubiquinol-cytochrome c reductase core protein II
(UQCRC2) and NDUFV2 had a significant IGOFLF p-value
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FIGURE 6 | Power comparison at α = 0.1% for IGOFcombined when different values of τ , the threshold to select common variants in the test statistic, were specified.

TABLE 5 | Type I error rates for the IGOF tests with m = 1 and m = 0.1.

No. of variants IGOFcommon IGOFLF IGOFcombined

m = 1 m = 0.1 m = 1 m = 0.1 m = 1 m = 0.1

10,10 0.0078 0.0078 0.0086 0.0016a 0.0080 0.0054

30,30 0.0090 0.0090 0.0098 0.0040 0.0088 0.0078

50,50 0.0102 0.0100 0.0092 0.0046 0.0088 0.0082

100,100 0.0108 0.0108 0.0080 0.0038 0.0080 0.0078

aValues in bold are outside the 95% confidence intervals for the type I error estimates.

of 0.0492. Table 6 also shows the marginal p-values for testing
the main effects of individual genes using SKAT. The kernel
“linear.weighted,” which assigned more weights to rarer variants,
was used. No marginal significance was observed in the gene
pair of (UQCRC2, NDUFV2), suggesting that the significance
of the IGOF tests resulted from the interaction effect between
the two genes on ASD. Table S3 shows the genetic variants and
their MAFs in genes shown in Table 6. Most of the variants had
MAFs < 5%, suggesting that IGOF was powerful for identifying
LF variant pairs with interaction effects. Furthermore, the
genes shown in Table 6 are mostly on different chromosomes,
and we did not observe LD between genes on the same
chromosome.

DISCUSSION

In this study, we developed the IGOFcommon, IGOFLF, and
IGOFcombined tests, which are powerful gene-based interaction
tests for common, LF, and common combined with LF variant
pairs, respectively. Based on threshold algorithms, only a subset
of promising interaction pairs contributed to the final IGOF
statistics. Moreover, while an adaptive permutation procedure

was required to obtain p-values for the IGOF tests, a two-stage
strategy was used to improve the efficiency of the tests in terms
of run time. Our simulation study results suggest that the IGOF
tests are valid tests and can have significantly higher power than
SKAT and FGLM.

Several rare-variant association tests considering main effects
assign more weights to rarer variants in the statistics, assuming
that rarer variants have larger effect sizes (Madsen and Browning,
2009; Wu et al., 2011; Ionita-Laza et al., 2013). These simulation
studies suggest that weighting can improve power. It is
straightforward to incorporate weights in the IGOFLF statistic by
calculating ILF =

∑

j∈9

wjC
2
j , where wj is the weight for variant

pair j. Similar to the rare-variant association tests considering
main effects, wj can be determined by a function of the MAFs
of the variant pair, such as the Beta distribution density function
used in SKAT via the “linear.weighted” kernel. However, when
we used wj = Beta(pq; 1, 25), where p and q were the MAFs of
the variants, and 1 and 25 were the default parameters of the Beta
distribution used in SKAT, there was little impact on the power of
the IGOFLF test. Hence, weighting was not used in this study for
the IGOFLF test.

The p-value for the IGOFcombined test is calculated using the
two p-values from the IGOFcommon and IGOFLF tests based on
the extended Simes’ test. The calculation assumed that the two
p-values are independent. The assumption may not hold when
there is LD between variants in the common and LF variant
pairs. However, as seen in the results from our simulations
where the LD structures were simulated among variants, the
IGOFcombined test maintained appropriate type I error rates
across different scenarios. Li et al. (2012) suggests that when
combining correlated p-values from individual variants using
Fisher’s method, the degree of freedom for the test statistic should
be adjusted based on the correlation of p-values for each pairwise
combination of the variants. The correlation of the IGOFcommon
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FIGURE 7 | Power comparison at α = 0.1% for IGOFcombined when different values of m, the threshold in the two-stage algorithm, were specified.

TABLE 6 | The 10 most significant gene pairs from the ASD analysis.

Gene 1a Gene 2a IGOFcombined

(ARRA)

IGOFLF (AGP)

NDUFAB1 (8.33E-02) NDUFV2 (2.98E-01) 3.30E-05 1.17E-01

ZNF217 (1.23E-04) KDM1A (9.68E-01) 4.01E-05 7.75E-01

ATP6V1E2 (6.47E-02) ATP6V0B (4.86E-04) 4.76E-05 7.51E-01

ATP6V0A1 (2.50E-02) ATP6V0B (4.86E-04) 5.30E-05 7.93E-01

INSR (1.33E-01) ATP6V0B (4.86E-04) 7.24E-05 8.76E-01

NDUFV2 (2.98E-01) NDUFV3 (7.37E-01) 7.45E-05 1.50E-01

CDC34 (6.66E-01) CACUL1 (9.33E-03) 8.21E-05 NAb

ATP5B (1.30E-01) ATP6V0B (4.86E-04) 8.91E-05 6.01E-01

UQCRC2 (3.77E-01) NDUFV2 (2.98E-01) 9.49E-05 4.92E-02

NDUFV2 (2.98E-01) NDUFA13 (5.04E-01) 1.01E-04 2.53E-01

aGene and its marginal p-value tested by SKAT with the “linear.weighted” kernel.
bNo variants were observed in this gene so that no tests were performed.

and IGOFLF test p-values may be estimated by a set of permuted
p-values calculated from the permuted statistics. It is our future
work to consider the correlation of the IGOFcommon and IGOFLF
test p-values when calculating the IGOFcombined test p-value.

The IGOF test statistic is constructed based on the statistic
for testing pairwise interaction. However, as shown in our
simulation results, the IGOF test was also powerful for
identifying high-dimensional interactions among 6 variants
with MAFs > 30%. It is possible to extend the GOF statistic
in Equation (1) to consider n-dimensional interactions by
enumerating all possible genotype categories from the n variants,
and similar IGOF statistics can be constructed. However,
this would significantly increase the computational burden as
substantially more combinations of variants between two genes
would be tested.

The IGOF tests use a two-stage approach to improve
computational efficiency. Although a large portion of tests
with nonsignificant p-values will not undergo the adaptive
permutation procedure, a significant amount of time is still
required in the adaptive permutations for tests with very
small p-values (e.g., 10−8). Therefore, the program may not be
suitable for genome-wide analyses testing gene-gene interactions
between all possible pairs of genes across the genome. As
demonstrated in our ASD analysis, restricting the analysis to
the PPI network significantly reduced the number of gene pairs
tested, so the analysis can be finished in a reasonable time
frame.

One major limitation of the IGOF test is that covariates such
as age, sex, and population stratification are not considered.
Our simulation study results suggest that in the presence of
population stratification, the IGOF test can be conservative,
which may result in low statistical power. In contrast to the IGOF
test, covariates can be modeled in the regression-based tests
SKAT and FGLM. Hence, if there is population stratification in
the sample, regression-based methods such as SKAT and FGLM
should be used. Another limitation of the IGOF test is that for
data with imputed genotypes, it cannot use genotype dosages to
account for imputation uncertainties. One strategy for analyzing
imputed genotypes in the IGOF test is to use a “best guess”
genotype for an individual by selecting the imputed genotype
with the maximum posterior probability. This strategy was
adopted in our ASD analysis for the imputed AGP data. However,
as shown in the simulation studies by Zheng et al. (2011), power
can be compromised by using “best guess” genotypes relative to
genotype dosages.

Our application of the IGOF test to the ARRA dataset
did not identify significant gene pairs passing the stringent
Bonferroni correction threshold. However, the threshold may
be too conservative as the IGOF tests can be highly correlated
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for testing the interactions of the same gene with other genes.
Furthermore, the (UQCRC2, NDUFV2) gene pair from the 10
most significant gene pairs showed a significant IGOFLF p-value
(p-value < 0.05) in the replication AGP dataset. Rare copy
number variations in the UQCRC2 gene have been found to
be associated with ASD (Matsunami et al., 2013). Furthermore,
the NDUFV2 gene is associated with psychiatric disorders
such as schizophrenia and bipolar disorder. Further studies are
warranted to investigate possible interaction effects of the two
genes on ASD.

In conclusion, we developed three gene-based gene-gene
interaction tests for analyzing NGS data in case-control
studies. These tests will be very useful for identifying
interaction effects between two genes on complex diseases.
The software implementing the three tests is available at http://
igof.sourceforge.net.
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